Modified source engine (2017) developed by valve and leaked in 2020. Not for commercial purporses
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

603 lines
17 KiB

5 years ago
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <windows.h>
#include "tier2/riff.h"
#include "snd_wave_source.h"
#include "snd_wave_mixer_private.h"
#include "soundsystem/snd_audio_source.h"
#include <mmsystem.h> // wave format
#include <mmreg.h> // adpcm format
#include "soundsystem.h"
#include "filesystem.h"
#include "tier1/utlbuffer.h"
//-----------------------------------------------------------------------------
// Purpose: Implements the RIFF i/o interface on stdio
//-----------------------------------------------------------------------------
class StdIOReadBinary : public IFileReadBinary
{
public:
int open( const char *pFileName )
{
return (int)g_pFullFileSystem->Open( pFileName, "rb", "GAME" );
}
int read( void *pOutput, int size, intp file )
5 years ago
{
if ( !file )
return 0;
return g_pFullFileSystem->Read( pOutput, size, (FileHandle_t)file );
}
void seek( intp file, int pos )
5 years ago
{
if ( !file )
return;
g_pFullFileSystem->Seek( (FileHandle_t)file, pos, FILESYSTEM_SEEK_HEAD );
}
unsigned int tell( intp file )
5 years ago
{
if ( !file )
return 0;
return g_pFullFileSystem->Tell( (FileHandle_t)file );
}
unsigned int size( intp file )
5 years ago
{
if ( !file )
return 0;
return g_pFullFileSystem->Size( (FileHandle_t)file );
}
void close( intp file )
5 years ago
{
if ( !file )
return;
g_pFullFileSystem->Close( (FileHandle_t)file );
}
};
static StdIOReadBinary io;
#define RIFF_WAVE MAKEID('W','A','V','E')
#define WAVE_FMT MAKEID('f','m','t',' ')
#define WAVE_DATA MAKEID('d','a','t','a')
#define WAVE_FACT MAKEID('f','a','c','t')
#define WAVE_CUE MAKEID('c','u','e',' ')
void ChunkError( unsigned int id )
{
}
//-----------------------------------------------------------------------------
// Purpose: Init to empty wave
//-----------------------------------------------------------------------------
CAudioSourceWave::CAudioSourceWave( void )
{
m_bits = 0;
m_rate = 0;
m_channels = 0;
m_format = 0;
m_pHeader = NULL;
// no looping
m_loopStart = -1;
m_sampleSize = 1;
m_sampleCount = 0;
}
CAudioSourceWave::~CAudioSourceWave( void )
{
// for non-standard waves, we store a copy of the header in RAM
delete[] m_pHeader;
// m_pWords points into m_pWordBuffer, no need to delete
}
//-----------------------------------------------------------------------------
// Purpose: Init the wave data.
// Input : *pHeaderBuffer - the RIFF fmt chunk
// headerSize - size of that chunk
//-----------------------------------------------------------------------------
void CAudioSourceWave::Init( const char *pHeaderBuffer, int headerSize )
{
const WAVEFORMATEX *pHeader = (const WAVEFORMATEX *)pHeaderBuffer;
// copy the relevant header data
m_format = pHeader->wFormatTag;
m_bits = pHeader->wBitsPerSample;
m_rate = pHeader->nSamplesPerSec;
m_channels = pHeader->nChannels;
m_sampleSize = (m_bits * m_channels) / 8;
// this can never be zero -- other functions divide by this.
// This should never happen, but avoid crashing
if ( m_sampleSize <= 0 )
m_sampleSize = 1;
// For non-standard waves (like ADPCM) store the header, it has some useful data
if ( m_format != WAVE_FORMAT_PCM )
{
m_pHeader = new char[headerSize];
memcpy( m_pHeader, pHeader, headerSize );
if ( m_format == WAVE_FORMAT_ADPCM )
{
// treat ADPCM sources as a file of bytes. They are decoded by the mixer
m_sampleSize = 1;
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : float
//-----------------------------------------------------------------------------
float CAudioSourceWave::TrueSampleSize( void )
{
if ( m_format == WAVE_FORMAT_ADPCM )
{
return 0.5f;
}
return (float)m_sampleSize;
}
//-----------------------------------------------------------------------------
// Purpose: Total number of samples in this source
// Output : int
//-----------------------------------------------------------------------------
int CAudioSourceWave::SampleCount( void )
{
if ( m_format == WAVE_FORMAT_ADPCM )
{
ADPCMWAVEFORMAT *pFormat = (ADPCMWAVEFORMAT *)m_pHeader;
int blockSize = ((pFormat->wSamplesPerBlock - 2) * pFormat->wfx.nChannels ) / 2;
blockSize += 7 * pFormat->wfx.nChannels;
int blockCount = m_sampleCount / blockSize;
int blockRem = m_sampleCount % blockSize;
// total samples in complete blocks
int sampleCount = blockCount * pFormat->wSamplesPerBlock;
// add remaining in a short block
if ( blockRem )
{
sampleCount += pFormat->wSamplesPerBlock - (((blockSize - blockRem) * 2) / m_channels);
}
return sampleCount;
}
return m_sampleCount;
}
//-----------------------------------------------------------------------------
// Purpose: Do any sample conversion
// For 8 bit PCM, convert to signed because the mixing routine assumes this
// Input : *pData - pointer to sample data
// sampleCount - number of samples
//-----------------------------------------------------------------------------
void CAudioSourceWave::ConvertSamples( char *pData, int sampleCount )
{
if ( m_format == WAVE_FORMAT_PCM )
{
if ( m_bits == 8 )
{
for ( int i = 0; i < sampleCount; i++ )
{
for ( int j = 0; j < m_channels; j++ )
{
*pData = (unsigned char)((int)((unsigned)*pData) - 128);
pData++;
}
}
}
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : &walk -
//-----------------------------------------------------------------------------
void CAudioSourceWave::ParseSentence( IterateRIFF &walk )
{
CUtlBuffer buf( 0, 0, CUtlBuffer::TEXT_BUFFER );
buf.EnsureCapacity( walk.ChunkSize() );
walk.ChunkRead( buf.Base() );
buf.SeekPut( CUtlBuffer::SEEK_HEAD, walk.ChunkSize() );
m_Sentence.InitFromDataChunk( buf.Base(), buf.TellPut() );
}
//-----------------------------------------------------------------------------
// Purpose: Parse base chunks
// Input : &walk - riff file to parse
// : chunkName - name of the chunk to parse
//-----------------------------------------------------------------------------
// UNDONE: Move parsing loop here and drop each chunk into a virtual function
// instead of this being virtual.
void CAudioSourceWave::ParseChunk( IterateRIFF &walk, int chunkName )
{
switch( chunkName )
{
case WAVE_CUE:
{
m_loopStart = ParseCueChunk( walk );
}
break;
case WAVE_VALVEDATA:
{
ParseSentence( walk );
}
break;
// unknown/don't care
default:
{
ChunkError( walk.ChunkName() );
}
break;
}
}
//-----------------------------------------------------------------------------
// Purpose:
// Output : CSentence
//-----------------------------------------------------------------------------
CSentence *CAudioSourceWave::GetSentence( void )
{
return &m_Sentence;
}
//-----------------------------------------------------------------------------
// Purpose: Bastardized construction routine. This is just to avoid complex
// constructor functions so code can be shared more easily by sub-classes
// Input : *pFormatBuffer - RIFF header
// formatSize - header size
// &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceWave::Setup( const char *pFormatBuffer, int formatSize, IterateRIFF &walk )
{
Init( pFormatBuffer, formatSize );
while ( walk.ChunkAvailable() )
{
ParseChunk( walk, walk.ChunkName() );
walk.ChunkNext();
}
}
//-----------------------------------------------------------------------------
// Purpose: Wave file that is completely in memory
// UNDONE: Implement Lock/Unlock and caching
//-----------------------------------------------------------------------------
class CAudioSourceMemWave : public CAudioSourceWave
{
public:
CAudioSourceMemWave( void );
~CAudioSourceMemWave( void );
// Create an instance (mixer) of this audio source
virtual CAudioMixer *CreateMixer( void );
virtual void ParseChunk( IterateRIFF &walk, int chunkName );
void ParseDataChunk( IterateRIFF &walk );
virtual int GetOutputData( void **pData, int samplePosition, int sampleCount, bool forward = true );
virtual float GetRunningLength( void ) { return CAudioSourceWave::GetRunningLength(); };
virtual int GetNumChannels();
private:
char *m_pData; // wave data
};
//-----------------------------------------------------------------------------
// Purpose: Iterator for wave data (this is to abstract streaming/buffering)
//-----------------------------------------------------------------------------
class CWaveDataMemory : public CWaveData
{
public:
CWaveDataMemory( CAudioSourceWave &source ) : m_source(source) {}
~CWaveDataMemory( void ) {}
CAudioSourceWave &Source( void ) { return m_source; }
// this file is in memory, simply pass along the data request to the source
virtual int ReadSourceData( void **pData, int sampleIndex, int sampleCount, bool forward /*= true*/ )
{
return m_source.GetOutputData( pData, sampleIndex, sampleCount, forward );
}
private:
CAudioSourceWave &m_source; // pointer to source
};
//-----------------------------------------------------------------------------
// Purpose: NULL the wave data pointer (we haven't loaded yet)
//-----------------------------------------------------------------------------
CAudioSourceMemWave::CAudioSourceMemWave( void )
{
m_pData = NULL;
}
//-----------------------------------------------------------------------------
// Purpose: Free any wave data we've allocated
//-----------------------------------------------------------------------------
CAudioSourceMemWave::~CAudioSourceMemWave( void )
{
delete[] m_pData;
}
//-----------------------------------------------------------------------------
// Purpose: Creates a mixer and initializes it with an appropriate mixer
//-----------------------------------------------------------------------------
CAudioMixer *CAudioSourceMemWave::CreateMixer( void )
{
return CreateWaveMixer( new CWaveDataMemory(*this), m_format, m_channels, m_bits );
}
//-----------------------------------------------------------------------------
// Purpose: parse chunks with unique processing to in-memory waves
// Input : &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceMemWave::ParseChunk( IterateRIFF &walk, int chunkName )
{
switch( chunkName )
{
// this is the audio data
case WAVE_DATA:
{
ParseDataChunk( walk );
}
return;
}
CAudioSourceWave::ParseChunk( walk, chunkName );
}
//-----------------------------------------------------------------------------
// Purpose: reads the actual sample data and parses it
// Input : &walk - RIFF file
//-----------------------------------------------------------------------------
void CAudioSourceMemWave::ParseDataChunk( IterateRIFF &walk )
{
int size = walk.ChunkSize();
// create a buffer for the samples
m_pData = new char[size];
// load them into memory
walk.ChunkRead( m_pData );
if ( m_format == WAVE_FORMAT_PCM )
{
// number of samples loaded
m_sampleCount = size / m_sampleSize;
// some samples need to be converted
ConvertSamples( m_pData, m_sampleCount );
}
else if ( m_format == WAVE_FORMAT_ADPCM )
{
// The ADPCM mixers treat the wave source as a flat file of bytes.
m_sampleSize = 1;
// Since each "sample" is a byte (this is a flat file), the number of samples is the file size
m_sampleCount = size;
// file says 4, output is 16
m_bits = 16;
}
}
int CAudioSourceMemWave::GetNumChannels()
{
return m_channels;
}
//-----------------------------------------------------------------------------
// Purpose: parses loop information from a cue chunk
// Input : &walk - RIFF iterator
// Output : int loop start position
//-----------------------------------------------------------------------------
int CAudioSourceWave::ParseCueChunk( IterateRIFF &walk )
{
// Cue chunk as specified by RIFF format
// see $/research/jay/sound/riffnew.htm
struct
{
unsigned int dwName;
unsigned int dwPosition;
unsigned int fccChunk;
unsigned int dwChunkStart;
unsigned int dwBlockStart;
unsigned int dwSampleOffset;
} cue_chunk;
int cueCount;
// assume that the cue chunk stored in the wave is the start of the loop
// assume only one cue chunk, UNDONE: Test this assumption here?
cueCount = walk.ChunkReadInt();
walk.ChunkReadPartial( &cue_chunk, sizeof(cue_chunk) );
return cue_chunk.dwSampleOffset;
}
//-----------------------------------------------------------------------------
// Purpose: get the wave header
//-----------------------------------------------------------------------------
void *CAudioSourceWave::GetHeader( void )
{
return m_pHeader;
}
//-----------------------------------------------------------------------------
// Purpose: wrap the position wrt looping
// Input : samplePosition - absolute position
// Output : int - looped position
//-----------------------------------------------------------------------------
int CAudioSourceWave::ConvertLoopedPosition( int samplePosition )
{
// if the wave is looping and we're past the end of the sample
// convert to a position within the loop
// At the end of the loop, we return a short buffer, and subsequent call
// will loop back and get the rest of the buffer
if ( m_loopStart >= 0 )
{
if ( samplePosition >= m_sampleCount )
{
// size of loop
int loopSize = m_sampleCount - m_loopStart;
// subtract off starting bit of the wave
samplePosition -= m_loopStart;
if ( loopSize )
{
// "real" position in memory (mod off extra loops)
samplePosition = m_loopStart + (samplePosition % loopSize);
}
// ERROR? if no loopSize
}
}
return samplePosition;
}
//-----------------------------------------------------------------------------
// Purpose:
// Input : **pData - output pointer to samples
// samplePosition - position (in samples not bytes)
// sampleCount - number of samples (not bytes)
// Output : int - number of samples available
//-----------------------------------------------------------------------------
int CAudioSourceMemWave::GetOutputData( void **pData, int samplePosition, int sampleCount, bool forward /*= true*/ )
{
// handle position looping
samplePosition = ConvertLoopedPosition( samplePosition );
// how many samples are available (linearly not counting looping)
int availableSampleCount = m_sampleCount - samplePosition;
if ( !forward )
{
if ( samplePosition >= m_sampleCount )
{
availableSampleCount = 0;
}
else
{
availableSampleCount = samplePosition;
}
}
// may be asking for a sample out of range, clip at zero
if ( availableSampleCount < 0 )
availableSampleCount = 0;
// clip max output samples to max available
if ( sampleCount > availableSampleCount )
sampleCount = availableSampleCount;
// byte offset in sample database
samplePosition *= m_sampleSize;
// if we are returning some samples, store the pointer
if ( sampleCount )
{
*pData = m_pData + samplePosition;
}
return sampleCount;
}
//-----------------------------------------------------------------------------
// Purpose: Create a wave audio source (streaming or in memory)
// Input : *pName - file name
// streaming - if true, don't load, stream each instance
// Output : CAudioSource * - a new source
//-----------------------------------------------------------------------------
// UNDONE : Pool these and check for duplicates?
CAudioSource *CreateWave( const char *pName )
{
char formatBuffer[1024];
InFileRIFF riff( pName, io );
if ( riff.RIFFName() != RIFF_WAVE )
{
Warning("Bad RIFF file type %s\n", pName );
return NULL;
}
// set up the iterator for the whole file (root RIFF is a chunk)
IterateRIFF walk( riff, riff.RIFFSize() );
int format = 0;
int formatSize = 0;
// This chunk must be first as it contains the wave's format
// break out when we've parsed it
while ( walk.ChunkAvailable() && format == 0 )
{
switch( walk.ChunkName() )
{
case WAVE_FMT:
{
if ( walk.ChunkSize() <= 1024 )
{
walk.ChunkRead( formatBuffer );
formatSize = walk.ChunkSize();
format = ((WAVEFORMATEX *)formatBuffer)->wFormatTag;
}
}
break;
default:
{
ChunkError( walk.ChunkName() );
}
break;
}
walk.ChunkNext();
}
// Not really a WAVE file or no format chunk, bail
if ( !format )
return NULL;
CAudioSourceWave *pWave;
// create the source from this file
pWave = new CAudioSourceMemWave();
// init the wave source
pWave->Setup( formatBuffer, formatSize, walk );
return pWave;
}
//-----------------------------------------------------------------------------
// Purpose: Wrapper for CreateWave()
//-----------------------------------------------------------------------------
CAudioSource *Audio_CreateMemoryWave( const char *pName )
{
return CreateWave( pName );
}