You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
334 lines
12 KiB
334 lines
12 KiB
5 years ago
|
//========= Copyright Valve Corporation, All rights reserved. ============//
|
||
|
//
|
||
|
// Purpose:
|
||
|
//
|
||
|
// $Workfile: $
|
||
|
// $Date: $
|
||
|
// $NoKeywords: $
|
||
|
//=============================================================================//
|
||
|
|
||
|
#ifndef COLORSPACE_H
|
||
|
#define COLORSPACE_H
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
#pragma once
|
||
|
#endif
|
||
|
|
||
|
#include "mathlib/mathlib.h"
|
||
|
#include "mathlib/ssemath.h"
|
||
|
#include "mathlib/bumpvects.h"
|
||
|
#include "tier0/dbg.h"
|
||
|
|
||
|
extern float g_LinearToVertex[4096]; // linear (0..4) to screen corrected vertex space (0..1?)
|
||
|
|
||
|
// FIXME!!! Get rid of this. . all of this should be in mathlib
|
||
|
namespace ColorSpace
|
||
|
{
|
||
|
void SetGamma( float screenGamma, float texGamma,
|
||
|
float overbright, bool allowCheats, bool linearFrameBuffer );
|
||
|
|
||
|
// convert texture to linear 0..1 value
|
||
|
float TextureToLinear( int c );
|
||
|
|
||
|
// convert texture to linear 0..1 value
|
||
|
int LinearToTexture( float f );
|
||
|
|
||
|
float TexLightToLinear( int c, int exponent );
|
||
|
|
||
|
// assume 0..4 range
|
||
|
void LinearToLightmap( unsigned char *pDstRGB, const float *pSrcRGB );
|
||
|
|
||
|
// assume 0..4 range
|
||
|
void LinearToBumpedLightmap( const float *linearColor, const float *linearBumpColor1,
|
||
|
const float *linearBumpColor2, const float *linearBumpColor3,
|
||
|
unsigned char *ret, unsigned char *retBump1,
|
||
|
unsigned char *retBump2, unsigned char *retBump3 );
|
||
|
|
||
|
// converts 0..1 linear value to screen gamma (0..255)
|
||
|
int LinearToScreenGamma( float f );
|
||
|
|
||
|
FORCEINLINE void LinearToLightmap( unsigned char *pDstRGB, const float *pSrcRGB )
|
||
|
{
|
||
|
Vector tmpVect;
|
||
|
#if 1
|
||
|
int i, j;
|
||
|
for( j = 0; j < 3; j++ )
|
||
|
{
|
||
|
i = RoundFloatToInt( pSrcRGB[j] * 1024 ); // assume 0..4 range
|
||
|
if (i < 0)
|
||
|
{
|
||
|
i = 0;
|
||
|
}
|
||
|
if (i > 4091)
|
||
|
{
|
||
|
i = 4091;
|
||
|
}
|
||
|
tmpVect[j] = g_LinearToVertex[i];
|
||
|
}
|
||
|
#else
|
||
|
tmpVect[0] = LinearToVertexLight( pSrcRGB[0] );
|
||
|
tmpVect[1] = LinearToVertexLight( pSrcRGB[1] );
|
||
|
tmpVect[2] = LinearToVertexLight( pSrcRGB[2] );
|
||
|
#endif
|
||
|
ColorClamp( tmpVect );
|
||
|
|
||
|
pDstRGB[0] = RoundFloatToByte( tmpVect[0] * 255.0f );
|
||
|
pDstRGB[1] = RoundFloatToByte( tmpVect[1] * 255.0f );
|
||
|
pDstRGB[2] = RoundFloatToByte( tmpVect[2] * 255.0f );
|
||
|
}
|
||
|
|
||
|
// Clamp the three values for bumped lighting such that we trade off directionality for brightness.
|
||
|
FORCEINLINE void ColorClampBumped( Vector& color1, Vector& color2, Vector& color3 )
|
||
|
{
|
||
|
Vector maxs;
|
||
|
Vector *colors[3] = { &color1, &color2, &color3 };
|
||
|
maxs[0] = VectorMaximum( color1 );
|
||
|
maxs[1] = VectorMaximum( color2 );
|
||
|
maxs[2] = VectorMaximum( color3 );
|
||
|
|
||
|
// HACK! Clean this up, and add some else statements
|
||
|
#define CONDITION(a,b,c) do { if( maxs[a] >= maxs[b] && maxs[b] >= maxs[c] ) { order[0] = a; order[1] = b; order[2] = c; } } while( 0 )
|
||
|
|
||
|
int order[3] = {};
|
||
|
CONDITION(0,1,2);
|
||
|
CONDITION(0,2,1);
|
||
|
CONDITION(1,0,2);
|
||
|
CONDITION(1,2,0);
|
||
|
CONDITION(2,0,1);
|
||
|
CONDITION(2,1,0);
|
||
|
|
||
|
int i;
|
||
|
for( i = 0; i < 3; i++ )
|
||
|
{
|
||
|
float max = VectorMaximum( *colors[order[i]] );
|
||
|
if( max <= 1.0f )
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
// This channel is too bright. . take half of the amount that we are over and
|
||
|
// add it to the other two channel.
|
||
|
float factorToRedist = ( max - 1.0f ) / max;
|
||
|
Vector colorToRedist = factorToRedist * *colors[order[i]];
|
||
|
*colors[order[i]] -= colorToRedist;
|
||
|
colorToRedist *= 0.5f;
|
||
|
*colors[order[(i+1)%3]] += colorToRedist;
|
||
|
*colors[order[(i+2)%3]] += colorToRedist;
|
||
|
}
|
||
|
|
||
|
ColorClamp( color1 );
|
||
|
ColorClamp( color2 );
|
||
|
ColorClamp( color3 );
|
||
|
|
||
|
if( color1[0] < 0.f ) color1[0] = 0.f;
|
||
|
if( color1[1] < 0.f ) color1[1] = 0.f;
|
||
|
if( color1[2] < 0.f ) color1[2] = 0.f;
|
||
|
if( color2[0] < 0.f ) color2[0] = 0.f;
|
||
|
if( color2[1] < 0.f ) color2[1] = 0.f;
|
||
|
if( color2[2] < 0.f ) color2[2] = 0.f;
|
||
|
if( color3[0] < 0.f ) color3[0] = 0.f;
|
||
|
if( color3[1] < 0.f ) color3[1] = 0.f;
|
||
|
if( color3[2] < 0.f ) color3[2] = 0.f;
|
||
|
}
|
||
|
|
||
|
FORCEINLINE void LinearToBumpedLightmap( const float *linearColor, const float *linearBumpColor1,
|
||
|
const float *linearBumpColor2, const float *linearBumpColor3,
|
||
|
unsigned char *ret, unsigned char *retBump1,
|
||
|
unsigned char *retBump2, unsigned char *retBump3 )
|
||
|
{
|
||
|
const Vector &linearBump1 = *( ( const Vector * )linearBumpColor1 );
|
||
|
const Vector &linearBump2 = *( ( const Vector * )linearBumpColor2 );
|
||
|
const Vector &linearBump3 = *( ( const Vector * )linearBumpColor3 );
|
||
|
|
||
|
Vector gammaGoal;
|
||
|
// gammaGoal is premultiplied by 1/overbright, which we want
|
||
|
gammaGoal[0] = LinearToVertexLight( linearColor[0] );
|
||
|
gammaGoal[1] = LinearToVertexLight( linearColor[1] );
|
||
|
gammaGoal[2] = LinearToVertexLight( linearColor[2] );
|
||
|
Vector bumpAverage = linearBump1;
|
||
|
bumpAverage += linearBump2;
|
||
|
bumpAverage += linearBump3;
|
||
|
bumpAverage *= ( 1.0f / 3.0f );
|
||
|
|
||
|
Vector correctionScale;
|
||
|
if( *( int * )&bumpAverage[0] != 0 && *( int * )&bumpAverage[1] != 0 && *( int * )&bumpAverage[2] != 0 )
|
||
|
{
|
||
|
// fast path when we know that we don't have to worry about divide by zero.
|
||
|
VectorDivide( gammaGoal, bumpAverage, correctionScale );
|
||
|
// correctionScale = gammaGoal / bumpSum;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
correctionScale.Init( 0.0f, 0.0f, 0.0f );
|
||
|
if( bumpAverage[0] != 0.0f )
|
||
|
{
|
||
|
correctionScale[0] = gammaGoal[0] / bumpAverage[0];
|
||
|
}
|
||
|
if( bumpAverage[1] != 0.0f )
|
||
|
{
|
||
|
correctionScale[1] = gammaGoal[1] / bumpAverage[1];
|
||
|
}
|
||
|
if( bumpAverage[2] != 0.0f )
|
||
|
{
|
||
|
correctionScale[2] = gammaGoal[2] / bumpAverage[2];
|
||
|
}
|
||
|
}
|
||
|
Vector correctedBumpColor1;
|
||
|
Vector correctedBumpColor2;
|
||
|
Vector correctedBumpColor3;
|
||
|
VectorMultiply( linearBump1, correctionScale, correctedBumpColor1 );
|
||
|
VectorMultiply( linearBump2, correctionScale, correctedBumpColor2 );
|
||
|
VectorMultiply( linearBump3, correctionScale, correctedBumpColor3 );
|
||
|
|
||
|
Vector check = ( correctedBumpColor1 + correctedBumpColor2 + correctedBumpColor3 ) / 3.0f;
|
||
|
|
||
|
ColorClampBumped( correctedBumpColor1, correctedBumpColor2, correctedBumpColor3 );
|
||
|
|
||
|
ret[0] = RoundFloatToByte( gammaGoal[0] * 255.0f );
|
||
|
ret[1] = RoundFloatToByte( gammaGoal[1] * 255.0f );
|
||
|
ret[2] = RoundFloatToByte( gammaGoal[2] * 255.0f );
|
||
|
retBump1[0] = RoundFloatToByte( correctedBumpColor1[0] * 255.0f );
|
||
|
retBump1[1] = RoundFloatToByte( correctedBumpColor1[1] * 255.0f );
|
||
|
retBump1[2] = RoundFloatToByte( correctedBumpColor1[2] * 255.0f );
|
||
|
retBump2[0] = RoundFloatToByte( correctedBumpColor2[0] * 255.0f );
|
||
|
retBump2[1] = RoundFloatToByte( correctedBumpColor2[1] * 255.0f );
|
||
|
retBump2[2] = RoundFloatToByte( correctedBumpColor2[2] * 255.0f );
|
||
|
retBump3[0] = RoundFloatToByte( correctedBumpColor3[0] * 255.0f );
|
||
|
retBump3[1] = RoundFloatToByte( correctedBumpColor3[1] * 255.0f );
|
||
|
retBump3[2] = RoundFloatToByte( correctedBumpColor3[2] * 255.0f );
|
||
|
}
|
||
|
|
||
|
|
||
|
uint16 LinearFloatToCorrectedShort( float in );
|
||
|
|
||
|
inline unsigned short LinearToUnsignedShort( float in, int nFractionalBits )
|
||
|
{
|
||
|
unsigned short out;
|
||
|
in = in * ( 1 << nFractionalBits );
|
||
|
in = min( in, 65535.f );
|
||
|
out = max( in, 0.0f );
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
inline void ClampToHDR( const Vector &in, unsigned short out[3] )
|
||
|
{
|
||
|
Vector tmp = in;
|
||
|
|
||
|
out[0] = LinearFloatToCorrectedShort( in.x );
|
||
|
out[1] = LinearFloatToCorrectedShort( in.y );
|
||
|
out[2] = LinearFloatToCorrectedShort( in.z );
|
||
|
}
|
||
|
|
||
|
FORCEINLINE void
|
||
|
LinearToBumpedLightmap( const float *linearColor, const float *linearBumpColor1,
|
||
|
const float *linearBumpColor2, const float *linearBumpColor3,
|
||
|
float *ret, float *retBump1,
|
||
|
float *retBump2, float *retBump3 )
|
||
|
{
|
||
|
const Vector &linearUnbumped = *( ( const Vector * )linearColor );
|
||
|
Vector linearBump1 = *( ( const Vector * )linearBumpColor1 );
|
||
|
Vector linearBump2 = *( ( const Vector * )linearBumpColor2 );
|
||
|
Vector linearBump3 = *( ( const Vector * )linearBumpColor3 );
|
||
|
|
||
|
// find a scale factor which makes the average of the 3 bumped mapped vectors match the
|
||
|
// straight up vector (if possible), so that flat bumpmapped areas match non-bumpmapped
|
||
|
// areas.
|
||
|
// Note: According to Alex, this code is completely wrong.
|
||
|
// Because the bump vectors constitute a orthonormal basis, one does not simply average
|
||
|
// them to get the straight-up result. In fact they are added together then multiplied
|
||
|
// by 0.575
|
||
|
Vector bumpAverage = linearBump1;
|
||
|
bumpAverage += linearBump2;
|
||
|
bumpAverage += linearBump3;
|
||
|
bumpAverage *= ( 1.0f / 3.0f );
|
||
|
|
||
|
Vector correctionScale;
|
||
|
|
||
|
if( *( int * )&bumpAverage[0] != 0 &&
|
||
|
*( int * )&bumpAverage[1] != 0 &&
|
||
|
*( int * )&bumpAverage[2] != 0 )
|
||
|
{
|
||
|
// fast path when we know that we don't have to worry about divide by zero.
|
||
|
VectorDivide( linearUnbumped, bumpAverage, correctionScale );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
correctionScale.Init( 0.0f, 0.0f, 0.0f );
|
||
|
if( bumpAverage[0] != 0.0f )
|
||
|
{
|
||
|
correctionScale[0] = linearUnbumped[0] / bumpAverage[0];
|
||
|
}
|
||
|
if( bumpAverage[1] != 0.0f )
|
||
|
{
|
||
|
correctionScale[1] = linearUnbumped[1] / bumpAverage[1];
|
||
|
}
|
||
|
if( bumpAverage[2] != 0.0f )
|
||
|
{
|
||
|
correctionScale[2] = linearUnbumped[2] / bumpAverage[2];
|
||
|
}
|
||
|
}
|
||
|
linearBump1 *= correctionScale;
|
||
|
linearBump2 *= correctionScale;
|
||
|
linearBump3 *= correctionScale;
|
||
|
|
||
|
*((Vector *)ret) = linearUnbumped;
|
||
|
*((Vector *)retBump1) = linearBump1;
|
||
|
*((Vector *)retBump2) = linearBump2;
|
||
|
*((Vector *)retBump3) = linearBump3;
|
||
|
}
|
||
|
|
||
|
|
||
|
// The domain of the inputs is floats [0 .. 16.0f]
|
||
|
// the output range is also floats [0 .. 16.0f] (eg, compression to short does not happen)
|
||
|
FORCEINLINE void
|
||
|
LinearToBumpedLightmap( FLTX4 linearColor, FLTX4 linearBumpColor1,
|
||
|
FLTX4 linearBumpColor2, FLTX4 linearBumpColor3,
|
||
|
fltx4 &ret, fltx4 &retBump1, // I pray that with inlining
|
||
|
fltx4 &retBump2, fltx4 &retBump3 ) // these will be returned on registers
|
||
|
{
|
||
|
// preload 3.0f onto the returns so that we don't need to multiply the bumpAverage by it
|
||
|
// straight away (eg, reschedule this dependent op)
|
||
|
static const fltx4 vThree = { 3.0f, 3.0f, 3.0f, 0.0f };
|
||
|
fltx4 retValBump1 = MulSIMD( vThree, linearBumpColor1);
|
||
|
fltx4 retValBump2 = MulSIMD( vThree, linearBumpColor2);
|
||
|
fltx4 retValBump3 = MulSIMD( vThree, linearBumpColor3);
|
||
|
|
||
|
// find a scale factor which makes the average of the 3 bumped mapped vectors match the
|
||
|
// straight up vector (if possible), so that flat bumpmapped areas match non-bumpmapped
|
||
|
// areas.
|
||
|
fltx4 bumpAverage = AddSIMD(AddSIMD(linearBumpColor1, linearBumpColor2), linearBumpColor3); // actually average * 3
|
||
|
|
||
|
// find the zero terms so that we can quash their channels in the output
|
||
|
fltx4 zeroTerms = CmpEqSIMD(bumpAverage, Four_Zeros);
|
||
|
fltx4 correctionScale = ReciprocalEstSIMD(bumpAverage); // each channel is now 1.0f / (average[x] * 3.0f)
|
||
|
|
||
|
// divide unbumped linear by the average to get the correction scale
|
||
|
correctionScale = MulSIMD( AndNotSIMD(zeroTerms, linearColor), // crush values that were zero in bumpAverage. (saves on dep latency)
|
||
|
correctionScale); // still has an extra 1/3 factor multiplied in
|
||
|
|
||
|
// multiply this against three to get the return values
|
||
|
ret = linearColor;
|
||
|
retBump1 = MulSIMD(retValBump1, correctionScale);
|
||
|
retBump2 = MulSIMD(retValBump2, correctionScale);
|
||
|
retBump3 = MulSIMD(retValBump3, correctionScale);
|
||
|
}
|
||
|
|
||
|
// input: floats [0 .. 16.0f]
|
||
|
// output: shorts [0 .. 65535]
|
||
|
FORCEINLINE void
|
||
|
LinearToBumpedLightmap( const float *linearColor, const float *linearBumpColor1,
|
||
|
const float *linearBumpColor2, const float *linearBumpColor3,
|
||
|
unsigned short *ret, unsigned short *retBump1,
|
||
|
unsigned short *retBump2, unsigned short *retBump3 )
|
||
|
{
|
||
|
Vector linearUnbumped, linearBump1, linearBump2, linearBump3;
|
||
|
LinearToBumpedLightmap( linearColor, linearBumpColor1, linearBumpColor2, linearBumpColor3, &linearUnbumped.x, &linearBump1.x, &linearBump2.x, &linearBump3.x );
|
||
|
|
||
|
ClampToHDR( linearUnbumped, ret );
|
||
|
ClampToHDR( linearBump1, retBump1 );
|
||
|
ClampToHDR( linearBump2, retBump2 );
|
||
|
ClampToHDR( linearBump3, retBump3 );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
#endif // COLORSPACE_H
|