Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1800 lines
40 KiB

5 years ago
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#pragma warning( disable : 4201 )
#include <mmsystem.h>
#include <stdio.h>
#include <math.h>
#include "snd_audio_source.h"
#include "AudioWaveOutput.h"
#include "ifaceposersound.h"
#include "StudioModel.h"
#include "hlfaceposer.h"
#include "expressions.h"
#include "expclass.h"
#include "PhonemeConverter.h"
#include "utlvector.h"
#include "filesystem.h"
#include "sentence.h"
#include "faceposer_models.h"
#include "iclosecaptionmanager.h"
#include "phonemeeditor.h"
#include "wavebrowser.h"
#include "choreoscene.h"
#include "choreoview.h"
#include "KeyValues.h"
extern ISoundEmitterSystemBase *soundemitter;
typedef struct channel_s
{
int leftvol;
int rightvol;
int rleftvol;
int rrightvol;
float pitch;
} channel_t;
#define INPUT_BUFFER_COUNT 32
class CAudioWaveInput : public CAudioInput
{
public:
CAudioWaveInput( void );
~CAudioWaveInput( void );
// Returns the current count of available samples
int SampleCount( void );
// returns the size of each sample in bytes
int SampleSize( void ) { return m_sampleSize; }
// returns the sampling rate of the data
int SampleRate( void ) { return m_sampleRate; }
// returns a pointer to the actual data
void *SampleData( void );
// release the available data (mark as done)
void SampleRelease( void );
// returns the mono/stereo status of this device (true if stereo)
bool IsStereo( void ) { return m_isStereo; }
// begin sampling
void Start( void );
// stop sampling
void Stop( void );
void WaveMessage( HWAVEIN hdevice, UINT uMsg, DWORD dwParam1, DWORD dwParam2 );
private:
void OpenDevice( void );
bool ValidDevice( void ) { return m_deviceId != 0xFFFFFFFF; }
void ClearDevice( void ) { m_deviceId = 0xFFFFFFFF; }
// returns true if the new format is better
bool BetterFormat( DWORD dwNewFormat, DWORD dwOldFormat );
void InitReadyList( void );
void AddToReadyList( WAVEHDR *pBuffer );
void PopReadyList( void );
WAVEHDR *m_pReadyList;
int m_sampleSize;
int m_sampleRate;
bool m_isStereo;
UINT m_deviceId;
HWAVEIN m_deviceHandle;
WAVEHDR *m_buffers[ INPUT_BUFFER_COUNT ];
};
extern "C" void CALLBACK WaveData( HWAVEIN hwi, UINT uMsg, CAudioWaveInput *pAudio, DWORD dwParam1, DWORD dwParam2 );
CAudioWaveInput::CAudioWaveInput( void )
{
memset( m_buffers, 0, sizeof( m_buffers ) );
int deviceCount = (int)waveInGetNumDevs();
UINT deviceId = 0;
DWORD deviceFormat = 0;
int i;
for ( i = 0; i < deviceCount; i++ )
{
WAVEINCAPS waveCaps;
MMRESULT errorCode = waveInGetDevCaps( (UINT)i, &waveCaps, sizeof(waveCaps) );
if ( errorCode == MMSYSERR_NOERROR )
{
// valid device
if ( BetterFormat( waveCaps.dwFormats, deviceFormat ) )
{
deviceId = i;
deviceFormat = waveCaps.dwFormats;
}
}
}
if ( !deviceFormat )
{
m_deviceId = 0xFFFFFFFF;
m_sampleSize = 0;
m_sampleRate = 0;
m_isStereo = false;
}
else
{
m_deviceId = deviceId;
m_sampleRate = 44100;
m_isStereo = false;
if ( deviceFormat & WAVE_FORMAT_4M16 )
{
m_sampleSize = 2;
}
else if ( deviceFormat & WAVE_FORMAT_4M08 )
{
m_sampleSize = 1;
}
else
{
// ERROR!
}
OpenDevice();
}
InitReadyList();
}
CAudioWaveInput::~CAudioWaveInput( void )
{
if ( ValidDevice() )
{
Stop();
waveInReset( m_deviceHandle );
waveInClose( m_deviceHandle );
for ( int i = 0; i < INPUT_BUFFER_COUNT; i++ )
{
if ( m_buffers[i] )
{
waveInUnprepareHeader( m_deviceHandle, m_buffers[i], sizeof( *m_buffers[i] ) );
delete[] m_buffers[i]->lpData;
delete m_buffers[i];
}
m_buffers[i] = NULL;
}
ClearDevice();
}
}
void CALLBACK WaveData( HWAVEIN hwi, UINT uMsg, CAudioWaveInput *pAudio, DWORD dwParam1, DWORD dwParam2 )
{
if ( pAudio )
{
pAudio->WaveMessage( hwi, uMsg, dwParam1, dwParam2 );
}
}
void CAudioWaveInput::WaveMessage( HWAVEIN hdevice, UINT uMsg, DWORD dwParam1, DWORD dwParam2 )
{
if ( hdevice != m_deviceHandle )
return;
switch( uMsg )
{
case WIM_DATA:
WAVEHDR *pHeader = (WAVEHDR *)dwParam1;
AddToReadyList( pHeader );
break;
}
}
void CAudioWaveInput::OpenDevice( void )
{
if ( !ValidDevice() )
return;
WAVEFORMATEX format;
memset( &format, 0, sizeof(format) );
format.nAvgBytesPerSec = m_sampleRate * m_sampleSize;
format.nChannels = 1;
format.wBitsPerSample = m_sampleSize * 8;
format.nSamplesPerSec = m_sampleRate;
format.wFormatTag = WAVE_FORMAT_PCM;
format.nBlockAlign = m_sampleSize;
MMRESULT errorCode = waveInOpen( &m_deviceHandle, m_deviceId, &format, (DWORD)WaveData, (DWORD)this, CALLBACK_FUNCTION );
if ( errorCode == MMSYSERR_NOERROR )
{
// valid device opened
int bufferSize = m_sampleSize * m_sampleRate / INPUT_BUFFER_COUNT; // total of one second of data
// allocate buffers
for ( int i = 0; i < INPUT_BUFFER_COUNT; i++ )
{
m_buffers[i] = new WAVEHDR;
m_buffers[i]->lpData = new char[ bufferSize ];
m_buffers[i]->dwBufferLength = bufferSize;
m_buffers[i]->dwUser = 0;
m_buffers[i]->dwFlags = 0;
waveInPrepareHeader( m_deviceHandle, m_buffers[i], sizeof( *m_buffers[i] ) );
waveInAddBuffer( m_deviceHandle, m_buffers[i], sizeof( *m_buffers[i] ) );
}
}
else
{
ClearDevice();
}
}
void CAudioWaveInput::Start( void )
{
if ( !ValidDevice() )
return;
waveInStart( m_deviceHandle );
}
void CAudioWaveInput::Stop( void )
{
if ( !ValidDevice() )
return;
waveInStop( m_deviceHandle );
}
void CAudioWaveInput::InitReadyList( void )
{
m_pReadyList = NULL;
}
void CAudioWaveInput::AddToReadyList( WAVEHDR *pBuffer )
{
WAVEHDR **pList = &m_pReadyList;
waveInUnprepareHeader( m_deviceHandle, pBuffer, sizeof(*pBuffer) );
// insert at the tail of the list
while ( *pList )
{
pList = reinterpret_cast<WAVEHDR **>(&((*pList)->dwUser));
}
pBuffer->dwUser = NULL;
*pList = pBuffer;
}
void CAudioWaveInput::PopReadyList( void )
{
if ( m_pReadyList )
{
WAVEHDR *pBuffer = m_pReadyList;
m_pReadyList = reinterpret_cast<WAVEHDR *>(m_pReadyList->dwUser);
waveInPrepareHeader( m_deviceHandle, pBuffer, sizeof(*pBuffer) );
waveInAddBuffer( m_deviceHandle, pBuffer, sizeof(*pBuffer) );
}
}
#define WAVE_FORMAT_STEREO (WAVE_FORMAT_1S08|WAVE_FORMAT_1S16|WAVE_FORMAT_2S08|WAVE_FORMAT_2S16|WAVE_FORMAT_4S08|WAVE_FORMAT_4S16)
#define WAVE_FORMATS_UNDERSTOOD (0xFFF)
#define WAVE_FORMAT_11K (WAVE_FORMAT_1M08|WAVE_FORMAT_1M16)
#define WAVE_FORMAT_22K (WAVE_FORMAT_2M08|WAVE_FORMAT_2M16)
#define WAVE_FORMAT_44K (WAVE_FORMAT_4M08|WAVE_FORMAT_4M16)
static int HighestBit( DWORD dwFlags )
{
int i = 31;
while ( i )
{
if ( dwFlags & (1<<i) )
return i;
i--;
}
return 0;
}
bool CAudioWaveInput::BetterFormat( DWORD dwNewFormat, DWORD dwOldFormat )
{
dwNewFormat &= WAVE_FORMATS_UNDERSTOOD & (~WAVE_FORMAT_STEREO);
dwOldFormat &= WAVE_FORMATS_UNDERSTOOD & (~WAVE_FORMAT_STEREO);
// our target format is 44.1KHz, mono, 16-bit
if ( HighestBit(dwOldFormat) >= HighestBit(dwNewFormat) )
return false;
return true;
}
int CAudioWaveInput::SampleCount( void )
{
if ( !ValidDevice() )
return 0;
if ( m_pReadyList )
{
switch( SampleSize() )
{
case 2:
return m_pReadyList->dwBytesRecorded >> 1;
case 1:
return m_pReadyList->dwBytesRecorded;
default:
break;
}
}
return 0;
}
void *CAudioWaveInput::SampleData( void )
{
if ( !ValidDevice() )
return NULL;
if ( m_pReadyList )
{
return m_pReadyList->lpData;
}
return NULL;
}
// release the available data (mark as done)
void CAudioWaveInput::SampleRelease( void )
{
PopReadyList();
}
// factory to create a suitable audio input for this system
CAudioInput *CAudioInput::Create( void )
{
// sound source is a singleton for now
static CAudioInput *pSource = NULL;
if ( !pSource )
{
pSource = new CAudioWaveInput;
}
return pSource;
}
void CAudioDeviceSWMix::Mix8Mono( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += pChannel->leftvol * pData[sampleIndex];
m_paintbuffer[ dest ].right += pChannel->rightvol * pData[sampleIndex];
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac);
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceSWMix::Mix8Stereo( channel_t *pChannel, char *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += pChannel->leftvol * pData[sampleIndex];
m_paintbuffer[ dest ].right += pChannel->rightvol * pData[sampleIndex+1];
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac)<<1;
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceSWMix::Mix16Mono( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += (pChannel->leftvol * pData[sampleIndex])>>8;
m_paintbuffer[ dest ].right += (pChannel->rightvol * pData[sampleIndex])>>8;
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac);
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
void CAudioDeviceSWMix::Mix16Stereo( channel_t *pChannel, short *pData, int outputOffset, int inputOffset, int rateScaleFix, int outCount, int timecompress, bool forward )
{
int sampleIndex = 0;
fixedint sampleFrac = inputOffset;
int fixup = 0;
int fixupstep = 1;
if ( !forward )
{
fixup = outCount - 1;
fixupstep = -1;
}
for ( int i = 0; i < outCount; i++, fixup += fixupstep )
{
int dest = max( outputOffset + fixup, 0 );
m_paintbuffer[ dest ].left += (pChannel->leftvol * pData[sampleIndex])>>8;
m_paintbuffer[ dest ].right += (pChannel->rightvol * pData[sampleIndex+1])>>8;
sampleFrac += rateScaleFix;
sampleIndex += FIX_INTPART(sampleFrac)<<1;
sampleFrac = FIX_FRACPART(sampleFrac);
}
}
int CAudioDeviceSWMix::MaxSampleCount( void )
{
return PAINTBUFFER_SIZE;
}
void CAudioDeviceSWMix::MixBegin( void )
{
memset( m_paintbuffer, 0, sizeof(m_paintbuffer) );
}
void CAudioDeviceSWMix::TransferBufferStereo16( short *pOutput, int sampleCount )
{
for ( int i = 0; i < sampleCount; i++ )
{
if ( m_paintbuffer[i].left > 32767 )
m_paintbuffer[i].left = 32767;
else if ( m_paintbuffer[i].left < -32768 )
m_paintbuffer[i].left = -32768;
if ( m_paintbuffer[i].right > 32767 )
m_paintbuffer[i].right = 32767;
else if ( m_paintbuffer[i].right < -32768 )
m_paintbuffer[i].right = -32768;
*pOutput++ = (short)m_paintbuffer[i].left;
*pOutput++ = (short)m_paintbuffer[i].right;
}
}
CAudioWaveOutput::CAudioWaveOutput( void )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
CAudioBuffer *buffer = &m_buffers[ i ];
Assert( buffer );
buffer->hdr = NULL;
buffer->submitted = false;
buffer->submit_sample_count = false;
}
ClearDevice();
OpenDevice();
m_mixTime = -1;
m_sampleIndex = 0;
memset( m_sourceList, 0, sizeof(m_sourceList) );
m_nEstimatedSamplesAhead = (int)( ( float ) OUTPUT_SAMPLE_RATE / 10.0f );
}
void CAudioWaveOutput::RemoveMixerChannelReferences( CAudioMixer *mixer )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
RemoveFromReferencedList( mixer, &m_buffers[ i ] );
}
}
void CAudioWaveOutput::AddToReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
// Already in list
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
return;
}
}
// Just remove it
int idx = buffer->m_Referenced.AddToTail();
CAudioMixerState *state = &buffer->m_Referenced[ idx ];
state->mixer = mixer;
state->submit_mixer_sample = mixer->GetSamplePosition();
}
void CAudioWaveOutput::RemoveFromReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
buffer->m_Referenced.Remove( i );
break;
}
}
}
bool CAudioWaveOutput::IsSoundInReferencedList( CAudioMixer *mixer, CAudioBuffer *buffer )
{
for ( int i = 0; i < buffer->m_Referenced.Size(); i++ )
{
if ( buffer->m_Referenced[ i ].mixer == mixer )
{
return true;
}
}
return false;
}
bool CAudioWaveOutput::IsSourceReferencedByActiveBuffer( CAudioMixer *mixer )
{
if ( !ValidDevice() )
return false;
CAudioBuffer *buffer;
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
buffer = &m_buffers[ i ];
if ( !buffer->submitted )
continue;
if ( buffer->hdr->dwFlags & WHDR_DONE )
continue;
// See if it's referenced
if ( IsSoundInReferencedList( mixer, buffer ) )
return true;
}
return false;
}
CAudioWaveOutput::~CAudioWaveOutput( void )
{
if ( ValidDevice() )
{
waveOutReset( m_deviceHandle );
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
if ( m_buffers[i].hdr )
{
waveOutUnprepareHeader( m_deviceHandle, m_buffers[i].hdr, sizeof(*m_buffers[i].hdr) );
delete[] m_buffers[i].hdr->lpData;
delete m_buffers[i].hdr;
}
m_buffers[i].hdr = NULL;
m_buffers[i].submitted = false;
m_buffers[i].submit_sample_count = 0;
m_buffers[i].m_Referenced.Purge();
}
waveOutClose( m_deviceHandle );
ClearDevice();
}
}
CAudioBuffer *CAudioWaveOutput::GetEmptyBuffer( void )
{
CAudioBuffer *pOutput = NULL;
if ( ValidDevice() )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
if ( !(m_buffers[ i ].submitted ) ||
m_buffers[i].hdr->dwFlags & WHDR_DONE )
{
pOutput = &m_buffers[i];
pOutput->submitted = true;
pOutput->m_Referenced.Purge();
break;
}
}
}
return pOutput;
}
void CAudioWaveOutput::SilenceBuffer( short *pSamples, int sampleCount )
{
int i;
for ( i = 0; i < sampleCount; i++ )
{
// left
*pSamples++ = 0;
// right
*pSamples++ = 0;
}
}
void CAudioWaveOutput::Flush( void )
{
waveOutReset( m_deviceHandle );
}
// mix a buffer up to time (time is absolute)
void CAudioWaveOutput::Update( float time )
{
if ( !ValidDevice() )
return;
// reset the system
if ( m_mixTime < 0 || time < m_baseTime )
{
m_baseTime = time;
m_mixTime = 0;
}
// put time in our coordinate frame
time -= m_baseTime;
if ( time > m_mixTime )
{
CAudioBuffer *pBuffer = GetEmptyBuffer();
// no free buffers, mixing is ahead of the playback!
if ( !pBuffer || !pBuffer->hdr )
{
//Con_Printf( "out of buffers\n" );
return;
}
// UNDONE: These numbers are constants
// calc number of samples (2 channels * 2 bytes per sample)
int sampleCount = pBuffer->hdr->dwBufferLength >> 2;
m_mixTime += sampleCount * (1.0f / OUTPUT_SAMPLE_RATE);
short *pSamples = reinterpret_cast<short *>(pBuffer->hdr->lpData);
SilenceBuffer( pSamples, sampleCount );
int tempCount = sampleCount;
while ( tempCount > 0 )
{
if ( tempCount > m_audioDevice.MaxSampleCount() )
sampleCount = m_audioDevice.MaxSampleCount();
else
sampleCount = tempCount;
m_audioDevice.MixBegin();
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
CAudioMixer *pSource = m_sourceList[i];
if ( !pSource )
continue;
StudioModel *model = NULL;
int modelindex = pSource->GetModelIndex();
if ( modelindex >= 0 )
{
model = models->GetStudioModel( modelindex );
}
else
{
if ( g_pPhonemeEditor->IsActiveTool() || g_pWaveBrowser->IsActiveTool() )
{
model = models->GetActiveStudioModel();
}
}
if ( model && !model->m_mouth.IsSourceReferenced( pSource->GetSource() ) )
{
CChoreoScene *pScene = g_pChoreoView->GetScene();
bool bIgnorePhonemes = pScene ? pScene->ShouldIgnorePhonemes() : false;
model->m_mouth.AddSource( pSource->GetSource(), bIgnorePhonemes );
if ( modelindex < 0 )
{
pSource->SetModelIndex( models->GetIndexForStudioModel( model ) );
}
}
int currentsample = pSource->GetSamplePosition();
bool forward = pSource->GetDirection();
if ( pSource->GetActive() )
{
if ( !pSource->MixDataToDevice( &m_audioDevice, pSource->GetChannel(), currentsample, sampleCount, SampleRate(), forward ) )
{
// Source becomes inactive when last submitted sample is finally
// submitted. But it lingers until it's no longer referenced
pSource->SetActive( false );
}
else
{
AddToReferencedList( pSource, pBuffer );
}
}
else
{
if ( !IsSourceReferencedByActiveBuffer( pSource ) )
{
if ( !pSource->GetAutoDelete() )
{
FreeChannel( i );
}
}
else
{
pSource->IncrementSamples( pSource->GetChannel(), currentsample, sampleCount, SampleRate(), forward );
}
}
}
m_audioDevice.TransferBufferStereo16( pSamples, sampleCount );
m_sampleIndex += sampleCount;
tempCount -= sampleCount;
pSamples += sampleCount * 2;
}
// if the buffers aren't aligned on sample boundaries, this will hard-lock the machine!
pBuffer->submit_sample_count = GetOutputPosition();
waveOutWrite( m_deviceHandle, pBuffer->hdr, sizeof(*(pBuffer->hdr)) );
}
}
int CAudioWaveOutput::GetNumberofSamplesAhead( void )
{
ComputeSampleAheadAmount();
return m_nEstimatedSamplesAhead;
}
float CAudioWaveOutput::GetAmountofTimeAhead( void )
{
ComputeSampleAheadAmount();
return ( (float)m_nEstimatedSamplesAhead / (float)OUTPUT_SAMPLE_RATE );
}
// Find the most recent submitted sample that isn't flagged as whdr_done
void CAudioWaveOutput::ComputeSampleAheadAmount( void )
{
m_nEstimatedSamplesAhead = 0;
int newest_sample_index = -1;
int newest_sample_count = 0;
CAudioBuffer *buffer;
if ( ValidDevice() )
{
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
buffer = &m_buffers[ i ];
if ( !buffer->submitted )
continue;
if ( buffer->hdr->dwFlags & WHDR_DONE )
continue;
if ( buffer->submit_sample_count > newest_sample_count )
{
newest_sample_index = i;
newest_sample_count = buffer->submit_sample_count;
}
}
}
if ( newest_sample_index == -1 )
return;
buffer = &m_buffers[ newest_sample_index ];
int currentPos = GetOutputPosition() ;
m_nEstimatedSamplesAhead = currentPos - buffer->submit_sample_count;
}
int CAudioWaveOutput::FindSourceIndex( CAudioMixer *pSource )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( pSource == m_sourceList[i] )
{
return i;
}
}
return -1;
}
CAudioMixer *CAudioWaveOutput::GetMixerForSource( CAudioSource *source )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( !m_sourceList[i] )
continue;
if ( source == m_sourceList[i]->GetSource() )
{
return m_sourceList[i];
}
}
return NULL;
}
void CAudioWaveOutput::AddSource( CAudioMixer *pSource )
{
int slot = 0;
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( !m_sourceList[i] )
{
slot = i;
break;
}
}
if ( m_sourceList[slot] )
{
FreeChannel( slot );
}
SetChannel( slot, pSource );
pSource->SetActive( true );
}
void CAudioWaveOutput::StopSounds( void )
{
for ( int i = 0; i < MAX_CHANNELS; i++ )
{
if ( m_sourceList[i] )
{
FreeChannel( i );
}
}
}
void CAudioWaveOutput::SetChannel( int channelIndex, CAudioMixer *pSource )
{
if ( channelIndex < 0 || channelIndex >= MAX_CHANNELS )
return;
m_sourceList[channelIndex] = pSource;
}
void CAudioWaveOutput::FreeChannel( int channelIndex )
{
if ( channelIndex < 0 || channelIndex >= MAX_CHANNELS )
return;
if ( m_sourceList[channelIndex] )
{
StudioModel *model = NULL;
int modelindex = m_sourceList[channelIndex]->GetModelIndex();
if ( modelindex >= 0)
{
model = models->GetStudioModel( modelindex );
}
if ( model )
{
model->m_mouth.RemoveSource( m_sourceList[channelIndex]->GetSource() );
}
RemoveMixerChannelReferences( m_sourceList[channelIndex] );
delete m_sourceList[channelIndex];
m_sourceList[channelIndex] = NULL;
}
}
int CAudioWaveOutput::GetOutputPosition( void )
{
if ( !m_deviceHandle )
return 0;
MMTIME mmtime;
mmtime.wType = TIME_SAMPLES;
waveOutGetPosition( m_deviceHandle, &mmtime, sizeof( MMTIME ) );
// Convert time to sample count
return ( mmtime.u.sample );
}
void CAudioWaveOutput::OpenDevice( void )
{
WAVEFORMATEX waveFormat;
memset( &waveFormat, 0, sizeof(waveFormat) );
// Select a PCM, 16-bit stereo playback device
waveFormat.cbSize = sizeof(waveFormat);
waveFormat.nAvgBytesPerSec = OUTPUT_SAMPLE_RATE * 2 * 2;
waveFormat.nBlockAlign = 2 * 2; // channels * sample size
waveFormat.nChannels = 2; // stereo
waveFormat.nSamplesPerSec = OUTPUT_SAMPLE_RATE;
waveFormat.wBitsPerSample = 16;
waveFormat.wFormatTag = WAVE_FORMAT_PCM;
MMRESULT errorCode = waveOutOpen( &m_deviceHandle, WAVE_MAPPER, &waveFormat, 0, 0, CALLBACK_NULL );
if ( errorCode == MMSYSERR_NOERROR )
{
int bufferSize = 4 * ( OUTPUT_SAMPLE_RATE / OUTPUT_BUFFER_COUNT ); // total of 1 second of data
// Got one!
for ( int i = 0; i < OUTPUT_BUFFER_COUNT; i++ )
{
m_buffers[i].hdr = new WAVEHDR;
m_buffers[i].hdr->lpData = new char[ bufferSize ];
long align = (long)m_buffers[i].hdr->lpData;
if ( align & 3 )
{
m_buffers[i].hdr->lpData = (char *) ( (align+3) &~3 );
}
m_buffers[i].hdr->dwBufferLength = bufferSize - (align&3);
m_buffers[i].hdr->dwFlags = 0;
if ( waveOutPrepareHeader( m_deviceHandle, m_buffers[i].hdr, sizeof(*m_buffers[i].hdr) ) != MMSYSERR_NOERROR )
{
ClearDevice();
return;
}
}
}
else
{
ClearDevice();
}
}
// factory to create a suitable audio output for this system
CAudioOutput *CAudioOutput::Create( void )
{
// sound device is a singleton for now
static CAudioOutput *pWaveOut = NULL;
if ( !pWaveOut )
{
pWaveOut = new CAudioWaveOutput;
}
return pWaveOut;
}
struct CSoundFile
{
char filename[ 512 ];
CAudioSource *source;
long filetime;
};
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
class CFacePoserSound : public IFacePoserSound
{
public:
~CFacePoserSound( void );
void Init( void );
void Shutdown( void );
void Update( float dt );
void Flush( void );
CAudioSource *LoadSound( const char *wavfile );
void PlaySound( StudioModel *source, float volume, const char *wavfile, CAudioMixer **ppMixer );
void PlaySound( CAudioSource *source, float volume, CAudioMixer **ppMixer );
void PlayPartialSound( StudioModel *model, float volume, const char *wavfile, CAudioMixer **ppMixer, int startSample, int endSample );
bool IsSoundPlaying( CAudioMixer *pMixer );
CAudioMixer *FindMixer( CAudioSource *source );
void StopAll( void );
void StopSound( CAudioMixer *mixer );
void RenderWavToDC( HDC dc, RECT& outrect, COLORREF clr, float starttime, float endtime,
CAudioSource *pWave, bool selected = false, int selectionstart = 0, int selectionend = 0 );
// void InstallPhonemecallback( IPhonemeTag *pTagInterface );
float GetAmountofTimeAhead( void );
int GetNumberofSamplesAhead( void );
CAudioOuput *GetAudioOutput( void );
virtual void EnsureNoModelReferences( CAudioSource *source );
private:
void AddViseme( float intensity, StudioModel *model, int phoneme, float scale );
void ProcessCloseCaptionData( StudioModel *model, float curtime, CSentence* sentence );
void SetupWeights( void );
CAudioSource *FindOrAddSound( const char *filename );
CAudioOutput *m_pAudio;
float m_flElapsedTime;
CUtlVector < CSoundFile > m_ActiveSounds;
};
static CFacePoserSound g_FacePoserSound;
IFacePoserSound *sound = ( IFacePoserSound * )&g_FacePoserSound;
CFacePoserSound::~CFacePoserSound( void )
{
OutputDebugString( va( "Removing %i sounds\n", m_ActiveSounds.Size() ) );
for ( int i = 0 ; i < m_ActiveSounds.Size(); i++ )
{
CSoundFile *p = &m_ActiveSounds[ i ];
OutputDebugString( va( "Removing sound: %s\n", p->filename ) );
delete p->source;
}
m_ActiveSounds.RemoveAll();
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
CAudioOuput *CFacePoserSound::GetAudioOutput( void )
{
return (CAudioOuput *)m_pAudio;
}
CAudioSource *CFacePoserSound::FindOrAddSound( const char *filename )
{
CSoundFile *s;
int i;
for ( i = 0; i < m_ActiveSounds.Size(); i++ )
{
s = &m_ActiveSounds[ i ];
Assert( s );
if ( !stricmp( s->filename, filename ) )
{
long filetime = filesystem->GetFileTime( filename );
if ( filetime != s->filetime )
{
Con_Printf( "Reloading sound %s\n", filename );
delete s->source;
s->source = LoadSound( filename );
s->filetime = filetime;
}
return s->source;
}
}
i = m_ActiveSounds.AddToTail();
s = &m_ActiveSounds[ i ];
strcpy( s->filename, filename );
s->source = LoadSound( filename );
s->filetime = filesystem->GetFileTime( filename );
return s->source;
}
void CFacePoserSound::Init( void )
{
m_flElapsedTime = 0.0f;
m_pAudio = CAudioOutput::Create();
// Load SoundOverrides for Faceposer
KeyValues *manifest = new KeyValues( "scripts/game_sounds_manifest.txt" );
if ( filesystem->LoadKeyValues( *manifest, IFileSystem::TYPE_SOUNDEMITTER, "scripts/game_sounds_manifest.txt", "GAME" ) )
{
for ( KeyValues *sub = manifest->GetFirstSubKey(); sub != NULL; sub = sub->GetNextKey() )
{
if ( !Q_stricmp( sub->GetName(), "faceposer_file" ) )
{
soundemitter->AddSoundOverrides( sub->GetString() );
continue;
}
}
}
manifest->deleteThis();
}
void CFacePoserSound::Shutdown( void )
{
}
float CFacePoserSound::GetAmountofTimeAhead( void )
{
if ( !m_pAudio )
return 0.0f;
return m_pAudio->GetAmountofTimeAhead();
}
int CFacePoserSound::GetNumberofSamplesAhead( void )
{
if ( !m_pAudio )
return 0;
return m_pAudio->GetNumberofSamplesAhead();
}
CAudioSource *CFacePoserSound::LoadSound( const char *wavfile )
{
if ( !m_pAudio )
return NULL;
CAudioSource *wave = AudioSource_Create( wavfile );
return wave;
}
void CFacePoserSound::PlaySound( StudioModel *model, float volume, const char *wavfile, CAudioMixer **ppMixer )
{
if ( m_pAudio )
{
CAudioSource *wave = FindOrAddSound( wavfile );
if ( !wave )
return;
CAudioMixer *pMixer = wave->CreateMixer();
if ( ppMixer )
{
*ppMixer = pMixer;
}
pMixer->SetVolume( volume );
m_pAudio->AddSource( pMixer );
if ( model )
{
pMixer->SetModelIndex( models->GetIndexForStudioModel( model ) );
}
}
}
void CFacePoserSound::PlayPartialSound( StudioModel *model, float volume, const char *wavfile, CAudioMixer **ppMixer, int startSample, int endSample )
{
if ( !m_pAudio )
return;
StopAll();
CAudioSource *wave = FindOrAddSound( wavfile );
if ( !wave )
return;
CAudioMixer *mixer = wave->CreateMixer();
if ( ppMixer )
{
*ppMixer = mixer;
}
mixer->SetSamplePosition( startSample );
mixer->SetLoopPosition( endSample );
mixer->SetVolume( volume );
m_pAudio->AddSource( mixer );
}
void CFacePoserSound::PlaySound( CAudioSource *source, float volume, CAudioMixer **ppMixer )
{
if ( ppMixer )
{
*ppMixer = NULL;
}
if ( m_pAudio )
{
CAudioMixer *mixer = source->CreateMixer();
if ( ppMixer )
{
*ppMixer = mixer;
}
mixer->SetVolume( volume );
m_pAudio->AddSource( mixer );
}
}
enum
{
PHONEME_CLASS_WEAK = 0,
PHONEME_CLASS_NORMAL,
PHONEME_CLASS_STRONG,
NUM_PHONEME_CLASSES
};
struct Emphasized_Phoneme
{
char *classname;
bool required;
bool valid;
CExpClass *cl;
CExpression *exp;
float *settings;
float amount;
};
static Emphasized_Phoneme g_PhonemeClasses[ NUM_PHONEME_CLASSES ] =
{
{ "phonemes_weak", false },
{ "phonemes", true },
{ "phonemes_strong", false },
};
#define STRONG_CROSSFADE_START 0.60f
#define WEAK_CROSSFADE_START 0.40f
void ComputeBlendedSetting( Emphasized_Phoneme *classes, float emphasis_intensity )
{
// Here's the formula
// 0.5 is neutral 100 % of the default setting
// Crossfade starts at STRONG_CROSSFADE_START and is full at STRONG_CROSSFADE_END
// If there isn't a strong then the intensity of the underlying phoneme is fixed at 2 x STRONG_CROSSFADE_START
// so we don't get huge numbers
bool has_weak = classes[ PHONEME_CLASS_WEAK ].valid;
bool has_strong = classes[ PHONEME_CLASS_STRONG ].valid;
Assert( classes[ PHONEME_CLASS_NORMAL ].valid );
if ( emphasis_intensity > STRONG_CROSSFADE_START )
{
if ( has_strong )
{
// Blend in some of strong
float dist_remaining = 1.0f - emphasis_intensity;
float frac = dist_remaining / ( 1.0f - STRONG_CROSSFADE_START );
classes[ PHONEME_CLASS_NORMAL ].amount = (frac) * 2.0f * STRONG_CROSSFADE_START;
classes[ PHONEME_CLASS_STRONG ].amount = 1.0f - frac;
}
else
{
emphasis_intensity = min( emphasis_intensity, STRONG_CROSSFADE_START );
classes[ PHONEME_CLASS_NORMAL ].amount = 2.0f * emphasis_intensity;
}
}
else if ( emphasis_intensity < WEAK_CROSSFADE_START )
{
if ( has_weak )
{
// Blend in some weak
float dist_remaining = WEAK_CROSSFADE_START - emphasis_intensity;
float frac = dist_remaining / ( WEAK_CROSSFADE_START );
classes[ PHONEME_CLASS_NORMAL ].amount = (1.0f - frac) * 2.0f * WEAK_CROSSFADE_START;
classes[ PHONEME_CLASS_WEAK ].amount = frac;
}
else
{
emphasis_intensity = max( emphasis_intensity, WEAK_CROSSFADE_START );
classes[ PHONEME_CLASS_NORMAL ].amount = 2.0f * emphasis_intensity;
}
}
else
{
classes[ PHONEME_CLASS_NORMAL ].amount = 2.0f * emphasis_intensity;
}
}
void CFacePoserSound::AddViseme( float intensity, StudioModel *model, int phoneme, float scale )
{
int i;
Assert( model );
CStudioHdr *hdr = model->GetStudioHdr();
Assert( hdr );
if ( !hdr )
return;
for ( i = 0; i < NUM_PHONEME_CLASSES; i++ )
{
Emphasized_Phoneme *info = &g_PhonemeClasses[ i ];
info->valid = false;
info->exp = NULL;
info->settings = NULL;
info->amount = 0.0f;
info->cl = expressions->FindClass( info->classname, true );
if ( info->cl )
{
info->exp = info->cl->FindExpression( ConvertPhoneme( phoneme ) );
}
if ( info->required && ( !info->cl || !info->exp ) )
{
return;
}
if ( info->exp )
{
info->valid = true;
info->settings = info->exp->GetSettings();
Assert( info->settings );
}
}
ComputeBlendedSetting( g_PhonemeClasses, intensity );
// Look up the phoneme
for ( LocalFlexController_t i = LocalFlexController_t(0); i < hdr->numflexcontrollers(); i++)
{
int j = hdr->pFlexcontroller( i )->localToGlobal;
float add = 0.0f;
for ( int k = 0 ; k < NUM_PHONEME_CLASSES; k++ )
{
Emphasized_Phoneme *info = &g_PhonemeClasses[ k ];
if ( !info->valid || !info->amount )
continue;
add += info->amount * info->settings[ j ];
}
if ( add == 0.0f )
continue;
float curvalue = model->GetFlexController( i );
curvalue += add * scale;
model->SetFlexController( i, curvalue );
}
}
#define PHONEME_FILTER 0.08f
#define PHONEME_DELAY 0.0f
void CFacePoserSound::SetupWeights( void )
{
StudioModel *model;
int c = models->Count();
for ( int i = 0; i < c; i++ )
{
model = models->GetStudioModel( i );
if ( !model )
continue;
// Reset flexes
CStudioHdr *hdr = model->GetStudioHdr();
if ( !hdr )
continue;
for ( int s = 0; s < model->m_mouth.GetNumVoiceSources(); s++ )
{
CVoiceData *vd = model->m_mouth.GetVoiceSource( s );
if ( !vd || vd->ShouldIgnorePhonemes() )
continue;
CAudioSource *source = vd->GetSource();
// check for phoneme flexes
if ( !source )
continue;
CAudioMixer *mixer = FindMixer( source );
if ( !mixer )
continue;
CSentence *sentence = source->GetSentence();
if ( !sentence )
continue;
// Zero faces if needed
models->CheckResetFlexes();
float pos = (float)mixer->GetScrubPosition();
// Con_Printf( "pos %f for mixer %p\n", pos, mixer );
float soundtime = pos / source->SampleRate();
float t = soundtime - PHONEME_DELAY;
float dt = PHONEME_FILTER;
float sentence_duration = source->GetRunningLength();
float emphasis_intensity = sentence->GetIntensity( t, sentence_duration );
if ( t > 0.0f )
{
for ( int w = 0 ; w < sentence->m_Words.Size(); w++ )
{
CWordTag *word = sentence->m_Words[ w ];
if ( !word )
continue;
for ( int k = 0; k < word->m_Phonemes.Size(); k++)
{
CPhonemeTag *phoneme = word->m_Phonemes[ k ];
if ( !phoneme )
continue;
// if the filter starts within this phoneme, make sure the filter size is
// at least least as long as the current phoneme, or until the end of the next phoneme,
// whichever is smaller
if (t > phoneme->GetStartTime() && t < phoneme->GetEndTime())
{
CPhonemeTag *next = NULL;
// try next phoneme, or first phoneme of next word
if (k < word->m_Phonemes.Size()-1)
{
next = word->m_Phonemes[ k+1 ];
}
else if ( w < sentence->m_Words.Size() - 1 && sentence->m_Words[ w+1 ]->m_Phonemes.Size() )
{
next = sentence->m_Words[ w+1 ]->m_Phonemes[ 0 ];
}
// if I have a neighbor
if (next)
{
// and they're touching
if (next->GetStartTime() == phoneme->GetEndTime())
{
// no gap, so increase the blend length to the end of the next phoneme, as long as it's not longer than the current phoneme
dt = max( dt, min( next->GetEndTime() - t, phoneme->GetEndTime() - phoneme->GetStartTime() ) );
}
else
{
// dead space, so increase the blend length to the start of the next phoneme, as long as it's not longer than the current phoneme
dt = max( dt, min( next->GetStartTime() - t, phoneme->GetEndTime() - phoneme->GetStartTime() ) );
}
}
else
{
// last phoneme in list, increase the blend length to the length of the current phoneme
dt = max( dt, phoneme->GetEndTime() - phoneme->GetStartTime() );
}
}
float t1 = ( phoneme->GetStartTime() - t) / dt;
float t2 = ( phoneme->GetEndTime() - t) / dt;
if (t1 < 1.0 && t2 > 0)
{
float scale;
// clamp
if (t2 > 1)
t2 = 1;
if (t1 < 0)
t1 = 0;
// FIXME: simple box filter. Should use something fancier
scale = (t2 - t1);
AddViseme( emphasis_intensity, model, phoneme->GetPhonemeCode(), scale );
}
}
}
ProcessCloseCaptionData( model, t, sentence );
}
}
}
}
static int g_nSoundFrameCount = 0;
void CFacePoserSound::ProcessCloseCaptionData( StudioModel *model, float curtime, CSentence* sentence )
{
// closecaptionmanager->Process( g_nSoundFrameCount, model, curtime, sentence, GetCloseCaptionLanguageId() );
}
void CFacePoserSound::Update( float dt )
{
// closecaptionmanager->PreProcess( g_nSoundFrameCount );
if ( m_pAudio )
{
SetupWeights();
m_pAudio->Update( m_flElapsedTime );
}
// closecaptionmanager->PostProcess( g_nSoundFrameCount, dt );
m_flElapsedTime += dt;
g_nSoundFrameCount++;
}
void CFacePoserSound::Flush( void )
{
if ( m_pAudio )
{
m_pAudio->Flush();
}
}
void CFacePoserSound::StopAll( void )
{
int c = models->Count();
for ( int i = 0; i < c; i++ )
{
StudioModel *model = models->GetStudioModel( i );
if ( model )
{
model->m_mouth.ClearVoiceSources();
}
}
if ( m_pAudio )
{
m_pAudio->StopSounds();
}
}
void CFacePoserSound::StopSound( CAudioMixer *mixer )
{
int idx = m_pAudio->FindSourceIndex( mixer );
if ( idx != -1 )
{
m_pAudio->FreeChannel( idx );
}
}
void CFacePoserSound::RenderWavToDC( HDC dc, RECT& outrect, COLORREF clr,
float starttime, float endtime, CAudioSource *pWave,
bool selected /*= false*/, int selectionstart /*= 0*/, int selectionend /*= 0*/ )
{
channel_t channel;
channel.leftvol = 127;
channel.rightvol = 127;
channel.pitch = 1.0;
if ( !pWave )
return;
CAudioWaveOutput *pWaveOutput = ( CAudioWaveOutput * )m_pAudio;
CAudioMixer *pMixer = pWave->CreateMixer();
float timeperpixel = ( endtime - starttime ) / (float)( outrect.right - outrect.left );
float samplesperpixel = timeperpixel * pWave->SampleRate();
samplesperpixel = min( samplesperpixel, (float)PAINTBUFFER_SIZE );
int intsamplesperpixel = (int)samplesperpixel;
// Determine start/stop positions
int totalsamples = (int)( pWave->GetRunningLength() * pWave->SampleRate() );
if ( totalsamples <= 0 )
return;
float selectionstarttime = pWave->GetRunningLength() * ( float )selectionstart / ( float )totalsamples;
float selectionendtime = pWave->GetRunningLength() * ( float )selectionend / ( float )totalsamples;
HPEN oldPen, pen, pen2, pen3, pen4;
pen = CreatePen( PS_SOLID, 1, RGB( 175, 175, 250 ) );
pen2 = CreatePen( PS_SOLID, 1, clr );
pen3 = CreatePen( PS_SOLID, 1, RGB( 127, 200, 249 ) );
pen4 = CreatePen( PS_SOLID, 2, RGB( 0, 0, 200 ) );
oldPen = (HPEN)SelectObject( dc, pen );
MoveToEx( dc, outrect.left, ( outrect.bottom + outrect.top ) / 2, NULL );
LineTo( dc, outrect.right, ( outrect.bottom + outrect.top ) / 2 );
SelectObject( dc, pen2 );
// Now iterate the samples
float currenttime = 0.0f;
int pixel = 0;
int height = ( outrect.bottom - outrect.top ) / 2;
int midy = ( outrect.bottom + outrect.top ) / 2;
int bufferlen = ( intsamplesperpixel + 3 ) & ~3;
short *samples = new short[ 2 * bufferlen ];
bool drawingselection = false;
int maxsamples = max( 32, intsamplesperpixel / 16 );
int currentsample = 0;
while ( currenttime < endtime )
{
pWaveOutput->m_audioDevice.MixBegin();
int samplecount = min( maxsamples, intsamplesperpixel );
if ( !pMixer->MixDataToDevice( &pWaveOutput->m_audioDevice, &channel, currentsample, samplecount, pWave->SampleRate(), true ) )
break;
currentsample = pMixer->GetSamplePosition();
// Jump ahead by diff
int diff = intsamplesperpixel - samplecount;
if ( diff > 0 )
{
if ( !pMixer->SkipSamples( &channel, currentsample, diff, pWave->SampleRate(), true ) )
break;
}
currentsample = pMixer->GetSamplePosition();
pWaveOutput->m_audioDevice.TransferBufferStereo16( samples, samplecount );
if ( currenttime >= starttime )
{
if ( selected )
{
bool boundary = false;
bool inselection = ( currenttime >= selectionstarttime &&
currenttime <= selectionendtime );
if ( inselection )
{
if ( !drawingselection )
{
drawingselection = true;
boundary = true;
}
}
else if ( drawingselection )
{
boundary = true;
drawingselection = false;
}
if ( inselection || boundary )
{
int top, bottom;
bottom = outrect.bottom;
HPEN *usePen;
if ( boundary )
{
usePen = &pen4;
top = outrect.top;
}
else
{
usePen = &pen3;
top = outrect.bottom - 19;
}
HPEN old = (HPEN)SelectObject( dc, *usePen );
MoveToEx( dc, outrect.left + pixel, top, NULL );
LineTo( dc, outrect.left + pixel, bottom-1 );
SelectObject( dc, old );
}
}
int maxvalue = -65536;
int minvalue = 65536;
short *pData = samples;
// only take fix samples
int step = 2;
int count = 2 * samplecount;
for ( int i = 0; i < count; i+=step )
{
int val = (int)( pData[i] + pData[i+1] ) / 2;
if ( val > maxvalue )
{
maxvalue = val;
}
if ( val < minvalue )
{
minvalue = val;
}
}
float maxv = (float)( maxvalue ) / 32768.0f;
float minv = (float)( minvalue ) / 32768.0f;
MoveToEx( dc, outrect.left + pixel, midy + ( int ) ( maxv * height ), NULL );
LineTo( dc, outrect.left + pixel, midy + ( int ) ( minv * height ) );
pixel++;
}
currenttime += timeperpixel;
}
delete[] samples;
SelectObject( dc, oldPen );
DeleteObject( pen );
DeleteObject( pen2 );
DeleteObject( pen3 );
delete pMixer;
}
bool CFacePoserSound::IsSoundPlaying( CAudioMixer *pMixer )
{
if ( !m_pAudio || !pMixer )
{
return false;
}
//
int index = m_pAudio->FindSourceIndex( pMixer );
if ( index != -1 )
return true;
return false;
}
CAudioMixer *CFacePoserSound::FindMixer( CAudioSource *source )
{
if ( !m_pAudio )
return NULL;
return m_pAudio->GetMixerForSource( source );
}
void CFacePoserSound::EnsureNoModelReferences( CAudioSource *source )
{
int c = models->Count();
for ( int i = 0; i < c; i++ )
{
StudioModel *model = models->GetStudioModel( i );
if ( model->m_mouth.IsSourceReferenced( source ) )
{
model->m_mouth.RemoveSource( source );
}
}
}