source-engine/engine/gl_rsurf.cpp

5381 lines
167 KiB
C++
Raw Permalink Normal View History

2020-04-22 16:56:21 +00:00
//========= Copyright Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//===========================================================================//
#include "render_pch.h"
#include "client.h"
#include "gl_model_private.h"
#include "gl_water.h"
#include "gl_cvars.h"
#include "zone.h"
#include "decal.h"
#include "decal_private.h"
#include "gl_lightmap.h"
#include "r_local.h"
#include "gl_matsysiface.h"
#include "gl_rsurf.h"
#include "materialsystem/imesh.h"
#include "materialsystem/ivballoctracker.h"
#include "tier2/tier2.h"
#include "collisionutils.h"
#include "cdll_int.h"
#include "utllinkedlist.h"
#include "r_areaportal.h"
#include "bsptreedata.h"
#include "cmodel_private.h"
#include "tier0/dbg.h"
#include "crtmemdebug.h"
#include "iclientrenderable.h"
#include "icliententitylist.h"
#include "icliententity.h"
#include "gl_rmain.h"
#include "tier0/vprof.h"
#include "bitvec.h"
#include "debugoverlay.h"
#include "host.h"
#include "materialsystem/imaterialsystemhardwareconfig.h"
#include "cl_main.h"
#include "cmodel_engine.h"
#include "r_decal.h"
#include "materialsystem/materialsystem_config.h"
#include "materialsystem/imaterialproxy.h"
#include "materialsystem/imaterialvar.h"
#include "coordsize.h"
#include "mempool.h"
#ifndef SWDS
#include "Overlay.h"
#endif
// memdbgon must be the last include file in a .cpp file!!!
#include "tier0/memdbgon.h"
#define BACKFACE_EPSILON -0.01f
#define BRUSHMODEL_DECAL_SORT_GROUP MAX_MAT_SORT_GROUPS
const int MAX_VERTEX_FORMAT_CHANGES = 128;
int g_MaxLeavesVisible = 512;
//-----------------------------------------------------------------------------
// forward declarations
//-----------------------------------------------------------------------------
class IClientEntity;
// interface to shader drawing
void Shader_BrushBegin( model_t *model, IClientEntity *baseentity = NULL );
void Shader_BrushSurface( SurfaceHandle_t surfID, model_t *model, IClientEntity *baseentity = NULL );
void Shader_BrushEnd( IMatRenderContext *pRenderContext, VMatrix const* brushToWorld, model_t *model, bool bShadowDepth, IClientEntity *baseentity = NULL );
#ifdef NEWMESH
void BuildMSurfaceVertexArrays( worldbrushdata_t *pBrushData, SurfaceHandle_t surfID, float overbright, CVertexBufferBuilder &builder );
#else
void BuildMSurfaceVertexArrays( worldbrushdata_t *pBrushData, SurfaceHandle_t surfID, float overbright, CMeshBuilder &builder );
#endif
//-----------------------------------------------------------------------------
// Information about the fog volumes for this pass of rendering
//-----------------------------------------------------------------------------
struct FogState_t
{
MaterialFogMode_t m_FogMode;
float m_FogStart;
float m_FogEnd;
float m_FogColor[3];
bool m_FogEnabled;
};
struct FogVolumeInfo_t : public FogState_t
{
bool m_InFogVolume;
float m_FogSurfaceZ;
float m_FogMinZ;
int m_FogVolumeID;
};
//-----------------------------------------------------------------------------
// Cached convars...
//-----------------------------------------------------------------------------
struct CachedConvars_t
{
bool m_bDrawWorld;
int m_nDrawLeaf;
bool m_bDrawFuncDetail;
};
static CachedConvars_t s_ShaderConvars;
// AR - moved so SWDS can access these vars
Frustum_t g_Frustum;
//-----------------------------------------------------------------------------
// Convars
//-----------------------------------------------------------------------------
static ConVar r_drawtranslucentworld( "r_drawtranslucentworld", "1", FCVAR_CHEAT );
static ConVar mat_forcedynamic( "mat_forcedynamic", "0", FCVAR_CHEAT );
static ConVar r_drawleaf( "r_drawleaf", "-1", FCVAR_CHEAT, "Draw the specified leaf." );
static ConVar r_drawworld( "r_drawworld", "1", FCVAR_CHEAT, "Render the world." );
static ConVar r_drawfuncdetail( "r_drawfuncdetail", "1", FCVAR_CHEAT, "Render func_detail" );
static ConVar fog_enable_water_fog( "fog_enable_water_fog", "1", FCVAR_CHEAT );
static ConVar r_fastzreject( "r_fastzreject", "0", FCVAR_ALLOWED_IN_COMPETITIVE, "Activate/deactivates a fast z-setting algorithm to take advantage of hardware with fast z reject. Use -1 to default to hardware settings" );
static ConVar r_fastzrejectdisp( "r_fastzrejectdisp", "0", 0, "Activates/deactivates fast z rejection on displacements (360 only). Only active when r_fastzreject is on." );
//-----------------------------------------------------------------------------
// Installs a client-side renderer for brush models
//-----------------------------------------------------------------------------
static IBrushRenderer* s_pBrushRenderOverride = 0;
//-----------------------------------------------------------------------------
// Make sure we don't render the same surfaces twice
//-----------------------------------------------------------------------------
int r_surfacevisframe = 0;
#define r_surfacevisframe dont_use_r_surfacevisframe_here
//-----------------------------------------------------------------------------
// Fast z reject displacements?
//-----------------------------------------------------------------------------
static bool s_bFastZRejectDisplacements = false;
//-----------------------------------------------------------------------------
// Top view bounds
//-----------------------------------------------------------------------------
static bool r_drawtopview = false;
static Vector2D s_OrthographicCenter;
static Vector2D s_OrthographicHalfDiagonal;
//-----------------------------------------------------------------------------
//
//-----------------------------------------------------------------------------
typedef CVarBitVec CVisitedSurfs;
//-----------------------------------------------------------------------------
// Returns planes in brush models
//-----------------------------------------------------------------------------
int R_GetBrushModelPlaneCount( const model_t *model )
{
return model->brush.nummodelsurfaces;
}
const cplane_t &R_GetBrushModelPlane( const model_t *model, int nIndex, Vector *pOrigin )
{
SurfaceHandle_t surfID = SurfaceHandleFromIndex( model->brush.firstmodelsurface, model->brush.pShared );
surfID += nIndex;
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
if ( pOrigin )
{
int vertCount = MSurf_VertCount( surfID );
if ( vertCount > 0 )
{
int nFirstVertex = model->brush.pShared->vertindices[MSurf_FirstVertIndex( surfID )];
*pOrigin = model->brush.pShared->vertexes[nFirstVertex].position;
}
else
{
const cplane_t &plane = MSurf_Plane( surfID );
VectorMultiply( plane.normal, plane.dist, *pOrigin );
}
}
return MSurf_Plane( surfID );
}
//-----------------------------------------------------------------------------
// Computes the centroid of a surface
//-----------------------------------------------------------------------------
void Surf_ComputeCentroid( SurfaceHandle_t surfID, Vector *pVecCentroid )
{
int nCount = MSurf_VertCount( surfID );
int nFirstVertIndex = MSurf_FirstVertIndex( surfID );
float flTotalArea = 0.0f;
Vector vecNormal;
pVecCentroid->Init(0,0,0);
int vertIndex = host_state.worldbrush->vertindices[nFirstVertIndex];
Vector vecApex = host_state.worldbrush->vertexes[vertIndex].position;
for (int v = 1; v < nCount - 1; ++v )
{
vertIndex = host_state.worldbrush->vertindices[nFirstVertIndex+v];
Vector v1 = host_state.worldbrush->vertexes[vertIndex].position;
vertIndex = host_state.worldbrush->vertindices[nFirstVertIndex+v+1];
Vector v2 = host_state.worldbrush->vertexes[vertIndex].position;
CrossProduct( v2 - v1, v1 - vecApex, vecNormal );
float flArea = vecNormal.Length();
flTotalArea += flArea;
*pVecCentroid += (vecApex + v1 + v2) * flArea / 3.0f;
}
if (flTotalArea)
{
*pVecCentroid /= flTotalArea;
}
}
//-----------------------------------------------------------------------------
// Converts sort infos to lightmap pages
//-----------------------------------------------------------------------------
int SortInfoToLightmapPage( int sortID )
{
return materialSortInfoArray[sortID].lightmapPageID;
}
#ifndef SWDS
class CWorldRenderList : public CRefCounted1<IWorldRenderList>
{
public:
CWorldRenderList()
{
}
~CWorldRenderList()
{
Purge();
}
static CWorldRenderList *FindOrCreateList( int nSurfaces )
{
CWorldRenderList *p = g_Pool.GetObject();
if ( p->m_VisitedSurfs.GetNumBits() == 0 )
{
p->Init( nSurfaces );
}
else
{
p->AddRef();
}
AssertMsg( p->m_VisitedSurfs.GetNumBits() == nSurfaces, "World render list pool not cleared between maps" );
return p;
}
static void PurgeAll()
{
CWorldRenderList *p;
while ( ( p = g_Pool.GetObject( false ) ) != NULL )
{
p->Purge();
delete p;
}
}
virtual bool OnFinalRelease()
{
Reset();
g_Pool.PutObject( this );
return false;
}
void Init( int nSurfaces )
{
m_SortList.Init(materials->GetNumSortIDs(), 512);
m_AlphaSortList.Init( g_MaxLeavesVisible, 64 );
m_DispSortList.Init(materials->GetNumSortIDs(), 32);
m_DispAlphaSortList.Init( g_MaxLeavesVisible, 32 );
m_VisitedSurfs.Resize( nSurfaces );
m_bSkyVisible = false;
}
void Purge()
{
g_MaxLeavesVisible = max(g_MaxLeavesVisible,m_VisibleLeaves.Count());
m_VisibleLeaves.Purge();
m_VisibleLeafFogVolumes.Purge();
for ( int i = 0; i < MAX_MAT_SORT_GROUPS; i++ )
{
m_ShadowHandles[i].Purge();
m_DlightSurfaces[i].Purge();
}
m_SortList.Shutdown();
m_AlphaSortList.Shutdown();
m_DispSortList.Shutdown();
m_DispAlphaSortList.Shutdown();
}
void Reset()
{
g_MaxLeavesVisible = max(g_MaxLeavesVisible,m_VisibleLeaves.Count());
m_SortList.Reset();
m_AlphaSortList.Reset();
m_DispSortList.Reset();
m_DispAlphaSortList.Reset();
m_bSkyVisible = false;
for (int j = 0; j < MAX_MAT_SORT_GROUPS; ++j)
{
//Assert(pRenderList->m_ShadowHandles[j].Count() == 0 );
m_ShadowHandles[j].RemoveAll();
m_DlightSurfaces[j].RemoveAll();
}
// We haven't found any visible leafs this frame
m_VisibleLeaves.RemoveAll();
m_VisibleLeafFogVolumes.RemoveAll();
m_VisitedSurfs.ClearAll();
}
CMSurfaceSortList m_SortList;
CMSurfaceSortList m_DispSortList;
CMSurfaceSortList m_AlphaSortList;
CMSurfaceSortList m_DispAlphaSortList;
//-------------------------------------------------------------------------
// List of decals to render this frame (need an extra one for brush models)
//-------------------------------------------------------------------------
CUtlVector<ShadowDecalHandle_t> m_ShadowHandles[MAX_MAT_SORT_GROUPS];
// list of surfaces with dynamic lightmaps
CUtlVector<SurfaceHandle_t> m_DlightSurfaces[MAX_MAT_SORT_GROUPS];
//-------------------------------------------------------------------------
// Used to generate a list of the leaves visited, and in back-to-front order
// for this frame of rendering
//-------------------------------------------------------------------------
CUtlVector<LeafIndex_t> m_VisibleLeaves;
CUtlVector<LeafFogVolume_t> m_VisibleLeafFogVolumes;
CVisitedSurfs m_VisitedSurfs;
bool m_bSkyVisible;
static CObjectPool<CWorldRenderList> g_Pool;
};
CObjectPool<CWorldRenderList> CWorldRenderList::g_Pool;
IWorldRenderList *AllocWorldRenderList()
{
return CWorldRenderList::FindOrCreateList( host_state.worldbrush->numsurfaces );
}
FORCEINLINE bool VisitSurface( CVisitedSurfs &visitedSurfs, SurfaceHandle_t surfID )
{
return !visitedSurfs.TestAndSet( MSurf_Index( surfID ) );
}
FORCEINLINE void MarkSurfaceVisited( CVisitedSurfs &visitedSurfs, SurfaceHandle_t surfID )
{
visitedSurfs.Set( MSurf_Index( surfID ) );
}
FORCEINLINE bool VisitedSurface( CVisitedSurfs &visitedSurfs, SurfaceHandle_t surfID )
{
return visitedSurfs.IsBitSet( MSurf_Index( surfID ) );
}
FORCEINLINE bool VisitedSurface( CVisitedSurfs &visitedSurfs, int index )
{
return visitedSurfs.IsBitSet( index );
}
//-----------------------------------------------------------------------------
// Activates top view
//-----------------------------------------------------------------------------
void R_DrawTopView( bool enable )
{
r_drawtopview = enable;
}
void R_TopViewBounds( Vector2D const& mins, Vector2D const& maxs )
{
Vector2DAdd( maxs, mins, s_OrthographicCenter );
s_OrthographicCenter *= 0.5f;
Vector2DSubtract( maxs, s_OrthographicCenter, s_OrthographicHalfDiagonal );
}
#define MOVE_DLIGHTS_TO_NEW_TEXTURE 0
#if MOVE_DLIGHTS_TO_NEW_TEXTURE
bool DlightSurfaceSetQueuingFlag(SurfaceHandle_t surfID)
{
if ( MSurf_Flags( surfID ) & SURFDRAW_HASLIGHTSYTLES )
{
msurfacelighting_t *pLighting = SurfaceLighting(surfID);
for( int maps = 1; maps < MAXLIGHTMAPS && pLighting->m_nStyles[maps] != 255; maps++ )
{
if( d_lightstylenumframes[pLighting->m_nStyles[maps]] != 1 )
{
MSurf_Flags( surfID ) |= SURFDRAW_DLIGHTPASS;
return true;
}
}
return false;
}
MSurf_Flags( surfID ) |= SURFDRAW_DLIGHTPASS;
return true;
}
#else
bool DlightSurfaceSetQueuingFlag(SurfaceHandle_t surfID) { return false; }
#endif
//-----------------------------------------------------------------------------
// Adds surfaces to list of things to render
//-----------------------------------------------------------------------------
void Shader_TranslucentWorldSurface( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
Assert( !SurfaceHasDispInfo( surfID ) && (pRenderList->m_VisibleLeaves.Count() > 0) );
// Hook into the chain of translucent objects for this leaf
int sortGroup = MSurf_SortGroup( surfID );
pRenderList->m_AlphaSortList.AddSurfaceToTail( surfID, sortGroup, pRenderList->m_VisibleLeaves.Count()-1 );
if ( MSurf_Flags( surfID ) & (SURFDRAW_HASLIGHTSYTLES|SURFDRAW_HASDLIGHT) )
{
pRenderList->m_DlightSurfaces[sortGroup].AddToTail( surfID );
DlightSurfaceSetQueuingFlag(surfID);
}
}
inline void Shader_WorldSurface( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
// Hook it into the list of surfaces to render with this material
// Do it in a way that generates a front-to-back ordering for fast z reject
Assert( !SurfaceHasDispInfo( surfID ) );
// Each surface is in exactly one group
int nSortGroup = MSurf_SortGroup( surfID );
// Add decals on non-displacement surfaces
if( SurfaceHasDecals( surfID ) )
{
DecalSurfaceAdd( surfID, nSortGroup );
}
int nMaterialSortID = MSurf_MaterialSortID( surfID );
if ( MSurf_Flags( surfID ) & (SURFDRAW_HASLIGHTSYTLES|SURFDRAW_HASDLIGHT) )
{
pRenderList->m_DlightSurfaces[nSortGroup].AddToTail( surfID );
if ( !DlightSurfaceSetQueuingFlag(surfID) )
{
pRenderList->m_SortList.AddSurfaceToTail( surfID, nSortGroup, nMaterialSortID );
}
}
else
{
pRenderList->m_SortList.AddSurfaceToTail( surfID, nSortGroup, nMaterialSortID );
}
}
// The NoCull flavor of this function optimizes for shadow depth map rendering
// No decal work, dlights or material sorting, for example
inline void Shader_WorldSurfaceNoCull( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
// Hook it into the list of surfaces to render with this material
// Do it in a way that generates a front-to-back ordering for fast z reject
Assert( !SurfaceHasDispInfo( surfID ) );
// Each surface is in exactly one group
int nSortGroup = MSurf_SortGroup( surfID );
int nMaterialSortID = MSurf_MaterialSortID( surfID );
pRenderList->m_SortList.AddSurfaceToTail( surfID, nSortGroup, nMaterialSortID );
}
//-----------------------------------------------------------------------------
// Adds displacement surfaces to list of things to render
//-----------------------------------------------------------------------------
void Shader_TranslucentDisplacementSurface( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
Assert( SurfaceHasDispInfo( surfID ) && (pRenderList->m_VisibleLeaves.Count() > 0));
// For translucent displacement surfaces, they can exist in many
// leaves. We want to choose the leaf that's closest to the camera
// to render it in. Thankfully, we're iterating the tree in front-to-back
// order, so this is very simple.
// NOTE: You might expect some problems here when displacements cross fog volume
// planes. However, these problems go away (I hope!) because the first planes
// that split a scene are the fog volume planes. That means that if we're
// in a fog volume, the closest leaf that the displacement will be in will
// also be in the fog volume. If we're not in a fog volume, the closest
// leaf that the displacement will be in will not be a fog volume. That should
// hopefully hide any discontinuities between fog state that occur when
// rendering displacements that straddle fog volume boundaries.
// Each surface is in exactly one group
int sortGroup = MSurf_SortGroup( surfID );
if ( MSurf_Flags( surfID ) & (SURFDRAW_HASLIGHTSYTLES|SURFDRAW_HASDLIGHT) )
{
pRenderList->m_DlightSurfaces[sortGroup].AddToTail( surfID );
if ( !DlightSurfaceSetQueuingFlag(surfID) )
{
pRenderList->m_DispAlphaSortList.AddSurfaceToTail(surfID, sortGroup, pRenderList->m_VisibleLeaves.Count()-1);
}
}
else
{
pRenderList->m_DispAlphaSortList.AddSurfaceToTail(surfID, sortGroup, pRenderList->m_VisibleLeaves.Count()-1);
}
}
void Shader_DisplacementSurface( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
Assert( SurfaceHasDispInfo( surfID ) );
// For opaque displacement surfaces, we're going to build a temporary list of
// displacement surfaces in each material bucket, and then add those to
// the actual displacement lists in a separate pass.
// We do this to sort the displacement surfaces by material
// Each surface is in exactly one group
int nSortGroup = MSurf_SortGroup( surfID );
int nMaterialSortID = MSurf_MaterialSortID( surfID );
if ( MSurf_Flags( surfID ) & (SURFDRAW_HASLIGHTSYTLES|SURFDRAW_HASDLIGHT) )
{
pRenderList->m_DlightSurfaces[nSortGroup].AddToTail( surfID );
if ( !DlightSurfaceSetQueuingFlag(surfID) )
{
pRenderList->m_DispSortList.AddSurfaceToTail( surfID, nSortGroup, nMaterialSortID );
}
}
else
{
pRenderList->m_DispSortList.AddSurfaceToTail( surfID, nSortGroup, nMaterialSortID );
}
}
//-----------------------------------------------------------------------------
// Purpose: This draws a single surface using the dynamic mesh
//-----------------------------------------------------------------------------
void Shader_DrawSurfaceDynamic( IMatRenderContext *pRenderContext, SurfaceHandle_t surfID, bool bShadowDepth )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s %d", __FUNCTION__, surfID );
if( !SurfaceHasPrims( surfID ) )
{
IMesh *pMesh = pRenderContext->GetDynamicMesh( );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_POLYGON, MSurf_VertCount( surfID ) );
BuildMSurfaceVertexArrays( host_state.worldbrush, surfID, OVERBRIGHT, meshBuilder );
meshBuilder.End();
pMesh->Draw();
return;
}
mprimitive_t *pPrim = &host_state.worldbrush->primitives[MSurf_FirstPrimID( surfID )];
if ( pPrim->vertCount )
{
#ifdef DBGFLAG_ASSERT
int primType = pPrim->type;
#endif
IMesh *pMesh = pRenderContext->GetDynamicMesh( false );
CMeshBuilder meshBuilder;
for( int i = 0; i < MSurf_NumPrims( surfID ); i++, pPrim++ )
{
// Can't have heterogeneous primitive lists
Assert( primType == pPrim->type );
switch( pPrim->type )
{
case PRIM_TRILIST:
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, pPrim->vertCount, pPrim->indexCount );
break;
case PRIM_TRISTRIP:
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLE_STRIP, pPrim->vertCount, pPrim->indexCount );
break;
default:
Assert( 0 );
return;
}
Assert( pPrim->indexCount );
BuildMSurfacePrimVerts( host_state.worldbrush, pPrim, meshBuilder, surfID );
BuildMSurfacePrimIndices( host_state.worldbrush, pPrim, meshBuilder );
meshBuilder.End();
pMesh->Draw();
}
}
else
{
// prims are just a tessellation
IMesh *pMesh = pRenderContext->GetDynamicMesh( );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, MSurf_VertCount( surfID ), pPrim->indexCount );
BuildMSurfaceVertexArrays( host_state.worldbrush, surfID, OVERBRIGHT, meshBuilder );
for ( int primIndex = 0; primIndex < pPrim->indexCount; primIndex++ )
{
meshBuilder.FastIndex( host_state.worldbrush->primindices[pPrim->firstIndex + primIndex] );
}
meshBuilder.End();
pMesh->Draw();
}
}
//-----------------------------------------------------------------------------
// Purpose: This draws a single surface using its static mesh
//-----------------------------------------------------------------------------
/*
// NOTE: Since a static vb/dynamic ib IMesh doesn't buffer, we shouldn't use this
// since it causes a lock and drawindexedprimitive per surface! (gary)
void Shader_DrawSurfaceStatic( SurfaceHandle_t surfID )
{
VPROF( "Shader_DrawSurfaceStatic" );
if (
#ifdef USE_CONVARS
mat_forcedynamic.GetInt() ||
#endif
(MSurf_Flags( surfID ) & SURFDRAW_WATERSURFACE) )
{
Shader_DrawSurfaceDynamic( pRenderContext, surfID );
return;
}
IMesh *pMesh = pRenderContext->GetDynamicMesh( true,
g_pWorldStatic[MSurf_MaterialSortID( surfID )].m_pMesh );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, 0, (MSurf_VertCount( surfID )-2)*3 );
unsigned short startVert = MSurf_VertBufferIndex( surfID );
Assert(startVert!=0xFFFF);
for ( int v = 0; v < MSurf_VertCount( surfID )-2; v++ )
{
meshBuilder.Index( startVert );
meshBuilder.AdvanceIndex();
meshBuilder.Index( startVert + v + 1 );
meshBuilder.AdvanceIndex();
meshBuilder.Index( startVert + v + 2 );
meshBuilder.AdvanceIndex();
}
meshBuilder.End();
pMesh->Draw();
}
*/
//-----------------------------------------------------------------------------
// Sets the lightmapping state
//-----------------------------------------------------------------------------
static inline void Shader_SetChainLightmapState( IMatRenderContext *pRenderContext, SurfaceHandle_t surfID )
{
if ( g_pMaterialSystemConfig->nFullbright == 1 )
{
if( MSurf_Flags( surfID ) & SURFDRAW_BUMPLIGHT )
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP );
}
else
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE );
}
}
else
{
Assert( MSurf_MaterialSortID( surfID ) >= 0 && MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() );
pRenderContext->BindLightmapPage( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID );
}
}
//-----------------------------------------------------------------------------
// Sets the lightmap + texture to render with
//-----------------------------------------------------------------------------
void Shader_SetChainTextureState( IMatRenderContext *pRenderContext, SurfaceHandle_t surfID, IClientEntity* pBaseEntity, bool bShadowDepth )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
if ( bShadowDepth )
{
IMaterial *pDrawMaterial = MSurf_TexInfo( surfID )->material;
// Select proper override material
int nAlphaTest = (int) pDrawMaterial->IsAlphaTested();
int nNoCull = (int) pDrawMaterial->IsTwoSided();
IMaterial *pDepthWriteMaterial = g_pMaterialDepthWrite[nAlphaTest][nNoCull];
if ( nAlphaTest == 1 )
{
static unsigned int originalTextureVarCache = 0;
IMaterialVar *pOriginalTextureVar = pDrawMaterial->FindVarFast( "$basetexture", &originalTextureVarCache );
static unsigned int originalTextureFrameVarCache = 0;
IMaterialVar *pOriginalTextureFrameVar = pDrawMaterial->FindVarFast( "$frame", &originalTextureFrameVarCache );
static unsigned int originalAlphaRefCache = 0;
IMaterialVar *pOriginalAlphaRefVar = pDrawMaterial->FindVarFast( "$AlphaTestReference", &originalAlphaRefCache );
static unsigned int textureVarCache = 0;
IMaterialVar *pTextureVar = pDepthWriteMaterial->FindVarFast( "$basetexture", &textureVarCache );
static unsigned int textureFrameVarCache = 0;
IMaterialVar *pTextureFrameVar = pDepthWriteMaterial->FindVarFast( "$frame", &textureFrameVarCache );
static unsigned int alphaRefCache = 0;
IMaterialVar *pAlphaRefVar = pDepthWriteMaterial->FindVarFast( "$AlphaTestReference", &alphaRefCache );
if( pTextureVar && pOriginalTextureVar )
{
pTextureVar->SetTextureValue( pOriginalTextureVar->GetTextureValue() );
}
if( pTextureFrameVar && pOriginalTextureFrameVar )
{
pTextureFrameVar->SetIntValue( pOriginalTextureFrameVar->GetIntValue() );
}
if( pAlphaRefVar && pOriginalAlphaRefVar )
{
pAlphaRefVar->SetFloatValue( pOriginalAlphaRefVar->GetFloatValue() );
}
}
pRenderContext->Bind( pDepthWriteMaterial );
}
else
{
pRenderContext->Bind( MSurf_TexInfo( surfID )->material, pBaseEntity ? pBaseEntity->GetClientRenderable() : NULL );
Shader_SetChainLightmapState( pRenderContext, surfID );
}
}
void Shader_DrawDynamicChain( const CMSurfaceSortList &sortList, const surfacesortgroup_t &group, bool bShadowDepth )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
CMatRenderContextPtr pRenderContext( materials );
SurfaceHandle_t hSurfID = sortList.GetSurfaceAtHead(group);
if ( !IS_SURF_VALID( hSurfID ))
return;
Shader_SetChainTextureState( pRenderContext, hSurfID, 0, bShadowDepth );
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN(sortList, group, surfID)
{
Shader_DrawSurfaceDynamic( pRenderContext, surfID, bShadowDepth );
}
MSL_FOREACH_SURFACE_IN_GROUP_END()
}
void Shader_DrawChainsDynamic( const CMSurfaceSortList &sortList, int nSortGroup, bool bShadowDepth )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
MSL_FOREACH_GROUP_BEGIN(sortList, nSortGroup, group )
{
Shader_DrawDynamicChain( sortList, group, bShadowDepth );
}
MSL_FOREACH_GROUP_END()
}
struct vertexformatlist_t
{
unsigned short numbatches;
unsigned short firstbatch;
#ifdef NEWMESH
IVertexBuffer *pVertexBuffer;
#else
IMesh *pMesh;
#endif
};
struct batchlist_t
{
SurfaceHandle_t surfID; // material and lightmap info
unsigned short firstIndex;
unsigned short numIndex;
};
void Shader_DrawChainsStatic( const CMSurfaceSortList &sortList, int nSortGroup, bool bShadowDepth )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
//VPROF("DrawChainsStatic");
CUtlVectorFixed<vertexformatlist_t, MAX_VERTEX_FORMAT_CHANGES> meshList;
int meshMap[MAX_VERTEX_FORMAT_CHANGES];
CUtlVectorFixedGrowable<batchlist_t, 512> batchList;
CUtlVectorFixedGrowable<const surfacesortgroup_t *, 8> dynamicGroups;
bool bWarn = true;
#ifdef NEWMESH
CIndexBufferBuilder indexBufferBuilder;
#else
CMeshBuilder meshBuilder;
#endif
bool skipBind = false;
if ( g_pMaterialSystemConfig->nFullbright == 1 )
{
skipBind = true;
}
const CUtlVector<surfacesortgroup_t *> &groupList = sortList.GetSortList(nSortGroup);
int count = groupList.Count();
int i, listIndex = 0;
CMatRenderContextPtr pRenderContext( materials );
//PIXEVENT( pRenderContext, "Shader_DrawChainsStatic" );
int nMaxIndices = pRenderContext->GetMaxIndicesToRender();
while ( listIndex < count )
{
const surfacesortgroup_t &groupBase = *groupList[listIndex];
SurfaceHandle_t surfIDBase = sortList.GetSurfaceAtHead( groupBase );
int sortIDBase = MSurf_MaterialSortID( surfIDBase );
#ifdef NEWMESH
IIndexBuffer *pBuildIndexBuffer = pRenderContext->GetDynamicIndexBuffer( MATERIAL_INDEX_FORMAT_16BIT, false );
indexBufferBuilder.Begin( pBuildIndexBuffer, nMaxIndices );
IVertexBuffer *pLastVertexBuffer = NULL;
#else
IMesh *pBuildMesh = pRenderContext->GetDynamicMesh( false, g_WorldStaticMeshes[sortIDBase] );
meshBuilder.Begin( pBuildMesh, MATERIAL_TRIANGLES, 0, nMaxIndices );
IMesh *pLastMesh = NULL;
#endif
int indexCount = 0;
int meshIndex = -1;
for ( ; listIndex < count; listIndex++ )
{
const surfacesortgroup_t &group = *groupList[listIndex];
SurfaceHandle_t surfID = sortList.GetSurfaceAtHead(group);
Assert( IS_SURF_VALID( surfID ) );
if ( MSurf_Flags(surfID) & SURFDRAW_DYNAMIC )
{
dynamicGroups.AddToTail( &group );
continue;
}
Assert( group.triangleCount > 0 );
int numIndex = group.triangleCount * 3;
if ( indexCount + numIndex > nMaxIndices )
{
if ( numIndex > nMaxIndices )
{
DevMsg("Too many faces with the same material in scene!\n");
break;
}
#ifdef NEWMESH
pLastVertexBuffer = NULL;
#else
pLastMesh = NULL;
#endif
break;
}
int sortID = MSurf_MaterialSortID( surfID );
#ifdef NEWMESH
if ( g_WorldStaticMeshes[sortID] != pLastVertexBuffer )
#else
if ( g_WorldStaticMeshes[sortID] != pLastMesh )
#endif
{
if( meshList.Count() < MAX_VERTEX_FORMAT_CHANGES - 1 )
{
meshIndex = meshList.AddToTail();
meshList[meshIndex].numbatches = 0;
meshList[meshIndex].firstbatch = batchList.Count();
#ifdef NEWMESH
pLastVertexBuffer = g_WorldStaticMeshes[sortID];
Assert( pLastVertexBuffer );
meshList[meshIndex].pVertexBuffer = pLastVertexBuffer;
#else
pLastMesh = g_WorldStaticMeshes[sortID];
Assert( pLastMesh );
meshList[meshIndex].pMesh = pLastMesh;
#endif
}
else
{
if ( bWarn )
{
Warning( "Too many vertex format changes in frame, whole world not rendered\n" );
bWarn = false;
}
continue;
}
}
int batchIndex = batchList.AddToTail();
batchlist_t &batch = batchList[batchIndex];
batch.firstIndex = indexCount;
batch.surfID = surfID;
batch.numIndex = numIndex;
Assert( indexCount + batch.numIndex < nMaxIndices );
indexCount += batch.numIndex;
meshList[meshIndex].numbatches++;
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN(sortList, group, surfIDList)
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "BuildIndicesForWorldSurface" );
#ifdef NEWMESH
BuildIndicesForWorldSurface( indexBufferBuilder, surfIDList, host_state.worldbrush );
#else
Assert( meshBuilder.m_nFirstVertex == 0 );
BuildIndicesForWorldSurface( meshBuilder, surfIDList, host_state.worldbrush );
#endif
}
MSL_FOREACH_SURFACE_IN_GROUP_END()
}
// close out the index buffer
#ifdef NEWMESH
indexBufferBuilder.End( false ); // this one matches (world rendering)
#else
meshBuilder.End( false, false );
#endif
int meshTotal = meshList.Count();
VPROF_INCREMENT_COUNTER( "vertex format changes", meshTotal );
// HACKHACK: Crappy little bubble sort
// UNDONE: Make the traversal happen so that they are already sorted when you get here.
// NOTE: Profiled in a fairly complex map. This is not even costing 0.01ms / frame!
for ( i = 0; i < meshTotal; i++ )
{
meshMap[i] = i;
}
bool swapped = true;
while ( swapped )
{
swapped = false;
for ( i = 1; i < meshTotal; i++ )
{
#ifdef NEWMESH
if ( meshList[meshMap[i]].pVertexBuffer < meshList[meshMap[i-1]].pVertexBuffer )
#else
if ( meshList[meshMap[i]].pMesh < meshList[meshMap[i-1]].pMesh )
#endif
{
int tmp = meshMap[i-1];
meshMap[i-1] = meshMap[i];
meshMap[i] = tmp;
swapped = true;
}
}
}
#ifndef NEWMESH
pRenderContext->BeginBatch( pBuildMesh );
#endif
for ( int m = 0; m < meshTotal; m++ )
{
vertexformatlist_t &mesh = meshList[meshMap[m]];
IMaterial *pBindMaterial = materialSortInfoArray[MSurf_MaterialSortID( batchList[mesh.firstbatch].surfID )].material;
#ifdef NEWMESH
Assert( mesh.pVertexBuffer && pBuildIndexBuffer );
#else
Assert( mesh.pMesh && pBuildMesh );
#endif
#ifdef NEWMESH
IIndexBuffer *pIndexBuffer = pRenderContext->GetDynamicIndexBuffer( MATERIAL_INDEX_FORMAT_16BIT, false );
#else
// IMesh *pMesh = pRenderContext->GetDynamicMesh( false, mesh.pMesh, pBuildMesh, pBindMaterial );
pRenderContext->BindBatch( mesh.pMesh, pBindMaterial );
#endif
for ( int b = 0; b < mesh.numbatches; b++ )
{
batchlist_t &batch = batchList[b+mesh.firstbatch];
IMaterial *pDrawMaterial = materialSortInfoArray[MSurf_MaterialSortID( batch.surfID )].material;
if ( bShadowDepth )
{
// Select proper override material
int nAlphaTest = (int) pDrawMaterial->IsAlphaTested();
int nNoCull = (int) pDrawMaterial->IsTwoSided();
IMaterial *pDepthWriteMaterial = g_pMaterialDepthWrite[nAlphaTest][nNoCull];
if ( nAlphaTest == 1 )
{
static unsigned int originalTextureVarCache = 0;
IMaterialVar *pOriginalTextureVar = pDrawMaterial->FindVarFast( "$basetexture", &originalTextureVarCache );
static unsigned int originalTextureFrameVarCache = 0;
IMaterialVar *pOriginalTextureFrameVar = pDrawMaterial->FindVarFast( "$frame", &originalTextureFrameVarCache );
static unsigned int originalAlphaRefCache = 0;
IMaterialVar *pOriginalAlphaRefVar = pDrawMaterial->FindVarFast( "$AlphaTestReference", &originalAlphaRefCache );
static unsigned int textureVarCache = 0;
IMaterialVar *pTextureVar = pDepthWriteMaterial->FindVarFast( "$basetexture", &textureVarCache );
static unsigned int textureFrameVarCache = 0;
IMaterialVar *pTextureFrameVar = pDepthWriteMaterial->FindVarFast( "$frame", &textureFrameVarCache );
static unsigned int alphaRefCache = 0;
IMaterialVar *pAlphaRefVar = pDepthWriteMaterial->FindVarFast( "$AlphaTestReference", &alphaRefCache );
if( pTextureVar && pOriginalTextureVar )
{
pTextureVar->SetTextureValue( pOriginalTextureVar->GetTextureValue() );
}
if( pTextureFrameVar && pOriginalTextureFrameVar )
{
pTextureFrameVar->SetIntValue( pOriginalTextureFrameVar->GetIntValue() );
}
if( pAlphaRefVar && pOriginalAlphaRefVar )
{
pAlphaRefVar->SetFloatValue( pOriginalAlphaRefVar->GetFloatValue() );
}
}
pRenderContext->Bind( pDepthWriteMaterial );
}
else
{
pRenderContext->Bind( pDrawMaterial, NULL );
if ( skipBind )
{
if( MSurf_Flags( batch.surfID ) & SURFDRAW_BUMPLIGHT )
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP );
}
else
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE );
}
}
else
{
pRenderContext->BindLightmapPage( materialSortInfoArray[MSurf_MaterialSortID( batch.surfID )].lightmapPageID );
}
}
#ifdef NEWMESH
// FIXME: IMaterial::GetVertexFormat() should do this stripping (add a separate 'SupportsCompression' accessor)
VertexFormat_t vertexFormat = pBindMaterial->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED;
pRenderContext->BindVertexBuffer( 0, mesh.pVertexBuffer, 0, vertexFormat );
pRenderContext->BindIndexBuffer( pIndexBuffer, 0 );
Warning( "pRenderContext->Draw( MATERIAL_TRIANGLES, batch.firstIndex = %d, batch.numIndex = %d )\n",
( int )batch.firstIndex, ( int )batch.numIndex );
pRenderContext->Draw( MATERIAL_TRIANGLES, batch.firstIndex, batch.numIndex );
#else
// pMesh->Draw( batch.firstIndex, batch.numIndex );
pRenderContext->DrawBatch( batch.firstIndex, batch.numIndex );
#endif
}
}
#ifndef NEWMESH
pRenderContext->EndBatch();
#endif
// if we get here and pLast mesh is NULL and we rendered somthing, we need to loop
#ifdef NEWMESH
if ( pLastVertexBuffer || !meshTotal )
#else
if ( pLastMesh || !meshTotal )
#endif
break;
meshList.RemoveAll();
batchList.RemoveAll();
}
for ( i = 0; i < dynamicGroups.Count(); i++ )
{
Shader_DrawDynamicChain( sortList, *dynamicGroups[i], bShadowDepth );
}
}
//-----------------------------------------------------------------------------
// The following methods will display debugging info in the middle of each surface
//-----------------------------------------------------------------------------
typedef void (*SurfaceDebugFunc_t)( SurfaceHandle_t surfID, const Vector &vecCentroid );
void DrawSurfaceID( SurfaceHandle_t surfID, const Vector &vecCentroid )
{
char buf[32];
Q_snprintf(buf, sizeof( buf ), "0x%p", surfID );
CDebugOverlay::AddTextOverlay( vecCentroid, 0, buf );
}
void DrawSurfaceIDAsInt( SurfaceHandle_t surfID, const Vector &vecCentroid )
{
int nInt = (msurface2_t*)surfID - host_state.worldbrush->surfaces2;
char buf[32];
Q_snprintf( buf, sizeof( buf ), "%d", nInt );
CDebugOverlay::AddTextOverlay( vecCentroid, 0, buf );
}
void DrawSurfaceMaterial( SurfaceHandle_t surfID, const Vector &vecCentroid )
{
mtexinfo_t * pTexInfo = MSurf_TexInfo(surfID);
const char *pFullMaterialName = pTexInfo->material ? pTexInfo->material->GetName() : "no material";
const char *pSlash = strrchr( pFullMaterialName, '/' );
const char *pMaterialName = strrchr( pFullMaterialName, '\\' );
if (pSlash > pMaterialName)
pMaterialName = pSlash;
if (pMaterialName)
++pMaterialName;
else
pMaterialName = pFullMaterialName;
CDebugOverlay::AddTextOverlay( vecCentroid, 0, pMaterialName );
}
//-----------------------------------------------------------------------------
// Displays the surface id # in the center of the surface.
//-----------------------------------------------------------------------------
void Shader_DrawSurfaceDebuggingInfo( const CUtlVector<msurface2_t *> &surfaceList, SurfaceDebugFunc_t func )
{
for ( int i = 0; i < surfaceList.Count(); i++ )
{
SurfaceHandle_t surfID = surfaceList[i];
Assert( !SurfaceHasDispInfo( surfID ) );
// Compute the centroid of the surface
int nCount = MSurf_VertCount( surfID );
if (nCount >= 3)
{
Vector vecCentroid;
Surf_ComputeCentroid( surfID, &vecCentroid );
func( surfID, vecCentroid );
}
}
}
//-----------------------------------------------------------------------------
// Doesn't draw internal triangles
//-----------------------------------------------------------------------------
void Shader_DrawWireframePolygons( const CUtlVector<msurface2_t *> &surfaceList )
{
int nLineCount = 0;
for ( int i = 0; i < surfaceList.Count(); i++ )
{
int nCount = MSurf_VertCount( surfaceList[i] );
if (nCount >= 3)
{
nLineCount += nCount;
}
}
if (nLineCount == 0)
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( g_materialWorldWireframe );
IMesh *pMesh = pRenderContext->GetDynamicMesh( false );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_LINES, nLineCount );
for ( int i = 0; i < surfaceList.Count(); i++ )
{
SurfaceHandle_t surfID = surfaceList[i];
Assert( !SurfaceHasDispInfo( surfID ) );
// Compute the centroid of the surface
int nCount = MSurf_VertCount( surfID );
if (nCount >= 3)
{
int nFirstVertIndex = MSurf_FirstVertIndex( surfID );
int nVertIndex = host_state.worldbrush->vertindices[nFirstVertIndex + nCount - 1];
Vector vecPrevPos = host_state.worldbrush->vertexes[nVertIndex].position;
for (int v = 0; v < nCount; ++v )
{
// world-space vertex
nVertIndex = host_state.worldbrush->vertindices[nFirstVertIndex + v];
Vector& vec = host_state.worldbrush->vertexes[nVertIndex].position;
// output to mesh
meshBuilder.Position3fv( vecPrevPos.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( vec.Base() );
meshBuilder.AdvanceVertex();
vecPrevPos = vec;
}
}
}
meshBuilder.End();
pMesh->Draw();
}
//-----------------------------------------------------------------------------
// Debugging mode, renders the wireframe.
//-----------------------------------------------------------------------------
static void Shader_DrawChainsWireframe( const CUtlVector<msurface2_t *> &surfaceList )
{
int nWireFrameMode = WireFrameMode();
switch( nWireFrameMode )
{
case 3:
// Doesn't draw internal triangles
Shader_DrawWireframePolygons(surfaceList);
break;
default:
{
CMatRenderContextPtr pRenderContext( materials );
if( nWireFrameMode == 2 )
{
pRenderContext->Bind( g_materialWorldWireframeZBuffer );
}
else
{
pRenderContext->Bind( g_materialWorldWireframe );
}
for ( int i = 0; i < surfaceList.Count(); i++ )
{
SurfaceHandle_t surfID = surfaceList[i];
Assert( !SurfaceHasDispInfo( surfID ) );
Shader_DrawSurfaceDynamic( pRenderContext, surfID, false );
}
}
}
}
//-----------------------------------------------------------------------------
// Debugging mode, renders the normals
//-----------------------------------------------------------------------------
static void Shader_DrawChainNormals( const CUtlVector<msurface2_t *> &surfaceList )
{
Vector p, tVect, tangentS, tangentT;
CMatRenderContextPtr pRenderContext( materials );
worldbrushdata_t *pBrushData = host_state.worldbrush;
pRenderContext->Bind( g_pMaterialWireframeVertexColor );
for ( int i = 0; i < surfaceList.Count(); i++ )
{
SurfaceHandle_t surfID = surfaceList[i];
IMesh *pMesh = pRenderContext->GetDynamicMesh( );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_LINES, MSurf_VertCount( surfID ) * 3 );
bool negate = TangentSpaceSurfaceSetup( surfID, tVect );
int vertID;
for( vertID = 0; vertID < MSurf_VertCount( surfID ); ++vertID )
{
int vertIndex = pBrushData->vertindices[MSurf_FirstVertIndex( surfID )+vertID];
Vector& pos = pBrushData->vertexes[vertIndex].position;
Vector& norm = pBrushData->vertnormals[ pBrushData->vertnormalindices[MSurf_FirstVertNormal( surfID )+vertID] ];
TangentSpaceComputeBasis( tangentS, tangentT, norm, tVect, negate );
meshBuilder.Position3fv( pos.Base() );
meshBuilder.Color3ub( 0, 0, 255 );
meshBuilder.AdvanceVertex();
VectorMA( pos, 5.0f, norm, p );
meshBuilder.Position3fv( p.Base() );
meshBuilder.Color3ub( 0, 0, 255 );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pos.Base() );
meshBuilder.Color3ub( 0, 255, 0 );
meshBuilder.AdvanceVertex();
VectorMA( pos, 5.0f, tangentT, p );
meshBuilder.Position3fv( p.Base() );
meshBuilder.Color3ub( 0, 255, 0 );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pos.Base() );
meshBuilder.Color3ub( 255, 0, 0 );
meshBuilder.AdvanceVertex();
VectorMA( pos, 5.0f, tangentS, p );
meshBuilder.Position3fv( p.Base() );
meshBuilder.Color3ub( 255, 0, 0 );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
}
}
static void Shader_DrawChainBumpBasis( const CUtlVector<msurface2_t *> &surfaceList )
{
Vector p, tVect, tangentS, tangentT;
CMatRenderContextPtr pRenderContext( materials );
worldbrushdata_t *pBrushData = host_state.worldbrush;
pRenderContext->Bind( g_pMaterialWireframeVertexColor );
for ( int i = 0; i < surfaceList.Count(); i++ )
{
SurfaceHandle_t surfID = surfaceList[i];
IMesh *pMesh = pRenderContext->GetDynamicMesh( );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_LINES, MSurf_VertCount( surfID ) * 3 );
bool negate = TangentSpaceSurfaceSetup( surfID, tVect );
int vertID;
for( vertID = 0; vertID < MSurf_VertCount( surfID ); ++vertID )
{
int vertIndex = pBrushData->vertindices[MSurf_FirstVertIndex( surfID )+vertID];
Vector& pos = pBrushData->vertexes[vertIndex].position;
Vector& norm = pBrushData->vertnormals[ pBrushData->vertnormalindices[MSurf_FirstVertNormal( surfID )+vertID] ];
TangentSpaceComputeBasis( tangentS, tangentT, norm, tVect, negate );
Vector worldSpaceBumpBasis[3];
for( int j = 0; j < 3; j++ )
{
worldSpaceBumpBasis[j][0] =
g_localBumpBasis[j][0] * tangentS[0] +
g_localBumpBasis[j][1] * tangentS[1] +
g_localBumpBasis[j][2] * tangentS[2];
worldSpaceBumpBasis[j][1] =
g_localBumpBasis[j][0] * tangentT[0] +
g_localBumpBasis[j][1] * tangentT[1] +
g_localBumpBasis[j][2] * tangentT[2];
worldSpaceBumpBasis[j][2] =
g_localBumpBasis[j][0] * norm[0] +
g_localBumpBasis[j][1] * norm[1] +
g_localBumpBasis[j][2] * norm[2];
}
meshBuilder.Position3fv( pos.Base() );
meshBuilder.Color3ub( 255, 0, 0 );
meshBuilder.AdvanceVertex();
VectorMA( pos, 5.0f, worldSpaceBumpBasis[0], p );
meshBuilder.Position3fv( p.Base() );
meshBuilder.Color3ub( 255, 0, 0 );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pos.Base() );
meshBuilder.Color3ub( 0, 255, 0 );
meshBuilder.AdvanceVertex();
VectorMA( pos, 5.0f, worldSpaceBumpBasis[1], p );
meshBuilder.Position3fv( p.Base() );
meshBuilder.Color3ub( 0, 255, 0 );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pos.Base() );
meshBuilder.Color3ub( 0, 0, 255 );
meshBuilder.AdvanceVertex();
VectorMA( pos, 5.0f, worldSpaceBumpBasis[2], p );
meshBuilder.Position3fv( p.Base() );
meshBuilder.Color3ub( 0, 0, 255 );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
}
}
//-----------------------------------------------------------------------------
// Debugging mode, renders the luxel grid.
//-----------------------------------------------------------------------------
static void Shader_DrawLuxels( const CUtlVector<msurface2_t *> &surfaceList )
{
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( g_materialDebugLuxels );
for ( int i = 0; i < surfaceList.Count(); i++ )
{
SurfaceHandle_t surfID = surfaceList[i];
Assert( !SurfaceHasDispInfo( surfID ) );
// Gotta bind the lightmap page so the rendering knows the lightmap scale
pRenderContext->BindLightmapPage( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID );
Shader_DrawSurfaceDynamic( pRenderContext, surfID, false );
}
}
static struct CShaderDebug
{
bool wireframe;
bool normals;
bool luxels;
bool bumpBasis;
bool surfacematerials;
bool anydebug;
int surfaceid;
void TestAnyDebug()
{
anydebug = wireframe || normals || luxels || bumpBasis || ( surfaceid != 0 ) || surfacematerials;
}
} g_ShaderDebug;
ConVar mat_surfaceid("mat_surfaceid", "0", FCVAR_CHEAT);
ConVar mat_surfacemat("mat_surfacemat", "0", FCVAR_CHEAT);
//-----------------------------------------------------------------------------
// Purpose:
// Output : static void
//-----------------------------------------------------------------------------
static void ComputeDebugSettings( void )
{
g_ShaderDebug.wireframe = ShouldDrawInWireFrameMode() || (r_drawworld.GetInt() == 2);
g_ShaderDebug.normals = mat_normals.GetBool();
g_ShaderDebug.luxels = mat_luxels.GetBool();
g_ShaderDebug.bumpBasis = mat_bumpbasis.GetBool();
g_ShaderDebug.surfaceid = mat_surfaceid.GetInt();
g_ShaderDebug.surfacematerials = mat_surfacemat.GetBool();
g_ShaderDebug.TestAnyDebug();
}
//-----------------------------------------------------------------------------
// Draw debugging information
//-----------------------------------------------------------------------------
static void DrawDebugInformation( const CUtlVector<msurface2_t *> &surfaceList )
{
// Overlay with wireframe if we're in that mode
if( g_ShaderDebug.wireframe )
{
Shader_DrawChainsWireframe(surfaceList);
}
// Overlay with normals if we're in that mode
if( g_ShaderDebug.normals )
{
Shader_DrawChainNormals(surfaceList);
}
if( g_ShaderDebug.bumpBasis )
{
Shader_DrawChainBumpBasis(surfaceList);
}
// Overlay with luxel grid if we're in that mode
if( g_ShaderDebug.luxels )
{
Shader_DrawLuxels(surfaceList);
}
if ( g_ShaderDebug.surfaceid )
{
// Draw the surface id in the middle of the surfaces
Shader_DrawSurfaceDebuggingInfo( surfaceList, (g_ShaderDebug.surfaceid != 2 ) ? DrawSurfaceID : DrawSurfaceIDAsInt );
}
else if ( g_ShaderDebug.surfacematerials )
{
// Draw the material name in the middle of the surfaces
Shader_DrawSurfaceDebuggingInfo( surfaceList, DrawSurfaceMaterial );
}
}
void AddProjectedTextureDecalsToList( CWorldRenderList *pRenderList, int nSortGroup )
{
const CMSurfaceSortList &sortList = pRenderList->m_SortList;
MSL_FOREACH_GROUP_BEGIN( sortList, nSortGroup, group )
{
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN(sortList, group, surfID)
{
Assert( !SurfaceHasDispInfo( surfID ) );
if ( SHADOW_DECAL_HANDLE_INVALID != MSurf_ShadowDecals( surfID ) )
{
// No shadows on water surfaces
if ((MSurf_Flags( surfID ) & SURFDRAW_NOSHADOWS) == 0)
{
MEM_ALLOC_CREDIT();
pRenderList->m_ShadowHandles[nSortGroup].AddToTail( MSurf_ShadowDecals( surfID ) );
}
}
// Add overlay fragments to list.
if ( OVERLAY_FRAGMENT_INVALID != MSurf_OverlayFragmentList( surfID ) )
{
OverlayMgr()->AddFragmentListToRenderList( nSortGroup, MSurf_OverlayFragmentList( surfID ), false );
}
}
MSL_FOREACH_SURFACE_IN_GROUP_END();
}
MSL_FOREACH_GROUP_END()
}
//-----------------------------------------------------------------------------
// Draws all of the opaque non-displacement surfaces queued up previously
//-----------------------------------------------------------------------------
void Shader_DrawChains( const CWorldRenderList *pRenderList, int nSortGroup, bool bShadowDepth )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
CMatRenderContextPtr pRenderContext(materials);
Assert( !g_EngineRenderer->InLightmapUpdate() );
VPROF("Shader_DrawChains");
// Draw chains...
#ifdef USE_CONVARS
if ( !mat_forcedynamic.GetInt() && !g_pMaterialSystemConfig->bDrawFlat )
#else
if( 1 )
#endif
{
if ( g_VBAllocTracker )
g_VBAllocTracker->TrackMeshAllocations( "Shader_DrawChainsStatic" );
Shader_DrawChainsStatic( pRenderList->m_SortList, nSortGroup, bShadowDepth );
}
else
{
if ( g_VBAllocTracker )
g_VBAllocTracker->TrackMeshAllocations( "Shader_DrawChainsDynamic" );
Shader_DrawChainsDynamic( pRenderList->m_SortList, nSortGroup, bShadowDepth );
}
if ( g_VBAllocTracker )
g_VBAllocTracker->TrackMeshAllocations( NULL );
#if MOVE_DLIGHTS_TO_NEW_TEXTURE
for ( int i = 0; i < pRenderList->m_DlightSurfaces[nSortGroup].Count(); i++ )
{
SurfaceHandle_t surfID = pRenderList->m_DlightSurfaces[nSortGroup][i];
if ( !SurfaceHasDispInfo( surfID ) && (MSurf_Flags(surfID) & SURFDRAW_DLIGHTPASS) )
{
pRenderContext->Bind( MSurf_TexInfo( surfID )->material, NULL );
Shader_SetChainLightmapState( pRenderContext, surfID );
Shader_DrawSurfaceDynamic( pRenderContext, surfID, bShadowDepth );
}
}
#endif
if ( bShadowDepth ) // Skip debug stuff in shadow depth map
return;
#ifdef USE_CONVARS
if ( g_ShaderDebug.anydebug )
{
const CMSurfaceSortList &sortList = pRenderList->m_SortList;
// Debugging information
MSL_FOREACH_GROUP_BEGIN(sortList, nSortGroup, group )
{
CUtlVector<msurface2_t *> surfList;
sortList.GetSurfaceListForGroup( surfList, group );
DrawDebugInformation( surfList );
}
MSL_FOREACH_GROUP_END()
}
#endif
}
//-----------------------------------------------------------------------------
// Draws all of the opaque displacement surfaces queued up previously
//-----------------------------------------------------------------------------
void Shader_DrawDispChain( int nSortGroup, const CMSurfaceSortList &list, unsigned long flags, ERenderDepthMode DepthMode )
{
VPROF_BUDGET( "Shader_DrawDispChain", VPROF_BUDGETGROUP_DISPLACEMENT_RENDERING );
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
int count = 0;
msurface2_t **pList;
MSL_FOREACH_GROUP_BEGIN( list, nSortGroup, group )
{
count += group.surfaceCount;
}
MSL_FOREACH_GROUP_END()
if (count)
{
pList = (msurface2_t **)stackalloc( count * sizeof(msurface2_t *));
int i = 0;
MSL_FOREACH_GROUP_BEGIN( list, nSortGroup, group )
{
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN(list,group,surfID)
{
pList[i] = surfID;
++i;
}
MSL_FOREACH_SURFACE_IN_GROUP_END()
}
MSL_FOREACH_GROUP_END()
Assert(i==count);
// draw displacments, batch decals
DispInfo_RenderList( nSortGroup, pList, count, g_EngineRenderer->ViewGetCurrent().m_bOrtho, flags, DepthMode );
stackfree(pList);
}
}
static void Shader_BuildDynamicLightmaps( CWorldRenderList *pRenderList )
{
VPROF( "Shader_BuildDynamicLightmaps" );
R_DLightStartView();
// Build all lightmaps for opaque surfaces
for ( int nSortGroup = 0; nSortGroup < MAX_MAT_SORT_GROUPS; ++nSortGroup)
{
#if 0
int updateStart = g_LightmapUpdateList.Count();
#endif
for ( int i = pRenderList->m_DlightSurfaces[nSortGroup].Count()-1; i >= 0; --i )
{
LightmapUpdateInfo_t tmp;
tmp.m_SurfHandle = pRenderList->m_DlightSurfaces[nSortGroup].Element(i);
tmp.transformIndex = 0;
g_LightmapUpdateList.AddToTail( tmp );
}
// UNDONE: Redo this list? Make a new list with the texture coord info for the new lightmaps?
#if 0
pRenderList->m_DlightSurfaces[nSortGroup].RemoveAll();
for ( int i = updateStart; i < g_LightmapUpdateList.Count(); i++ )
{
if ( MSurf_Flags(g_LightmapUpdateList[i].m_SurfHandle) & SURFDRAW_DLIGHTPASS )
{
pRenderList->m_DlightSurfaces[nSortGroup].AddToTail(g_LightmapUpdateList[i].m_SurfHandle);
}
}
#endif
}
R_DLightEndView();
}
//-----------------------------------------------------------------------------
// Compute if we're in or out of a fog volume
//-----------------------------------------------------------------------------
static void ComputeFogVolumeInfo( FogVolumeInfo_t *pFogVolume )
{
pFogVolume->m_InFogVolume = false;
int leafID = CM_PointLeafnum( CurrentViewOrigin() );
if( leafID < 0 || leafID >= host_state.worldbrush->numleafs )
return;
mleaf_t* pLeaf = &host_state.worldbrush->leafs[leafID];
pFogVolume->m_FogVolumeID = pLeaf->leafWaterDataID;
if( pFogVolume->m_FogVolumeID == -1 )
return;
pFogVolume->m_InFogVolume = true;
mleafwaterdata_t* pLeafWaterData = &host_state.worldbrush->leafwaterdata[pLeaf->leafWaterDataID];
if( pLeafWaterData->surfaceTexInfoID == -1 )
{
// Should this ever happen?????
pFogVolume->m_FogEnabled = false;
return;
}
mtexinfo_t* pTexInfo = &host_state.worldbrush->texinfo[pLeafWaterData->surfaceTexInfoID];
IMaterial* pMaterial = pTexInfo->material;
if( pMaterial )
{
IMaterialVar* pFogColorVar = pMaterial->FindVar( "$fogcolor", NULL );
IMaterialVar* pFogEnableVar = pMaterial->FindVar( "$fogenable", NULL );
IMaterialVar* pFogStartVar = pMaterial->FindVar( "$fogstart", NULL );
IMaterialVar* pFogEndVar = pMaterial->FindVar( "$fogend", NULL );
pFogVolume->m_FogEnabled = pFogEnableVar->GetIntValue() ? true : false;
pFogColorVar->GetVecValue( pFogVolume->m_FogColor, 3 );
pFogVolume->m_FogStart = -pFogStartVar->GetFloatValue();
pFogVolume->m_FogEnd = -pFogEndVar->GetFloatValue();
pFogVolume->m_FogSurfaceZ = pLeafWaterData->surfaceZ;
pFogVolume->m_FogMinZ = pLeafWaterData->minZ;
pFogVolume->m_FogMode = MATERIAL_FOG_LINEAR;
}
else
{
static bool bComplained = false;
if( !bComplained )
{
Warning( "***Water vmt missing . . check console for missing materials!***\n" );
bComplained = true;
}
pFogVolume->m_FogEnabled = false;
}
}
//-----------------------------------------------------------------------------
// Resets a world render list
//-----------------------------------------------------------------------------
void ResetWorldRenderList( CWorldRenderList *pRenderList )
{
if ( pRenderList )
{
pRenderList->Reset();
}
}
//-----------------------------------------------------------------------------
// Call this before rendering; it clears out the lists of stuff to render
//-----------------------------------------------------------------------------
void Shader_WorldBegin( CWorldRenderList *pRenderList )
{
// Cache the convars so we don't keep accessing them...
s_ShaderConvars.m_bDrawWorld = r_drawworld.GetBool();
s_ShaderConvars.m_nDrawLeaf = r_drawleaf.GetInt();
s_ShaderConvars.m_bDrawFuncDetail = r_drawfuncdetail.GetBool();
ResetWorldRenderList( pRenderList );
// Clear out the decal list
DecalSurfacesInit( false );
// Clear out the render lists of overlays
OverlayMgr()->ClearRenderLists();
// Clear out the render lists of shadows
g_pShadowMgr->ClearShadowRenderList( );
}
//-----------------------------------------------------------------------------
// Performs the z-fill
//-----------------------------------------------------------------------------
static void Shader_WorldZFillSurfChain( const CMSurfaceSortList &sortList, const surfacesortgroup_t &group, CMeshBuilder &meshBuilder, int &nStartVertIn, unsigned int includeFlags )
{
int nStartVert = nStartVertIn;
mvertex_t *pWorldVerts = host_state.worldbrush->vertexes;
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN(sortList, group, nSurfID)
{
if ( (MSurf_Flags( nSurfID ) & includeFlags) == 0 )
continue;
// Skip water surfaces since it may move up or down to fixup water transitions.
if ( MSurf_Flags( nSurfID ) & SURFDRAW_WATERSURFACE )
continue;
int nSurfTriangleCount = MSurf_VertCount( nSurfID ) - 2;
unsigned short *pVertIndex = &(host_state.worldbrush->vertindices[MSurf_FirstVertIndex( nSurfID )]);
// add surface to this batch
if ( SurfaceHasPrims(nSurfID) )
{
mprimitive_t *pPrim = &host_state.worldbrush->primitives[MSurf_FirstPrimID( nSurfID )];
if ( pPrim->vertCount == 0 )
{
int firstVert = MSurf_FirstVertIndex( nSurfID );
for ( int i = 0; i < MSurf_VertCount(nSurfID); i++ )
{
int vertIndex = host_state.worldbrush->vertindices[firstVert + i];
meshBuilder.Position3fv( pWorldVerts[vertIndex].position.Base() );
meshBuilder.AdvanceVertex();
}
for ( int primIndex = 0; primIndex < pPrim->indexCount; primIndex++ )
{
meshBuilder.FastIndex( host_state.worldbrush->primindices[pPrim->firstIndex + primIndex] + nStartVert );
}
}
}
else
{
switch (nSurfTriangleCount)
{
case 1:
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.FastIndex( nStartVert );
meshBuilder.FastIndex( nStartVert + 1 );
meshBuilder.FastIndex( nStartVert + 2 );
break;
case 2:
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.FastIndex( nStartVert );
meshBuilder.FastIndex( nStartVert + 1 );
meshBuilder.FastIndex( nStartVert + 2 );
meshBuilder.FastIndex( nStartVert );
meshBuilder.FastIndex( nStartVert + 2 );
meshBuilder.FastIndex( nStartVert + 3 );
break;
default:
{
for ( unsigned short v = 0; v < nSurfTriangleCount; ++v )
{
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.FastIndex( nStartVert );
meshBuilder.FastIndex( nStartVert + v + 1 );
meshBuilder.FastIndex( nStartVert + v + 2 );
}
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
meshBuilder.Position3fv( pWorldVerts[*pVertIndex++].position.Base() );
meshBuilder.AdvanceVertex();
}
break;
}
}
nStartVert += nSurfTriangleCount + 2;
}
MSL_FOREACH_SURFACE_IN_GROUP_END()
nStartVertIn = nStartVert;
}
static const int s_DrawWorldListsToSortGroup[MAX_MAT_SORT_GROUPS] =
{
MAT_SORT_GROUP_STRICTLY_ABOVEWATER,
MAT_SORT_GROUP_STRICTLY_UNDERWATER,
MAT_SORT_GROUP_INTERSECTS_WATER_SURFACE,
MAT_SORT_GROUP_WATERSURFACE,
};
static ConVar r_flashlightrendermodels( "r_flashlightrendermodels", "1" );
//-----------------------------------------------------------------------------
// Performs the shadow depth texture fill
//-----------------------------------------------------------------------------
static void Shader_WorldShadowDepthFill( CWorldRenderList *pRenderList, unsigned long flags )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
// First, count the number of vertices + indices
int nVertexCount = 0;
int nIndexCount = 0;
ERenderDepthMode DepthMode = DEPTH_MODE_SHADOW;
if ( flags & DRAWWORLDLISTS_DRAW_SSAO )
{
DepthMode = DEPTH_MODE_SSA0;
}
int g;
CUtlVector<const surfacesortgroup_t *> alphatestedGroups;
const CMSurfaceSortList &sortList = pRenderList->m_SortList;
for ( g = 0; g < MAX_MAT_SORT_GROUPS; ++g )
{
if ( ( flags & ( 1 << g ) ) == 0 )
continue;
int nSortGroup = s_DrawWorldListsToSortGroup[g];
MSL_FOREACH_GROUP_BEGIN(sortList, nSortGroup, group )
{
SurfaceHandle_t surfID = sortList.GetSurfaceAtHead(group);
if ( MSurf_Flags( surfID ) & SURFDRAW_WATERSURFACE )
continue;
IMaterial *pMaterial = MSurf_TexInfo( surfID )->material;
if( pMaterial->IsTranslucent() )
continue;
if ( pMaterial->IsAlphaTested() )
{
alphatestedGroups.AddToTail( &group );
continue;
}
nVertexCount += group.vertexCount;
nIndexCount += group.triangleCount*3;
}
MSL_FOREACH_GROUP_END()
// Draws opaque displacement surfaces along with shadows, overlays, flashlights, etc.
Shader_DrawDispChain( nSortGroup, pRenderList->m_DispSortList, flags, DepthMode );
}
if ( nVertexCount == 0 )
return;
CMatRenderContextPtr pRenderContext( materials );
if ( DepthMode == DEPTH_MODE_SHADOW )
{
pRenderContext->Bind( g_pMaterialDepthWrite[0][1] );
}
else
{
pRenderContext->Bind( g_pMaterialSSAODepthWrite[0][1] );
}
IMesh *pMesh = pRenderContext->GetDynamicMesh( false );
int nMaxIndices = pRenderContext->GetMaxIndicesToRender();
int nMaxVertices = pRenderContext->GetMaxVerticesToRender( g_pMaterialDepthWrite[0][1] ); // opaque, nocull
// nBatchIndexCount and nBatchVertexCount are the number of indices and vertices we can fit in this batch
// Each batch must have fewer than nMaxIndices and nMaxVertices or the material system will fail
int nBatchIndexCount = min( nIndexCount, nMaxIndices );
int nBatchVertexCount = min( nVertexCount, nMaxVertices );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nBatchVertexCount, nBatchIndexCount );
int nStartVert = 0;
for ( g = 0; g < MAX_MAT_SORT_GROUPS; ++g )
{
if ( ( flags & ( 1 << g ) ) == 0 )
continue;
int nSortGroup = s_DrawWorldListsToSortGroup[g];
MSL_FOREACH_GROUP_BEGIN(sortList, nSortGroup, group )
{
SurfaceHandle_t surfID = sortList.GetSurfaceAtHead(group);
// Check to see if we can add this list to the current batch...
int nCurrIndexCount = group.triangleCount*3;
int nCurrVertexCount = group.vertexCount;
if ( ( nCurrIndexCount == 0 ) || ( nCurrVertexCount == 0 ) )
continue;
// this group is too big to draw so push it into the alphatested groups
// this will run much slower but at least it won't crash
// alphatested groups will draw each surface one at a time.
if ( nCurrIndexCount > nMaxIndices || nCurrVertexCount > nMaxVertices )
{
alphatestedGroups.AddToTail( &group );
continue;
}
IMaterial *pMaterial = MSurf_TexInfo( surfID )->material;
// Opaque only on this loop
if( pMaterial->IsTranslucent() || pMaterial->IsAlphaTested() )
continue;
Assert( nCurrIndexCount <= nMaxIndices );
Assert( nCurrVertexCount <= nMaxVertices );
if ( ( nBatchIndexCount < nCurrIndexCount ) || ( nBatchVertexCount < nCurrVertexCount ) )
{
// Nope, fire off the current batch...
meshBuilder.End();
pMesh->Draw();
nBatchIndexCount = min( nIndexCount, nMaxIndices );
nBatchVertexCount = min( nVertexCount, nMaxVertices );
pMesh = pRenderContext->GetDynamicMesh( false );
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nBatchVertexCount, nBatchIndexCount );
nStartVert = 0;
}
nBatchIndexCount -= nCurrIndexCount;
nIndexCount -= nCurrIndexCount;
nBatchVertexCount -= nCurrVertexCount;
nVertexCount -= nCurrVertexCount;
// 0xFFFFFFFF means include all surfaces
Shader_WorldZFillSurfChain( sortList, group, meshBuilder, nStartVert, 0xFFFFFFFF );
}
MSL_FOREACH_GROUP_END()
}
meshBuilder.End();
pMesh->Draw();
// Now draw the alpha-tested groups we stored away earlier
for ( int i = 0; i < alphatestedGroups.Count(); i++ )
{
Shader_DrawDynamicChain( sortList, *alphatestedGroups[i], true );
}
}
//-----------------------------------------------------------------------------
// Performs the z-fill
//-----------------------------------------------------------------------------
static void Shader_WorldZFill( CWorldRenderList *pRenderList, unsigned long flags )
{
tmZoneFiltered( TELEMETRY_LEVEL0, 50, TMZF_NONE, "%s", __FUNCTION__ );
// First, count the number of vertices + indices
int nVertexCount = 0;
int nIndexCount = 0;
int g;
const CMSurfaceSortList &sortList = pRenderList->m_SortList;
#ifdef _X360
bool bFastZRejectDisplacements = s_bFastZRejectDisplacements || ( r_fastzrejectdisp.GetInt() != 0 );
#endif
for ( g = 0; g < MAX_MAT_SORT_GROUPS; ++g )
{
if ( ( flags & ( 1 << g ) ) == 0 )
continue;
int nSortGroup = s_DrawWorldListsToSortGroup[g];
MSL_FOREACH_GROUP_BEGIN(sortList, nSortGroup, group )
{
SurfaceHandle_t surfID = sortList.GetSurfaceAtHead(group);
IMaterial *pMaterial = MSurf_TexInfo( surfID )->material;
if( pMaterial->IsAlphaTested() || pMaterial->IsTranslucent() )
{
continue;
}
nVertexCount += group.vertexCountNoDetail;
nIndexCount += group.indexCountNoDetail;
}
MSL_FOREACH_GROUP_END()
#ifdef _X360
// Draws opaque displacement surfaces along with shadows, overlays, flashlights, etc.
// NOTE: This only makes sense on the 360, since the extra batches aren't
// worth it on the PC (I think!)
if ( bFastZRejectDisplacements )
{
Shader_DrawDispChain( nSortGroup, pRenderList->m_DispSortList, flags, true );
}
#endif
}
if ( nVertexCount == 0 )
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( g_pMaterialWriteZ );
IMesh *pMesh = pRenderContext->GetDynamicMesh( false );
int nMaxIndices = pRenderContext->GetMaxIndicesToRender();
int nMaxVertices = pRenderContext->GetMaxVerticesToRender( g_pMaterialWriteZ );
// nBatchIndexCount and nBatchVertexCount are the number of indices and vertices we can fit in this batch
// Each batch must have fewe than nMaxIndices and nMaxVertices or the material system will fail
int nBatchIndexCount = min( nIndexCount, nMaxIndices );
int nBatchVertexCount = min( nVertexCount, nMaxVertices );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nBatchVertexCount, nBatchIndexCount );
int nStartVert = 0;
for ( g = 0; g < MAX_MAT_SORT_GROUPS; ++g )
{
if ( ( flags & ( 1 << g ) ) == 0 )
continue;
int nSortGroup = s_DrawWorldListsToSortGroup[g];
MSL_FOREACH_GROUP_BEGIN(sortList, nSortGroup, group )
{
SurfaceHandle_t surfID = sortList.GetSurfaceAtHead(group);
// Check to see if we can add this list to the current batch...
int nCurrIndexCount = group.indexCountNoDetail;
int nCurrVertexCount = group.vertexCountNoDetail;
if ( ( nCurrIndexCount == 0 ) || ( nCurrVertexCount == 0 ) )
continue;
IMaterial *pMaterial = MSurf_TexInfo( surfID )->material;
if( pMaterial->IsAlphaTested() || pMaterial->IsTranslucent() )
continue;
Assert( nCurrIndexCount <= nMaxIndices );
Assert( nCurrVertexCount <= nMaxVertices );
if ( ( nBatchIndexCount < nCurrIndexCount ) || ( nBatchVertexCount < nCurrVertexCount ) )
{
// Nope, fire off the current batch...
meshBuilder.End();
pMesh->Draw();
nBatchIndexCount = min( nIndexCount, nMaxIndices );
nBatchVertexCount = min( nVertexCount, nMaxVertices );
pMesh = pRenderContext->GetDynamicMesh( false );
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, nBatchVertexCount, nBatchIndexCount );
nStartVert = 0;
}
nBatchIndexCount -= nCurrIndexCount;
nIndexCount -= nCurrIndexCount;
nBatchVertexCount -= nCurrVertexCount;
nVertexCount -= nCurrVertexCount;
// only draw surfaces on nodes (i.e. no detail surfaces)
Shader_WorldZFillSurfChain( sortList, group, meshBuilder, nStartVert, SURFDRAW_NODE );
}
MSL_FOREACH_GROUP_END()
}
meshBuilder.End();
pMesh->Draw();
// FIXME: Do fast z reject on displacements!
}
//-----------------------------------------------------------------------------
// Call this after lists of stuff to render are made; it renders opaque surfaces
//-----------------------------------------------------------------------------
static void Shader_WorldEnd( CWorldRenderList *pRenderList, unsigned long flags, float waterZAdjust )
{
VPROF("Shader_WorldEnd");
CMatRenderContextPtr pRenderContext( materials );
if ( flags & ( DRAWWORLDLISTS_DRAW_SHADOWDEPTH | DRAWWORLDLISTS_DRAW_SSAO ) )
{
Shader_WorldShadowDepthFill( pRenderList, flags );
return;
}
// Draw the skybox
if ( flags & DRAWWORLDLISTS_DRAW_SKYBOX )
{
if ( pRenderList->m_bSkyVisible || Map_VisForceFullSky() )
{
if( flags & DRAWWORLDLISTS_DRAW_CLIPSKYBOX )
{
R_DrawSkyBox( g_EngineRenderer->GetZFar() );
}
else
{
// Don't clip the skybox with height clip in this path.
MaterialHeightClipMode_t nClipMode = pRenderContext->GetHeightClipMode();
pRenderContext->SetHeightClipMode( MATERIAL_HEIGHTCLIPMODE_DISABLE );
R_DrawSkyBox( g_EngineRenderer->GetZFar() );
pRenderContext->SetHeightClipMode( nClipMode );
}
}
}
// Perform the fast z-fill pass
bool bFastZReject = (r_fastzreject.GetInt() != 0);
if ( bFastZReject )
{
Shader_WorldZFill( pRenderList, flags );
}
// Gotta draw each sort group
// Draw the fog volume first, if there is one, because it turns out
// that we only draw fog volumes if we're in the fog volume, which
// means it's closer. We want to render closer things first to get
// fast z-reject.
int i;
for ( i = MAX_MAT_SORT_GROUPS; --i >= 0; )
{
if ( !( flags & ( 1 << i ) ) )
continue;
int nSortGroup = s_DrawWorldListsToSortGroup[i];
if ( nSortGroup == MAT_SORT_GROUP_WATERSURFACE )
{
if ( waterZAdjust != 0.0f )
{
pRenderContext->MatrixMode( MATERIAL_MODEL );
pRenderContext->PushMatrix();
pRenderContext->LoadIdentity();
pRenderContext->Translate( 0.0f, 0.0f, waterZAdjust );
}
}
// Draws opaque displacement surfaces along with shadows, overlays, flashlights, etc.
Shader_DrawDispChain( nSortGroup, pRenderList->m_DispSortList, flags, DEPTH_MODE_NORMAL );
// Draws opaque non-displacement surfaces
// This also add shadows to pRenderList->m_ShadowHandles.
Shader_DrawChains( pRenderList, nSortGroup, false );
AddProjectedTextureDecalsToList( pRenderList, nSortGroup );
// Adds shadows to render lists
for ( int j = pRenderList->m_ShadowHandles[nSortGroup].Count()-1; j >= 0; --j )
{
g_pShadowMgr->AddShadowsOnSurfaceToRenderList( pRenderList->m_ShadowHandles[nSortGroup].Element(j) );
}
pRenderList->m_ShadowHandles[nSortGroup].RemoveAll();
// Don't stencil or scissor the flashlight if we're rendering to an offscreen view
bool bFlashlightMask = !( (flags & DRAWWORLDLISTS_DRAW_REFRACTION ) || (flags & DRAWWORLDLISTS_DRAW_REFLECTION ));
// Set masking stencil bits for flashlights
g_pShadowMgr->SetFlashlightStencilMasks( bFlashlightMask );
// Draw shadows and flashlights on world surfaces
g_pShadowMgr->RenderFlashlights( bFlashlightMask );
// Render the fragments from the surfaces + displacements.
// FIXME: Actually, this call is irrelevant (for displacements) because it's done from
// within DrawDispChain currently, but that should change.
// We need to split out the disp decal rendering from DrawDispChain
// and do it after overlays are rendered....
OverlayMgr()->RenderOverlays( nSortGroup );
g_pShadowMgr->DrawFlashlightOverlays( nSortGroup, bFlashlightMask );
OverlayMgr()->ClearRenderLists( nSortGroup );
// Draws decals lying on opaque non-displacement surfaces
DecalSurfaceDraw( pRenderContext, nSortGroup );
// Draw the flashlight lighting for the decals.
g_pShadowMgr->DrawFlashlightDecals( nSortGroup, bFlashlightMask );
// Draw RTT shadows
g_pShadowMgr->RenderShadows( );
g_pShadowMgr->ClearShadowRenderList();
if ( nSortGroup == MAT_SORT_GROUP_WATERSURFACE && waterZAdjust != 0.0f )
{
pRenderContext->MatrixMode( MATERIAL_MODEL );
pRenderContext->PopMatrix();
}
}
}
//-----------------------------------------------------------------------------
// Renders translucent surfaces
//-----------------------------------------------------------------------------
bool Shader_LeafContainsTranslucentSurfaces( IWorldRenderList *pRenderListIn, int sortIndex, unsigned long flags )
{
CWorldRenderList *pRenderList = assert_cast<CWorldRenderList *>(pRenderListIn);
int i;
for ( i = 0; i < MAX_MAT_SORT_GROUPS; ++i )
{
if( !( flags & ( 1 << i ) ) )
continue;
int sortGroup = s_DrawWorldListsToSortGroup[i];
// Set the fog state here since it will be the same for all things
// in this list of translucent objects (except for displacements)
const surfacesortgroup_t &group = pRenderList->m_AlphaSortList.GetGroupForSortID( sortGroup, sortIndex );
if ( group.surfaceCount )
return true;
const surfacesortgroup_t &dispGroup = pRenderList->m_DispAlphaSortList.GetGroupForSortID( sortGroup, sortIndex );
if ( dispGroup.surfaceCount )
return true;
}
return false;
}
void Shader_DrawTranslucentSurfaces( IWorldRenderList *pRenderListIn, int sortIndex, unsigned long flags, bool bShadowDepth )
{
if ( !r_drawtranslucentworld.GetBool() )
return;
CWorldRenderList *pRenderList = assert_cast<CWorldRenderList *>(pRenderListIn);
CMatRenderContextPtr pRenderContext( materials );
bool skipLight = false;
if ( g_pMaterialSystemConfig->nFullbright == 1 )
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP );
skipLight = true;
}
// Gotta draw each sort group
// Draw the fog volume first, if there is one, because it turns out
// that we only draw fog volumes if we're in the fog volume, which
// means it's closer. We want to render closer things first to get
// fast z-reject.
int i;
CUtlVector<msurface2_t *> surfaceList;
for ( i = 0; i < MAX_MAT_SORT_GROUPS; ++i )
{
if( !( flags & ( 1 << i ) ) )
{
continue;
}
int sortGroup = s_DrawWorldListsToSortGroup[i];
// Set the fog state here since it will be the same for all things
// in this list of translucent objects (except for displacements)
surfaceList.RemoveAll();
const surfacesortgroup_t &group = pRenderList->m_AlphaSortList.GetGroupForSortID( sortGroup, sortIndex );
const surfacesortgroup_t &dispGroup = pRenderList->m_DispAlphaSortList.GetGroupForSortID( sortGroup, sortIndex );
// Empty? skip...
if (!group.surfaceCount && !dispGroup.surfaceCount )
continue;
pRenderList->m_AlphaSortList.GetSurfaceListForGroup( surfaceList, group );
// Interate in back-to-front order
for ( int listIndex = surfaceList.Count(); --listIndex >= 0; )
{
SurfaceHandle_t surfID = surfaceList[listIndex];
pRenderContext->Bind( MSurf_TexInfo( surfID )->material );
Assert( MSurf_MaterialSortID( surfID ) >= 0 &&
MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() );
if ( !skipLight )
{
pRenderContext->BindLightmapPage( materialSortInfoArray[MSurf_MaterialSortID( surfID )].lightmapPageID );
}
// NOTE: Since a static vb/dynamic ib IMesh doesn't buffer, we shouldn't use this
// since it causes a lock and drawindexedprimitive per surface! (gary)
// Shader_DrawSurfaceStatic( surfID );
Shader_DrawSurfaceDynamic( pRenderContext, surfID, false );
// g_pShadowMgr->ClearShadowRenderList();
// Add shadows/flashlights to list.
ShadowDecalHandle_t decalHandle = MSurf_ShadowDecals( surfID );
if (decalHandle != SHADOW_DECAL_HANDLE_INVALID)
{
g_pShadowMgr->AddShadowsOnSurfaceToRenderList( decalHandle );
}
bool bFlashlightMask = !( (flags & DRAWWORLDLISTS_DRAW_REFRACTION ) || (flags & DRAWWORLDLISTS_DRAW_REFLECTION ));
// Draw flashlights
g_pShadowMgr->RenderFlashlights( bFlashlightMask );
// Draw overlays on the surface.
OverlayMgr()->AddFragmentListToRenderList( i, MSurf_OverlayFragmentList( surfID ), false );
OverlayMgr()->RenderOverlays( i );
// Draw flashlight overlays
g_pShadowMgr->DrawFlashlightOverlays( i, bFlashlightMask );
OverlayMgr()->ClearRenderLists( i );
// Draw decals on the surface
DrawDecalsOnSingleSurface( pRenderContext, surfID );
// Draw flashlight decals
g_pShadowMgr->DrawFlashlightDecalsOnSingleSurface( surfID, bFlashlightMask );
// draw shadows
g_pShadowMgr->RenderShadows();
g_pShadowMgr->ClearShadowRenderList();
}
// Draw wireframe, etc information
DrawDebugInformation( surfaceList );
// Now draw the translucent displacements; we need to do these *after* the
// non-displacement surfaces because most likely the displacement will always
// be in front (or at least not behind) the non-displacement translucent surfaces
// that exist in the same leaf.
// Draws translucent displacement surfaces
surfaceList.RemoveAll();
surfaceList.EnsureCapacity(dispGroup.surfaceCount);
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN(pRenderList->m_DispAlphaSortList, dispGroup, surfID)
{
surfaceList.AddToTail(surfID);
}
MSL_FOREACH_SURFACE_IN_GROUP_END()
DispInfo_RenderList( i, surfaceList.Base(), surfaceList.Count(), g_EngineRenderer->ViewGetCurrent().m_bOrtho, flags, DEPTH_MODE_NORMAL );
}
}
//=============================================================
//
// WORLD MODEL
//
//=============================================================
void FASTCALL R_DrawSurface( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
ASSERT_SURF_VALID( surfID );
Assert( !SurfaceHasDispInfo( surfID ) );
if ( MSurf_Flags( surfID ) & SURFDRAW_SKY )
{
pRenderList->m_bSkyVisible = true;
}
// else if ( surf->texinfo->material->IsTranslucent() )
else if( MSurf_Flags( surfID ) & SURFDRAW_TRANS )
{
Shader_TranslucentWorldSurface( pRenderList, surfID );
}
else
{
Shader_WorldSurface( pRenderList, surfID );
}
}
// The NoCull flavor of this function calls functions which optimize for shadow depth map rendering
void FASTCALL R_DrawSurfaceNoCull( CWorldRenderList *pRenderList, SurfaceHandle_t surfID )
{
ASSERT_SURF_VALID( surfID );
if( !(MSurf_Flags( surfID ) & SURFDRAW_TRANS) && !(MSurf_Flags( surfID ) & SURFDRAW_SKY) )
{
Shader_WorldSurfaceNoCull( pRenderList, surfID );
}
}
//-----------------------------------------------------------------------------
// Draws displacements in a leaf
//-----------------------------------------------------------------------------
static inline void DrawDisplacementsInLeaf( CWorldRenderList *pRenderList, mleaf_t* pLeaf )
{
// add displacement surfaces
if (!pLeaf->dispCount)
return;
CVisitedSurfs &visitedSurfs = pRenderList->m_VisitedSurfs;
for ( int i = 0; i < pLeaf->dispCount; i++ )
{
IDispInfo *pDispInfo = MLeaf_Disaplcement( pLeaf, i );
// NOTE: We're not using the displacement's touched method here
// because we're just using the parent surface's visframe in the
// surface add methods below...
SurfaceHandle_t parentSurfID = pDispInfo->GetParent();
// already processed this frame? Then don't do it again!
if ( VisitSurface( visitedSurfs, parentSurfID ) )
{
if ( MSurf_Flags( parentSurfID ) & SURFDRAW_TRANS)
{
Shader_TranslucentDisplacementSurface( pRenderList, parentSurfID );
}
else
{
Shader_DisplacementSurface( pRenderList, parentSurfID );
}
}
}
}
int LeafToIndex( mleaf_t* pLeaf );
//-----------------------------------------------------------------------------
// Updates visibility + alpha lists
//-----------------------------------------------------------------------------
static inline void UpdateVisibleLeafLists( CWorldRenderList *pRenderList, mleaf_t* pLeaf )
{
// Consistency check...
MEM_ALLOC_CREDIT();
// Add this leaf to the list of visible leafs
int nLeafIndex = LeafToIndex( pLeaf );
pRenderList->m_VisibleLeaves.AddToTail( nLeafIndex );
int leafCount = pRenderList->m_VisibleLeaves.Count();
pRenderList->m_VisibleLeafFogVolumes.AddToTail( pLeaf->leafWaterDataID );
pRenderList->m_AlphaSortList.EnsureMaxSortIDs( leafCount );
pRenderList->m_DispAlphaSortList.EnsureMaxSortIDs( leafCount );
}
//-----------------------------------------------------------------------------
// Draws all displacements + surfaces in a leaf
//-----------------------------------------------------------------------------
static void FASTCALL R_DrawLeaf( CWorldRenderList *pRenderList, mleaf_t *pleaf )
{
// Add this leaf to the list of visible leaves
UpdateVisibleLeafLists( pRenderList, pleaf );
// Debugging to only draw at a particular leaf
#ifdef USE_CONVARS
if ( (s_ShaderConvars.m_nDrawLeaf >= 0) && (s_ShaderConvars.m_nDrawLeaf != LeafToIndex(pleaf)) )
return;
#endif
// add displacement surfaces
DrawDisplacementsInLeaf( pRenderList, pleaf );
#ifdef USE_CONVARS
if( !s_ShaderConvars.m_bDrawWorld )
return;
#endif
// Add non-displacement surfaces
int i;
int nSurfaceCount = pleaf->nummarknodesurfaces;
SurfaceHandle_t *pSurfID = &host_state.worldbrush->marksurfaces[pleaf->firstmarksurface];
CVisitedSurfs &visitedSurfs = pRenderList->m_VisitedSurfs;
for ( i = 0; i < nSurfaceCount; ++i )
{
// garymctoptimize - can we prefetch the next surfaces?
// We seem to be taking a huge hit here for referencing the surface for the first time.
SurfaceHandle_t surfID = pSurfID[i];
ASSERT_SURF_VALID( surfID );
// there are never any displacements or nodraws in the leaf list
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
Assert( (MSurf_Flags( surfID ) & SURFDRAW_NODE) );
Assert( !SurfaceHasDispInfo(surfID) );
// mark this one to be drawn at the node
MarkSurfaceVisited( visitedSurfs, surfID );
}
#ifdef USE_CONVARS
if( !s_ShaderConvars.m_bDrawFuncDetail )
return;
#endif
for ( ; i < pleaf->nummarksurfaces; i++ )
{
SurfaceHandle_t surfID = pSurfID[i];
// Don't process the same surface twice
if ( !VisitSurface( visitedSurfs, surfID ) )
continue;
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODE) );
// Back face cull; only func_detail are drawn here
if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 )
{
if ( (DotProduct(MSurf_Plane( surfID ).normal, modelorg) -
MSurf_Plane( surfID ).dist ) < BACKFACE_EPSILON )
continue;
}
R_DrawSurface( pRenderList, surfID );
}
}
static ConVar r_frustumcullworld( "r_frustumcullworld", "1" );
static void FASTCALL R_DrawLeafNoCull( CWorldRenderList *pRenderList, mleaf_t *pleaf )
{
// Add this leaf to the list of visible leaves
UpdateVisibleLeafLists( pRenderList, pleaf );
// add displacement surfaces
DrawDisplacementsInLeaf( pRenderList, pleaf );
int i;
SurfaceHandle_t *pSurfID = &host_state.worldbrush->marksurfaces[pleaf->firstmarksurface];
CVisitedSurfs &visitedSurfs = pRenderList->m_VisitedSurfs;
for ( i = 0; i < pleaf->nummarksurfaces; i++ )
{
SurfaceHandle_t surfID = pSurfID[i];
// Don't process the same surface twice
if ( !VisitSurface( visitedSurfs, surfID ) )
continue;
R_DrawSurfaceNoCull( pRenderList, surfID );
}
}
//-----------------------------------------------------------------------------
// Purpose: recurse on the BSP tree, calling the surface visitor
// Input : *node - BSP node
//-----------------------------------------------------------------------------
static void R_RecursiveWorldNodeNoCull( CWorldRenderList *pRenderList, mnode_t *node, int nCullMask )
{
int side;
cplane_t *plane;
float dot;
while (true)
{
// no polygons in solid nodes
if (node->contents == CONTENTS_SOLID)
return; // solid
// Check PVS signature
if (node->visframe != r_visframecount)
return;
// Cull against the screen frustum or the appropriate area's frustum.
if ( nCullMask != FRUSTUM_SUPPRESS_CLIPPING )
{
if (node->contents >= -1)
{
if ((nCullMask != 0) || ( node->area > 0 ))
{
if ( R_CullNode( &g_Frustum, node, nCullMask ) )
return;
}
}
else
{
// This prevents us from culling nodes that are too small to worry about
if (node->contents == -2)
{
nCullMask = FRUSTUM_SUPPRESS_CLIPPING;
}
}
}
// if a leaf node, draw stuff
if (node->contents >= 0)
{
R_DrawLeafNoCull( pRenderList, (mleaf_t *)node );
return;
}
// node is just a decision point, so go down the appropriate sides
// find which side of the node we are on
plane = node->plane;
if ( plane->type <= PLANE_Z )
{
dot = modelorg[plane->type] - plane->dist;
}
else
{
dot = DotProduct (modelorg, plane->normal) - plane->dist;
}
// recurse down the children, closer side first.
// We have to do this because we need to find if the surfaces at this node
// exist in any visible leaves closer to the camera than the node is. If so,
// their r_surfacevisframe is set to indicate that we need to render them
// at this node.
side = dot >= 0 ? 0 : 1;
// Recurse down the side closer to the camera
R_RecursiveWorldNodeNoCull (pRenderList, node->children[side], nCullMask );
// recurse down the side farther from the camera
// NOTE: With this while loop, this is identical to just calling
// R_RecursiveWorldNodeNoCull (node->children[!side], nCullMask );
node = node->children[!side];
}
}
//-----------------------------------------------------------------------------
// Purpose: recurse on the BSP tree, calling the surface visitor
// Input : *node - BSP node
//-----------------------------------------------------------------------------
static void R_RecursiveWorldNode( CWorldRenderList *pRenderList, mnode_t *node, int nCullMask )
{
int side;
cplane_t *plane;
float dot;
while (true)
{
// no polygons in solid nodes
if (node->contents == CONTENTS_SOLID)
return; // solid
// Check PVS signature
if (node->visframe != r_visframecount)
return;
// Cull against the screen frustum or the appropriate area's frustum.
if ( nCullMask != FRUSTUM_SUPPRESS_CLIPPING )
{
if (node->contents >= -1)
{
if ((nCullMask != 0) || ( node->area > 0 ))
{
if ( R_CullNode( &g_Frustum, node, nCullMask ) )
return;
}
}
else
{
// This prevents us from culling nodes that are too small to worry about
if (node->contents == -2)
{
nCullMask = FRUSTUM_SUPPRESS_CLIPPING;
}
}
}
// if a leaf node, draw stuff
if (node->contents >= 0)
{
R_DrawLeaf( pRenderList, (mleaf_t *)node );
return;
}
// node is just a decision point, so go down the appropriate sides
// find which side of the node we are on
plane = node->plane;
if ( plane->type <= PLANE_Z )
{
dot = modelorg[plane->type] - plane->dist;
}
else
{
dot = DotProduct (modelorg, plane->normal) - plane->dist;
}
// recurse down the children, closer side first.
// We have to do this because we need to find if the surfaces at this node
// exist in any visible leaves closer to the camera than the node is. If so,
// their r_surfacevisframe is set to indicate that we need to render them
// at this node.
side = dot >= 0 ? 0 : 1;
// Recurse down the side closer to the camera
R_RecursiveWorldNode (pRenderList, node->children[side], nCullMask );
// draw stuff on the node
SurfaceHandle_t surfID = SurfaceHandleFromIndex( node->firstsurface );
int i = MSurf_Index( surfID );
int nLastSurface = i + node->numsurfaces;
CVisitedSurfs &visitedSurfs = pRenderList->m_VisitedSurfs;
for ( ; i < nLastSurface; ++i, ++surfID )
{
// Only render things at this node that have previously been marked as visible
if ( !VisitedSurface( visitedSurfs, i ) )
continue;
// Don't add surfaces that have displacement
// UNDONE: Don't emit these at nodes in vbsp!
// UNDONE: Emit them at the end of the surface list
Assert( !SurfaceHasDispInfo( surfID ) );
// If a surface is marked to draw at a node, then it's not a func_detail.
// Only func_detail render at leaves. In the case of normal world surfaces,
// we only want to render them if they intersect a visible leaf.
int nFlags = MSurf_Flags( surfID );
Assert( nFlags & SURFDRAW_NODE );
Assert( !(nFlags & SURFDRAW_NODRAW) );
if ( !(nFlags & SURFDRAW_UNDERWATER) && ( side ^ !!(nFlags & SURFDRAW_PLANEBACK)) )
continue; // wrong side
R_DrawSurface( pRenderList, surfID );
}
// recurse down the side farther from the camera
// NOTE: With this while loop, this is identical to just calling
// R_RecursiveWorldNode (node->children[!side], nCullMask );
node = node->children[!side];
}
}
//-----------------------------------------------------------------------------
// Set up fog for a particular leaf
//-----------------------------------------------------------------------------
#define INVALID_WATER_HEIGHT 1000000.0f
inline float R_GetWaterHeight( int nFogVolume )
{
if( nFogVolume < 0 || nFogVolume > host_state.worldbrush->numleafwaterdata )
return INVALID_WATER_HEIGHT;
mleafwaterdata_t* pLeafWaterData = &host_state.worldbrush->leafwaterdata[nFogVolume];
return pLeafWaterData->surfaceZ;
}
IMaterial *R_GetFogVolumeMaterial( int nFogVolume, bool bEyeInFogVolume )
{
if( nFogVolume < 0 || nFogVolume > host_state.worldbrush->numleafwaterdata )
return NULL;
mleafwaterdata_t* pLeafWaterData = &host_state.worldbrush->leafwaterdata[nFogVolume];
mtexinfo_t* pTexInfo = &host_state.worldbrush->texinfo[pLeafWaterData->surfaceTexInfoID];
IMaterial* pMaterial = pTexInfo->material;
if( bEyeInFogVolume )
{
IMaterialVar *pVar = pMaterial->FindVar( "$bottommaterial", NULL );
if( pVar )
{
const char *pMaterialName = pVar->GetStringValue();
if( pMaterialName )
{
pMaterial = materials->FindMaterial( pMaterialName, TEXTURE_GROUP_OTHER );
}
}
}
return pMaterial;
}
void R_SetFogVolumeState( int fogVolume, bool useHeightFog )
{
// useHeightFog == eye out of water
// !useHeightFog == eye in water
IMaterial *pMaterial = R_GetFogVolumeMaterial( fogVolume, !useHeightFog );
mleafwaterdata_t* pLeafWaterData = &host_state.worldbrush->leafwaterdata[fogVolume];
IMaterialVar* pFogColorVar = pMaterial->FindVar( "$fogcolor", NULL );
IMaterialVar* pFogEnableVar = pMaterial->FindVar( "$fogenable", NULL );
IMaterialVar* pFogStartVar = pMaterial->FindVar( "$fogstart", NULL );
IMaterialVar* pFogEndVar = pMaterial->FindVar( "$fogend", NULL );
CMatRenderContextPtr pRenderContext( materials );
if( pMaterial && pFogEnableVar->GetIntValueFast() && fog_enable_water_fog.GetBool() )
{
pRenderContext->SetFogZ( pLeafWaterData->surfaceZ );
if( useHeightFog )
{
pRenderContext->FogMode( MATERIAL_FOG_LINEAR_BELOW_FOG_Z );
}
else
{
pRenderContext->FogMode( MATERIAL_FOG_LINEAR );
}
float fogColor[3];
pFogColorVar->GetVecValueFast( fogColor, 3 );
pRenderContext->FogColor3fv( fogColor );
pRenderContext->FogStart( pFogStartVar->GetFloatValueFast() );
pRenderContext->FogEnd( pFogEndVar->GetFloatValueFast() );
pRenderContext->FogMaxDensity( 1.0 );
}
else
{
pRenderContext->FogMode( MATERIAL_FOG_NONE );
}
}
static inline bool R_CullNodeTopView( mnode_t *pNode )
{
Vector2D delta, size;
Vector2DSubtract( pNode->m_vecCenter.AsVector2D(), s_OrthographicCenter, delta );
Vector2DAdd( pNode->m_vecHalfDiagonal.AsVector2D(), s_OrthographicHalfDiagonal, size );
return ( FloatMakePositive( delta.x ) > size.x ) ||
( FloatMakePositive( delta.y ) > size.y );
}
//-----------------------------------------------------------------------------
// Draws all displacements + surfaces in a leaf
//-----------------------------------------------------------------------------
static void R_DrawTopViewLeaf( CWorldRenderList *pRenderList, mleaf_t *pleaf )
{
// Add this leaf to the list of visible leaves
UpdateVisibleLeafLists( pRenderList, pleaf );
// add displacement surfaces
DrawDisplacementsInLeaf( pRenderList, pleaf );
#ifdef USE_CONVARS
if( !s_ShaderConvars.m_bDrawWorld )
return;
#endif
// Add non-displacement surfaces
SurfaceHandle_t *pHandle = &host_state.worldbrush->marksurfaces[pleaf->firstmarksurface];
CVisitedSurfs &visitedSurfs = pRenderList->m_VisitedSurfs;
for ( int i = 0; i < pleaf->nummarksurfaces; i++ )
{
SurfaceHandle_t surfID = pHandle[i];
// Mark this surface as being in a visible leaf this frame. If this
// surface is meant to be drawn at a node (SURFDRAW_NODE),
// then it will be drawn in the recursive code down below.
if ( !VisitSurface( visitedSurfs, surfID ) )
continue;
// Don't add surfaces that have displacement; they are handled above
// In fact, don't even set the vis frame; we need it unset for translucent
// displacement code
if ( SurfaceHasDispInfo(surfID) )
continue;
if ( MSurf_Flags( surfID ) & SURFDRAW_NODE )
continue;
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
// Back face cull; only func_detail are drawn here
if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 )
{
if (MSurf_Plane( surfID ).normal.z <= 0.0f)
continue;
}
// FIXME: For now, blow off translucent world polygons.
// Gotta solve the problem of how to render them all, unsorted,
// in a pass after the opaque world polygons, and before the
// translucent entities.
if ( !( MSurf_Flags( surfID ) & SURFDRAW_TRANS ))
// if ( !surf->texinfo->material->IsTranslucent() )
Shader_WorldSurface( pRenderList, surfID );
}
}
//-----------------------------------------------------------------------------
// Fast path for rendering top-views
//-----------------------------------------------------------------------------
void R_RenderWorldTopView( CWorldRenderList *pRenderList, mnode_t *node )
{
CVisitedSurfs &visitedSurfs = pRenderList->m_VisitedSurfs;
do
{
// no polygons in solid nodes
if (node->contents == CONTENTS_SOLID)
return; // solid
// Check PVS signature
if (node->visframe != r_visframecount)
return;
// Cull against the screen frustum or the appropriate area's frustum.
if( R_CullNodeTopView( node ) )
return;
// if a leaf node, draw stuff
if (node->contents >= 0)
{
R_DrawTopViewLeaf( pRenderList, (mleaf_t *)node );
return;
}
#ifdef USE_CONVARS
if (s_ShaderConvars.m_bDrawWorld)
#endif
{
// draw stuff on the node
SurfaceHandle_t surfID = SurfaceHandleFromIndex( node->firstsurface );
for ( int i = 0; i < node->numsurfaces; i++, surfID++ )
{
if ( !VisitSurface( visitedSurfs, surfID ) )
continue;
// Don't add surfaces that have displacement
if ( SurfaceHasDispInfo( surfID ) )
continue;
// If a surface is marked to draw at a node, then it's not a func_detail.
// Only func_detail render at leaves. In the case of normal world surfaces,
// we only want to render them if they intersect a visible leaf.
Assert( (MSurf_Flags( surfID ) & SURFDRAW_NODE) );
if ( MSurf_Flags( surfID ) & (SURFDRAW_UNDERWATER|SURFDRAW_SKY) )
continue;
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
// Back face cull
if ( (MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0 )
{
if (MSurf_Plane( surfID ).normal.z <= 0.0f)
continue;
}
// FIXME: For now, blow off translucent world polygons.
// Gotta solve the problem of how to render them all, unsorted,
// in a pass after the opaque world polygons, and before the
// translucent entities.
if ( !( MSurf_Flags( surfID ) & SURFDRAW_TRANS ) )
// if ( !surf->texinfo->material->IsTranslucent() )
Shader_WorldSurface( pRenderList, surfID );
}
}
// Recurse down both children, we don't care the order...
R_RenderWorldTopView ( pRenderList, node->children[0]);
node = node->children[1];
} while (node);
}
//-----------------------------------------------------------------------------
// Spews the leaf we're in
//-----------------------------------------------------------------------------
static void SpewLeaf()
{
int leaf = CM_PointLeafnum( g_EngineRenderer->ViewOrigin() );
ConMsg( "view leaf %d\n", leaf );
}
//-----------------------------------------------------------------------------
// Main entry points for starting + ending rendering the world
//-----------------------------------------------------------------------------
void R_BuildWorldLists( IWorldRenderList *pRenderListIn, WorldListInfo_t* pInfo,
int iForceViewLeaf, const VisOverrideData_t* pVisData, bool bShadowDepth /* = false */, float *pWaterReflectionHeight )
{
CWorldRenderList *pRenderList = assert_cast<CWorldRenderList *>(pRenderListIn);
// Safety measure just in case. I haven't seen that we need this, but...
if ( g_LostVideoMemory )
{
if (pInfo)
{
pInfo->m_ViewFogVolume = MAT_SORT_GROUP_STRICTLY_ABOVEWATER;
pInfo->m_LeafCount = 0;
pInfo->m_pLeafList = pRenderList->m_VisibleLeaves.Base();
pInfo->m_pLeafFogVolume = pRenderList->m_VisibleLeafFogVolumes.Base();
}
return;
}
VPROF( "R_BuildWorldLists" );
VectorCopy( g_EngineRenderer->ViewOrigin(), modelorg );
#ifdef USE_CONVARS
static ConVar r_spewleaf("r_spewleaf", "0");
if ( r_spewleaf.GetInt() )
{
SpewLeaf();
}
#endif
Shader_WorldBegin( pRenderList );
if ( !r_drawtopview )
{
R_SetupAreaBits( iForceViewLeaf, pVisData, pWaterReflectionHeight );
if ( bShadowDepth )
{
R_RecursiveWorldNodeNoCull( pRenderList, host_state.worldbrush->nodes, r_frustumcullworld.GetBool() ? FRUSTUM_CLIP_ALL : FRUSTUM_SUPPRESS_CLIPPING );
}
else
{
R_RecursiveWorldNode( pRenderList, host_state.worldbrush->nodes, r_frustumcullworld.GetBool() ? FRUSTUM_CLIP_ALL : FRUSTUM_SUPPRESS_CLIPPING );
}
}
else
{
R_RenderWorldTopView( pRenderList, host_state.worldbrush->nodes );
}
// This builds all lightmaps, including those for translucent surfaces
// Don't bother in topview?
if ( !r_drawtopview && !bShadowDepth )
{
Shader_BuildDynamicLightmaps( pRenderList );
}
// Return the back-to-front leaf ordering
if ( pInfo )
{
// Compute fog volume info for rendering
if ( !bShadowDepth )
{
FogVolumeInfo_t fogInfo;
ComputeFogVolumeInfo( &fogInfo );
if( fogInfo.m_InFogVolume )
{
pInfo->m_ViewFogVolume = MAT_SORT_GROUP_STRICTLY_UNDERWATER;
}
else
{
pInfo->m_ViewFogVolume = MAT_SORT_GROUP_STRICTLY_ABOVEWATER;
}
}
else
{
pInfo->m_ViewFogVolume = MAT_SORT_GROUP_STRICTLY_ABOVEWATER;
}
pInfo->m_LeafCount = pRenderList->m_VisibleLeaves.Count();
pInfo->m_pLeafList = pRenderList->m_VisibleLeaves.Base();
pInfo->m_pLeafFogVolume = pRenderList->m_VisibleLeafFogVolumes.Base();
}
}
//-----------------------------------------------------------------------------
// Used to determine visible fog volumes
//-----------------------------------------------------------------------------
class CVisibleFogVolumeQuery
{
public:
void FindVisibleFogVolume( const Vector &vecViewPoint, int *pVisibleFogVolume, int *pVisibleFogVolumeLeaf );
private:
bool RecursiveGetVisibleFogVolume( mnode_t *node );
// Input
Vector m_vecSearchPoint;
// Output
int m_nVisibleFogVolume;
int m_nVisibleFogVolumeLeaf;
};
//-----------------------------------------------------------------------------
// Main entry point for the query
//-----------------------------------------------------------------------------
void CVisibleFogVolumeQuery::FindVisibleFogVolume( const Vector &vecViewPoint, int *pVisibleFogVolume, int *pVisibleFogVolumeLeaf )
{
R_SetupAreaBits();
m_vecSearchPoint = vecViewPoint;
m_nVisibleFogVolume = -1;
m_nVisibleFogVolumeLeaf = -1;
RecursiveGetVisibleFogVolume( host_state.worldbrush->nodes );
*pVisibleFogVolume = m_nVisibleFogVolume;
*pVisibleFogVolumeLeaf = m_nVisibleFogVolumeLeaf;
}
//-----------------------------------------------------------------------------
// return true to continue searching
//-----------------------------------------------------------------------------
bool CVisibleFogVolumeQuery::RecursiveGetVisibleFogVolume( mnode_t *node )
{
int side;
cplane_t *plane;
float dot;
// no polygons in solid nodes
if (node->contents == CONTENTS_SOLID)
return true; // solid
// Check PVS signature
if (node->visframe != r_visframecount)
return true;
// Cull against the screen frustum or the appropriate area's frustum.
int fixmeTempRemove = FRUSTUM_CLIP_ALL;
if( R_CullNode( &g_Frustum, node, fixmeTempRemove ) )
return true;
// if a leaf node, check if we are in a fog volume and get outta here.
if (node->contents >= 0)
{
mleaf_t *pLeaf = (mleaf_t *)node;
// Don't return a leaf that's not filled with liquid
if ( pLeaf->leafWaterDataID == -1 )
return true;
// Never return SLIME as being visible, as it's opaque
if ( pLeaf->contents & CONTENTS_SLIME )
return true;
m_nVisibleFogVolume = pLeaf->leafWaterDataID;
m_nVisibleFogVolumeLeaf = pLeaf - host_state.worldbrush->leafs;
return false; // found it, so stop searching
}
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
if ( plane->type <= PLANE_Z )
{
dot = m_vecSearchPoint[plane->type] - plane->dist;
}
else
{
dot = DotProduct( m_vecSearchPoint, plane->normal ) - plane->dist;
}
// recurse down the children, closer side first.
// We have to do this because we need to find if the surfaces at this node
// exist in any visible leaves closer to the camera than the node is. If so,
// their r_surfacevisframe is set to indicate that we need to render them
// at this node.
side = (dot >= 0) ? 0 : 1;
// Recurse down the side closer to the camera
if( !RecursiveGetVisibleFogVolume (node->children[side]) )
return false;
// recurse down the side farther from the camera
return RecursiveGetVisibleFogVolume (node->children[!side]);
}
static void ClearFogInfo( VisibleFogVolumeInfo_t *pInfo )
{
pInfo->m_bEyeInFogVolume = false;
pInfo->m_nVisibleFogVolume = -1;
pInfo->m_nVisibleFogVolumeLeaf = -1;
pInfo->m_pFogVolumeMaterial = NULL;
pInfo->m_flWaterHeight = INVALID_WATER_HEIGHT;
}
ConVar fast_fogvolume("fast_fogvolume", "0");
//-----------------------------------------------------------------------------
// Main entry point from renderer to get the fog volume
//-----------------------------------------------------------------------------
void R_GetVisibleFogVolume( const Vector& vEyePoint, VisibleFogVolumeInfo_t *pInfo )
{
VPROF_BUDGET( "R_GetVisibleFogVolume", VPROF_BUDGETGROUP_WORLD_RENDERING );
if ( host_state.worldmodel->brush.pShared->numleafwaterdata == 0 )
{
ClearFogInfo( pInfo );
return;
}
int nLeafID = CM_PointLeafnum( vEyePoint );
mleaf_t* pLeaf = &host_state.worldbrush->leafs[nLeafID];
int nLeafContents = pLeaf->contents;
if ( pLeaf->leafWaterDataID != -1 )
{
Assert( nLeafContents & (CONTENTS_SLIME | CONTENTS_WATER) );
pInfo->m_bEyeInFogVolume = true;
pInfo->m_nVisibleFogVolume = pLeaf->leafWaterDataID;
pInfo->m_nVisibleFogVolumeLeaf = nLeafID;
pInfo->m_pFogVolumeMaterial = R_GetFogVolumeMaterial( pInfo->m_nVisibleFogVolume, true );
pInfo->m_flWaterHeight = R_GetWaterHeight( pInfo->m_nVisibleFogVolume );
}
else if ( nLeafContents & CONTENTS_TESTFOGVOLUME )
{
Assert( (nLeafContents & (CONTENTS_SLIME | CONTENTS_WATER)) == 0 );
if ( fast_fogvolume.GetBool() && host_state.worldbrush->numleafwaterdata == 1 )
{
pInfo->m_nVisibleFogVolume = 0;
pInfo->m_nVisibleFogVolumeLeaf = host_state.worldbrush->leafwaterdata[0].firstLeafIndex;
}
else
{
CVisibleFogVolumeQuery query;
query.FindVisibleFogVolume( vEyePoint, &pInfo->m_nVisibleFogVolume, &pInfo->m_nVisibleFogVolumeLeaf );
}
pInfo->m_bEyeInFogVolume = false;
pInfo->m_pFogVolumeMaterial = R_GetFogVolumeMaterial( pInfo->m_nVisibleFogVolume, false );
pInfo->m_flWaterHeight = R_GetWaterHeight( pInfo->m_nVisibleFogVolume );
}
else
{
ClearFogInfo( pInfo );
}
if( host_state.worldbrush->m_LeafMinDistToWater )
{
pInfo->m_flDistanceToWater = ( float )host_state.worldbrush->m_LeafMinDistToWater[nLeafID];
}
else
{
pInfo->m_flDistanceToWater = 0.0f;
}
}
//-----------------------------------------------------------------------------
// Draws the list of surfaces build in the BuildWorldLists phase
//-----------------------------------------------------------------------------
// Uncomment this to allow code to draw wireframe over a particular surface for debugging
//#define DEBUG_SURF 1
#ifdef DEBUG_SURF
int g_DebugSurfIndex = -1;
#endif
void R_DrawWorldLists( IWorldRenderList *pRenderListIn, unsigned long flags, float waterZAdjust )
{
CWorldRenderList *pRenderList = assert_cast<CWorldRenderList *>(pRenderListIn);
if ( g_bTextMode || g_LostVideoMemory )
return;
VPROF("R_DrawWorldLists");
tmZone( TELEMETRY_LEVEL0, TMZF_NONE, "%s", __FUNCTION__ );
Shader_WorldEnd( pRenderList, flags, waterZAdjust );
#ifdef DEBUG_SURF
{
VPROF("R_DrawWorldLists (DEBUG_SURF)");
if (g_pDebugSurf)
{
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( g_materialWorldWireframe );
Shader_DrawSurfaceDynamic( pRenderContext, g_pDebugSurf, false );
}
}
#endif
}
//-----------------------------------------------------------------------------
// Purpose:
//-----------------------------------------------------------------------------
void R_SceneBegin( void )
{
ComputeDebugSettings();
}
void R_SceneEnd( void )
{
}
//-----------------------------------------------------------------------------
// Debugging code to draw the lightmap pages
//-----------------------------------------------------------------------------
void Shader_DrawLightmapPageSurface( SurfaceHandle_t surfID, float red, float green, float blue )
{
Vector2D lightCoords[32][4];
int bumpID, count;
if ( MSurf_Flags( surfID ) & SURFDRAW_BUMPLIGHT )
{
count = NUM_BUMP_VECTS + 1;
}
else
{
count = 1;
}
BuildMSurfaceVerts( host_state.worldbrush, surfID, NULL, NULL, lightCoords );
int lightmapPageWidth, lightmapPageHeight;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( g_materialWireframe );
materials->GetLightmapPageSize(
SortInfoToLightmapPage(MSurf_MaterialSortID( surfID )),
&lightmapPageWidth, &lightmapPageHeight );
for( bumpID = 0; bumpID < count; bumpID++ )
{
// assumes that we are already in ortho mode.
IMesh* pMesh = pRenderContext->GetDynamicMesh( );
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_LINES, MSurf_VertCount( surfID ) );
int i;
for( i = 0; i < MSurf_VertCount( surfID ); i++ )
{
float x, y;
float *texCoord;
texCoord = &lightCoords[i][bumpID][0];
x = lightmapPageWidth * texCoord[0];
y = lightmapPageHeight * texCoord[1];
#ifdef _XBOX
// xboxissue - border safe
x += 32;
y += 32;
#endif
meshBuilder.Position3f( x, y, 0.0f );
meshBuilder.AdvanceVertex();
texCoord = &lightCoords[(i+1)%MSurf_VertCount( surfID )][bumpID][0];
x = lightmapPageWidth * texCoord[0];
y = lightmapPageHeight * texCoord[1];
#ifdef _XBOX
// xboxissue - border safe
x += 32;
y += 32;
#endif
meshBuilder.Position3f( x, y, 0.0f );
meshBuilder.AdvanceVertex();
}
meshBuilder.End();
pMesh->Draw();
}
}
void Shader_DrawLightmapPageChains( IWorldRenderList *pRenderListIn, int pageId )
{
CWorldRenderList *pRenderList = assert_cast<CWorldRenderList *>(pRenderListIn);
for (int j = 0; j < MAX_MAT_SORT_GROUPS; ++j)
{
MSL_FOREACH_GROUP_BEGIN( pRenderList->m_SortList, j, group )
{
SurfaceHandle_t surfID = pRenderList->m_SortList.GetSurfaceAtHead( group );
Assert(IS_SURF_VALID(surfID));
Assert( MSurf_MaterialSortID( surfID ) >= 0 && MSurf_MaterialSortID( surfID ) < g_WorldStaticMeshes.Count() );
if( materialSortInfoArray[MSurf_MaterialSortID( surfID ) ].lightmapPageID != pageId )
{
continue;
}
MSL_FOREACH_SURFACE_IN_GROUP_BEGIN( pRenderList->m_SortList, group, surfIDList )
{
Assert( !SurfaceHasDispInfo( surfIDList ) );
Shader_DrawLightmapPageSurface( surfIDList, 0.0f, 1.0f, 0.0f );
}
MSL_FOREACH_SURFACE_IN_GROUP_END()
}
MSL_FOREACH_GROUP_END()
// render displacement lightmap page info
MSL_FOREACH_SURFACE_BEGIN(pRenderList->m_DispSortList, j, surfID)
{
surfID->pDispInfo->RenderWireframeInLightmapPage( pageId );
}
MSL_FOREACH_SURFACE_END()
}
}
//-----------------------------------------------------------------------------
//
// All code related to brush model rendering
//
//-----------------------------------------------------------------------------
class CBrushSurface : public IBrushSurface
{
public:
CBrushSurface( SurfaceHandle_t surfID );
// Computes texture coordinates + lightmap coordinates given a world position
virtual void ComputeTextureCoordinate( const Vector& worldPos, Vector2D& texCoord );
virtual void ComputeLightmapCoordinate( const Vector& worldPos, Vector2D& lightmapCoord );
// Gets the vertex data for this surface
virtual int GetVertexCount() const;
virtual void GetVertexData( BrushVertex_t* pVerts );
// Gets at the material properties for this surface
virtual IMaterial* GetMaterial();
private:
SurfaceHandle_t m_SurfaceID;
SurfaceCtx_t m_Ctx;
};
//-----------------------------------------------------------------------------
// Constructor
//-----------------------------------------------------------------------------
CBrushSurface::CBrushSurface( SurfaceHandle_t surfID ) : m_SurfaceID(surfID)
{
Assert(IS_SURF_VALID(surfID));
SurfSetupSurfaceContext( m_Ctx, surfID );
}
//-----------------------------------------------------------------------------
// Computes texture coordinates + lightmap coordinates given a world position
//-----------------------------------------------------------------------------
void CBrushSurface::ComputeTextureCoordinate( const Vector& worldPos, Vector2D& texCoord )
{
SurfComputeTextureCoordinate( m_Ctx, m_SurfaceID, worldPos, texCoord );
}
void CBrushSurface::ComputeLightmapCoordinate( const Vector& worldPos, Vector2D& lightmapCoord )
{
SurfComputeLightmapCoordinate( m_Ctx, m_SurfaceID, worldPos, lightmapCoord );
}
//-----------------------------------------------------------------------------
// Gets the vertex data for this surface
//-----------------------------------------------------------------------------
int CBrushSurface::GetVertexCount() const
{
if( !SurfaceHasPrims( m_SurfaceID ) )
{
// Create a temporary vertex array for the data...
return MSurf_VertCount( m_SurfaceID );
}
else
{
// not implemented yet
Assert(0);
return 0;
}
}
void CBrushSurface::GetVertexData( BrushVertex_t* pVerts )
{
Assert( pVerts );
if( !SurfaceHasPrims( m_SurfaceID ) )
{
// Fill in the vertex data
BuildBrushModelVertexArray( host_state.worldbrush, m_SurfaceID, pVerts );
}
else
{
// not implemented yet
Assert(0);
}
}
//-----------------------------------------------------------------------------
// Activates fast z reject for displacements
//-----------------------------------------------------------------------------
void R_FastZRejectDisplacements( bool bEnable )
{
s_bFastZRejectDisplacements = bEnable;
}
//-----------------------------------------------------------------------------
// Gets at the material properties for this surface
//-----------------------------------------------------------------------------
IMaterial* CBrushSurface::GetMaterial()
{
return MSurf_TexInfo( m_SurfaceID )->material;
}
//-----------------------------------------------------------------------------
// Installs a client-side renderer for brush models
//-----------------------------------------------------------------------------
void R_InstallBrushRenderOverride( IBrushRenderer* pBrushRenderer )
{
s_pBrushRenderOverride = pBrushRenderer;
}
//-----------------------------------------------------------------------------
// Here, we allow the client DLL to render brush surfaces however they'd like
// NOTE: This involves a vertex copy, so don't use this everywhere
//-----------------------------------------------------------------------------
bool Shader_DrawBrushSurfaceOverride( IMatRenderContext *pRenderContext, SurfaceHandle_t surfID, IClientEntity *baseentity )
{
// Set the lightmap state
Shader_SetChainLightmapState( pRenderContext, surfID );
CBrushSurface brushSurface( surfID );
return s_pBrushRenderOverride->RenderBrushModelSurface( baseentity, &brushSurface );
}
FORCEINLINE void ModulateMaterial( IMaterial *pMaterial, float *pOldColor )
{
if ( g_bIsBlendingOrModulating )
{
pOldColor[3] = pMaterial->GetAlphaModulation( );
pMaterial->GetColorModulation( &pOldColor[0], &pOldColor[1], &pOldColor[2] );
pMaterial->AlphaModulate( r_blend );
pMaterial->ColorModulate( r_colormod[0], r_colormod[1], r_colormod[2] );
}
}
FORCEINLINE void UnModulateMaterial( IMaterial *pMaterial, float *pOldColor )
{
if ( g_bIsBlendingOrModulating )
{
pMaterial->AlphaModulate( pOldColor[3] );
pMaterial->ColorModulate( pOldColor[0], pOldColor[1], pOldColor[2] );
}
}
//-----------------------------------------------------------------------------
// Main method to draw brush surfaces
//-----------------------------------------------------------------------------
void Shader_BrushSurface( SurfaceHandle_t surfID, model_t *model, IClientEntity *baseentity )
{
CMatRenderContextPtr pRenderContext(materials);
float pOldColor[4];
bool drawDecals;
if (!s_pBrushRenderOverride)
{
drawDecals = true;
IMaterial *pMaterial = MSurf_TexInfo( surfID )->material;
ModulateMaterial( pMaterial, pOldColor );
Shader_SetChainTextureState( pRenderContext, surfID, baseentity, false );
// NOTE: Since a static vb/dynamic ib IMesh doesn't buffer, we shouldn't use this
// since it causes a lock and drawindexedprimitive per surface! (gary)
// Shader_DrawSurfaceStatic( surfID );
Shader_DrawSurfaceDynamic( pRenderContext, surfID, false );
// FIXME: This may cause an unnecessary flush to occur!
// Thankfully, this is a rare codepath. I don't think anything uses it now.
UnModulateMaterial( pMaterial, pOldColor );
}
else
{
drawDecals = Shader_DrawBrushSurfaceOverride( pRenderContext, surfID, baseentity );
}
// fixme: need to get "allowDecals" from the material
// if ( g_BrushProperties.allowDecals && pSurf->pdecals )
if( SurfaceHasDecals( surfID ) && drawDecals )
{
DecalSurfaceAdd( surfID, BRUSHMODEL_DECAL_SORT_GROUP );
}
// Add overlay fragments to list.
// FIXME: A little code support is necessary to get overlays working on brush models
// OverlayMgr()->AddFragmentListToRenderList( MSurf_OverlayFragmentList( surfID ), false );
// Add shadows too....
ShadowDecalHandle_t decalHandle = MSurf_ShadowDecals( surfID );
if (decalHandle != SHADOW_DECAL_HANDLE_INVALID)
{
g_pShadowMgr->AddShadowsOnSurfaceToRenderList( decalHandle );
}
}
// UNDONE: These are really guesses. Do we ever exceed these limits?
const int MAX_TRANS_NODES = 256;
const int MAX_TRANS_DECALS = 256;
const int MAX_TRANS_BATCHES = 1024;
const int MAX_TRANS_SURFACES = 1024;
class CBrushBatchRender
{
public:
// These are the compact structs produced by the brush render cache. The goal is to have a compact
// list of drawing instructions for drawing an opaque brush model in the most optimal order.
// These structs contain ONLY the opaque surfaces of a brush model.
struct brushrendersurface_t
{
short surfaceIndex;
short planeIndex;
};
// a batch is a list of surfaces with the same material - they can be drawn with one call to the materialsystem
struct brushrenderbatch_t
{
short firstSurface;
short surfaceCount;
IMaterial *pMaterial;
int sortID;
int indexCount;
};
// a mesh is a list of batches with the same vertex format.
struct brushrendermesh_t
{
short firstBatch;
short batchCount;
};
// This is the top-level struct containing all data necessary to render an opaque brush model in optimal order
struct brushrender_t
{
// UNDONE: Compact these arrays into a single allocation
// UNDONE: Compact entire struct to a single allocation? Store brushrender_t * in the linked list?
void Free()
{
delete[] pPlanes;
delete[] pMeshes;
delete[] pBatches;
delete[] pSurfaces;
pPlanes = NULL;
pMeshes = NULL;
pBatches = NULL;
pSurfaces = NULL;
}
cplane_t **pPlanes;
brushrendermesh_t *pMeshes;
brushrenderbatch_t *pBatches;
brushrendersurface_t *pSurfaces;
short planeCount;
short meshCount;
short batchCount;
short surfaceCount;
short totalIndexCount;
short totalVertexCount;
};
// Surfaces are stored in a list like this temporarily for sorting purposes only. The compact structs do not store these.
struct surfacelist_t
{
SurfaceHandle_t surfID;
short surfaceIndex;
short planeIndex;
};
// These are the compact structs produced for translucent brush models. These structs contain
// only the translucent surfaces of a brush model.
// a batch is a list of surfaces with the same material - they can be drawn with one call to the materialsystem
struct transbatch_t
{
short firstSurface;
short surfaceCount;
IMaterial *pMaterial;
int sortID;
int indexCount;
};
// This is a list of surfaces that have decals.
struct transdecal_t
{
short firstSurface;
short surfaceCount;
};
// A node is the list of batches that can be drawn without sorting errors. When no decals are present, surfaces
// from the next node may be appended to this one to improve performance without causing sorting errors.
struct transnode_t
{
short firstBatch;
short batchCount;
short firstDecalSurface;
short decalSurfaceCount;
};
// This is the top-level struct containing all data necessary to render a translucent brush model in optimal order.
// NOTE: Unlike the opaque struct, the order of the batches is view-dependent, so caching this is pointless since
// the view usually changes.
struct transrender_t
{
transnode_t nodes[MAX_TRANS_NODES];
SurfaceHandle_t surfaces[MAX_TRANS_SURFACES];
SurfaceHandle_t decalSurfaces[MAX_TRANS_DECALS];
transbatch_t batches[MAX_TRANS_BATCHES];
transbatch_t *pLastBatch; // These are used to append surfaces to existing batches across nodes.
transnode_t *pLastNode; // This improves performance.
short nodeCount;
short batchCount;
short surfaceCount;
short decalSurfaceCount;
};
// Builds a transrender_t, then executes it's drawing commands
void DrawTranslucentBrushModel( model_t *model, IClientEntity *baseentity )
{
transrender_t renderT;
renderT.pLastBatch = NULL;
renderT.pLastNode = NULL;
renderT.nodeCount = 0;
renderT.surfaceCount = 0;
renderT.batchCount = 0;
renderT.decalSurfaceCount = 0;
BuildTransLists_r( renderT, model, model->brush.pShared->nodes + model->brush.firstnode );
void *pProxyData = baseentity ? baseentity->GetClientRenderable() : NULL;
DrawTransLists( renderT, pProxyData );
}
void AddSurfaceToBatch( transrender_t &renderT, transnode_t *pNode, transbatch_t *pBatch, SurfaceHandle_t surfID )
{
pBatch->surfaceCount++;
Assert( renderT.surfaceCount < MAX_TRANS_SURFACES);
pBatch->indexCount += (MSurf_VertCount( surfID )-2)*3;
renderT.surfaces[renderT.surfaceCount] = surfID;
renderT.surfaceCount++;
if ( SurfaceHasDecals( surfID ) )
{
Assert( renderT.decalSurfaceCount < MAX_TRANS_DECALS);
pNode->decalSurfaceCount++;
renderT.decalSurfaces[renderT.decalSurfaceCount] = surfID;
renderT.decalSurfaceCount++;
}
}
void AddTransNode( transrender_t &renderT )
{
renderT.pLastNode = &renderT.nodes[renderT.nodeCount];
renderT.nodeCount++;
Assert( renderT.nodeCount < MAX_TRANS_NODES);
renderT.pLastBatch = NULL;
renderT.pLastNode->firstBatch = renderT.batchCount;
renderT.pLastNode->firstDecalSurface = renderT.decalSurfaceCount;
renderT.pLastNode->batchCount = 0;
renderT.pLastNode->decalSurfaceCount = 0;
}
void AddTransBatch( transrender_t &renderT, SurfaceHandle_t surfID )
{
transbatch_t &batch = renderT.batches[renderT.pLastNode->firstBatch + renderT.pLastNode->batchCount];
Assert( renderT.batchCount < MAX_TRANS_BATCHES);
renderT.pLastNode->batchCount++;
renderT.batchCount++;
batch.firstSurface = renderT.surfaceCount;
batch.surfaceCount = 0;
batch.pMaterial = MSurf_TexInfo( surfID )->material;
batch.sortID = MSurf_MaterialSortID( surfID );
batch.indexCount = 0;
renderT.pLastBatch = &batch;
AddSurfaceToBatch( renderT, renderT.pLastNode, &batch, surfID );
}
// build node lists
void BuildTransLists_r( transrender_t &renderT, model_t *model, mnode_t *node )
{
float dot;
if (node->contents >= 0)
return;
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
cplane_t *plane = node->plane;
if ( plane->type <= PLANE_Z )
{
dot = modelorg[plane->type] - plane->dist;
}
else
{
dot = DotProduct (modelorg, plane->normal) - plane->dist;
}
int side = (dot >= 0) ? 0 : 1;
// back side first - translucent surfaces need to render in back to front order
// to appear correctly.
BuildTransLists_r( renderT, model, node->children[!side]);
// emit all surfaces on node
CUtlVectorFixed<surfacelist_t, 256> sortList;
SurfaceHandle_t surfID = SurfaceHandleFromIndex( node->firstsurface, model->brush.pShared );
for ( int i = 0; i < node->numsurfaces; i++, surfID++ )
{
// skip opaque surfaces
if ( MSurf_Flags(surfID) & SURFDRAW_TRANS )
{
if ( ((MSurf_Flags( surfID ) & SURFDRAW_NOCULL) == 0) )
{
// Backface cull here, so they won't do any more work
if ( ( side ^ !!(MSurf_Flags( surfID ) & SURFDRAW_PLANEBACK)) )
continue;
}
// If this can be appended to the previous batch, do so
int sortID = MSurf_MaterialSortID( surfID );
if ( renderT.pLastBatch && renderT.pLastBatch->sortID == sortID )
{
AddSurfaceToBatch( renderT, renderT.pLastNode, renderT.pLastBatch, surfID );
}
else
{
// save it off for sorting, then a later append
int sortIndex = sortList.AddToTail();
sortList[sortIndex].surfID = surfID;
}
}
}
// We've got surfaces on this node that can't be added to the previous node
if ( sortList.Count() )
{
// sort by material
sortList.Sort( SurfaceCmp );
// add a new sort group
AddTransNode( renderT );
int lastSortID = -1;
// now add the optimal number of batches to that group
for ( int i = 0; i < sortList.Count(); i++ )
{
surfID = sortList[i].surfID;
int sortID = MSurf_MaterialSortID( surfID );
if ( lastSortID == sortID )
{
// can be drawn in a single call with the current list of surfaces, append
AddSurfaceToBatch( renderT, renderT.pLastNode, renderT.pLastBatch, surfID );
}
else
{
// requires a break (material/lightmap change).
AddTransBatch( renderT, surfID );
lastSortID = sortID;
}
}
// don't batch across decals or decals will sort incorrectly
if ( renderT.pLastNode->decalSurfaceCount )
{
renderT.pLastNode = NULL;
renderT.pLastBatch = NULL;
}
}
// front side
BuildTransLists_r( renderT, model, node->children[side]);
}
void DrawTransLists( transrender_t &renderT, void *pProxyData )
{
CMatRenderContextPtr pRenderContext( materials );
PIXEVENT( pRenderContext, "DrawTransLists" );
bool skipLight = false;
if ( g_pMaterialSystemConfig->nFullbright == 1 )
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP );
skipLight = true;
}
float pOldColor[4];
for ( int i = 0; i < renderT.nodeCount; i++ )
{
int j;
const transnode_t &node = renderT.nodes[i];
for ( j = 0; j < node.batchCount; j++ )
{
const transbatch_t &batch = renderT.batches[node.firstBatch+j];
#ifdef NEWMESH
CIndexBufferBuilder indexBufferBuilder;
#else
CMeshBuilder meshBuilder;
#endif
IMaterial *pMaterial = batch.pMaterial;
ModulateMaterial( pMaterial, pOldColor );
if ( !skipLight )
{
pRenderContext->BindLightmapPage( materialSortInfoArray[batch.sortID].lightmapPageID );
}
pRenderContext->Bind( pMaterial, pProxyData );
#ifdef NEWMESH
IIndexBuffer *pBuildIndexBuffer = pRenderContext->GetDynamicIndexBuffer( MATERIAL_INDEX_FORMAT_16BIT, false );
indexBufferBuilder.Begin( pBuildIndexBuffer, batch.indexCount );
#else
IMesh *pBuildMesh = pRenderContext->GetDynamicMesh( false, g_WorldStaticMeshes[batch.sortID], NULL, NULL );
meshBuilder.Begin( pBuildMesh, MATERIAL_TRIANGLES, 0, batch.indexCount );
#endif
for ( int k = 0; k < batch.surfaceCount; k++ )
{
SurfaceHandle_t surfID = renderT.surfaces[batch.firstSurface + k];
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
#ifdef NEWMESH
BuildIndicesForSurface( indexBufferBuilder, surfID );
#else
BuildIndicesForSurface( meshBuilder, surfID );
#endif
}
#ifdef NEWMESH
indexBufferBuilder.End( false ); // haven't tested this one yet (alpha blended world geom I think)
// FIXME: IMaterial::GetVertexFormat() should do this stripping (add a separate 'SupportsCompression' accessor)
VertexFormat_t vertexFormat = pMaterial->GetVertexFormat() & ~VERTEX_FORMAT_COMPRESSED;
pRenderContext->BindVertexBuffer( 0, g_WorldStaticMeshes[batch.sortID], 0, vertexFormat );
pRenderContext->BindIndexBuffer( pBuildIndexBuffer, 0 );
pRenderContext->Draw( MATERIAL_TRIANGLES, 0, batch.indexCount );
#else
meshBuilder.End( false, true );
#endif
// Don't leave the material in a bogus state
UnModulateMaterial( pMaterial, pOldColor );
}
if ( node.decalSurfaceCount )
{
for ( j = 0; j < node.decalSurfaceCount; j++ )
{
SurfaceHandle_t surfID = renderT.decalSurfaces[node.firstDecalSurface + j];
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
if( SurfaceHasDecals( surfID ) )
{
DecalSurfaceAdd( surfID, BRUSHMODEL_DECAL_SORT_GROUP );
}
// Add shadows too....
ShadowDecalHandle_t decalHandle = MSurf_ShadowDecals( surfID );
if (decalHandle != SHADOW_DECAL_HANDLE_INVALID)
{
g_pShadowMgr->AddShadowsOnSurfaceToRenderList( decalHandle );
}
}
// Now draw the decals + shadows for this node
// This order relative to the surfaces is important for translucency to work correctly.
DecalSurfaceDraw(pRenderContext, BRUSHMODEL_DECAL_SORT_GROUP);
// FIXME: Decals are not being rendered while illuminated by the flashlight
DecalSurfacesInit( true );
// Draw all shadows on the brush
g_pShadowMgr->RenderProjectedTextures( );
}
if ( g_ShaderDebug.anydebug )
{
CUtlVector<msurface2_t *> brushList;
for ( j = 0; j < node.batchCount; j++ )
{
const transbatch_t &batch = renderT.batches[node.firstBatch+j];
for ( int k = 0; k < batch.surfaceCount; k++ )
{
brushList.AddToTail( renderT.surfaces[batch.firstSurface + k] );
}
}
DrawDebugInformation( brushList );
}
}
}
static int __cdecl SurfaceCmp(const surfacelist_t *s0, const surfacelist_t *s1 );
void LevelInit();
brushrender_t *FindOrCreateRenderBatch( model_t *pModel );
void DrawOpaqueBrushModel( IClientEntity *baseentity, model_t *model, const Vector& origin, ERenderDepthMode DepthMode );
void DrawTranslucentBrushModel( IClientEntity *baseentity, model_t *model, const Vector& origin, bool bShadowDepth, bool bDrawOpaque, bool bDrawTranslucent );
void DrawBrushModelShadow( model_t *model, IClientRenderable *pRenderable );
private:
void ClearRenderHandles();
CUtlLinkedList<brushrender_t> m_renderList;
};
int __cdecl CBrushBatchRender::SurfaceCmp(const surfacelist_t *s0, const surfacelist_t *s1 )
{
int sortID0 = MSurf_MaterialSortID( s0->surfID );
int sortID1 = MSurf_MaterialSortID( s1->surfID );
return sortID0 - sortID1;
}
CBrushBatchRender g_BrushBatchRenderer;
//-----------------------------------------------------------------------------
// Purpose: This is used when the mat_dxlevel is changed to reset the brush
// models.
//-----------------------------------------------------------------------------
void R_BrushBatchInit( void )
{
g_BrushBatchRenderer.LevelInit();
}
void CBrushBatchRender::LevelInit()
{
unsigned short iNext;
for( unsigned short i=m_renderList.Head(); i != m_renderList.InvalidIndex(); i=iNext )
{
iNext = m_renderList.Next(i);
m_renderList.Element(i).Free();
}
m_renderList.Purge();
ClearRenderHandles();
}
void CBrushBatchRender::ClearRenderHandles( void )
{
for ( int iBrush = 1 ; iBrush < host_state.worldbrush->numsubmodels ; ++iBrush )
{
char szBrushModel[5]; // inline model names "*1", "*2" etc
Q_snprintf( szBrushModel, sizeof( szBrushModel ), "*%i", iBrush );
model_t *pModel = modelloader->GetModelForName( szBrushModel, IModelLoader::FMODELLOADER_SERVER );
if ( pModel )
{
pModel->brush.renderHandle = 0;
}
}
}
// Create a compact, optimal list of rendering commands for the opaque parts of a brush model
// NOTE: This just skips translucent surfaces assuming a separate transrender_t pass!
CBrushBatchRender::brushrender_t *CBrushBatchRender::FindOrCreateRenderBatch( model_t *pModel )
{
if ( !pModel->brush.nummodelsurfaces )
return NULL;
unsigned short index = pModel->brush.renderHandle - 1;
if ( m_renderList.IsValidIndex( index ) )
return &m_renderList.Element(index);
index = m_renderList.AddToTail();
pModel->brush.renderHandle = index + 1;
brushrender_t &renderT = m_renderList.Element(index);
renderT.pPlanes = NULL;
renderT.pMeshes = NULL;
renderT.planeCount = 0;
renderT.meshCount = 0;
renderT.totalIndexCount = 0;
renderT.totalVertexCount = 0;
CUtlVector<cplane_t *> planeList;
CUtlVector<surfacelist_t> surfaceList;
int i;
SurfaceHandle_t surfID = SurfaceHandleFromIndex( pModel->brush.firstmodelsurface, pModel->brush.pShared );
for (i=0 ; i<pModel->brush.nummodelsurfaces; i++, surfID++)
{
// UNDONE: For now, just draw these in a separate pass
if ( MSurf_Flags(surfID) & SURFDRAW_TRANS )
continue;
cplane_t *plane = surfID->plane;
int planeIndex = planeList.Find(plane);
if ( planeIndex == -1 )
{
planeIndex = planeList.AddToTail( plane );
}
surfacelist_t tmp;
tmp.surfID = surfID;
tmp.surfaceIndex = i;
tmp.planeIndex = planeIndex;
surfaceList.AddToTail( tmp );
}
surfaceList.Sort( SurfaceCmp );
renderT.pPlanes = new cplane_t *[planeList.Count()];
renderT.planeCount = planeList.Count();
2022-05-15 18:09:59 +00:00
if( planeList.Base() )
memcpy( renderT.pPlanes, planeList.Base(), sizeof(cplane_t *)*planeList.Count() );
2020-04-22 16:56:21 +00:00
renderT.pSurfaces = new brushrendersurface_t[surfaceList.Count()];
renderT.surfaceCount = surfaceList.Count();
int meshCount = 0;
int batchCount = 0;
int lastSortID = -1;
#ifdef NEWMESH
IVertexBuffer *pLastVertexBuffer = NULL;
#else
IMesh *pLastMesh = NULL;
#endif
brushrendermesh_t *pMesh = NULL;
brushrendermesh_t tmpMesh[MAX_VERTEX_FORMAT_CHANGES];
brushrenderbatch_t *pBatch = NULL;
brushrenderbatch_t tmpBatch[128];
for ( i = 0; i < surfaceList.Count(); i++ )
{
renderT.pSurfaces[i].surfaceIndex = surfaceList[i].surfaceIndex;
renderT.pSurfaces[i].planeIndex = surfaceList[i].planeIndex;
surfID = surfaceList[i].surfID;
int sortID = MSurf_MaterialSortID( surfID );
#ifdef NEWMESH
if ( g_WorldStaticMeshes[sortID] != pLastVertexBuffer )
#else
if ( g_WorldStaticMeshes[sortID] != pLastMesh )
#endif
{
pMesh = tmpMesh + meshCount;
pMesh->firstBatch = batchCount;
pMesh->batchCount = 0;
lastSortID = -1; // force a new batch
meshCount++;
}
if ( sortID != lastSortID )
{
pBatch = tmpBatch + batchCount;
pBatch->firstSurface = i;
pBatch->surfaceCount = 0;
pBatch->sortID = sortID;
pBatch->pMaterial = MSurf_TexInfo( surfID )->material;
pBatch->indexCount = 0;
pMesh->batchCount++;
batchCount++;
}
#ifdef NEWMESH
pLastVertexBuffer = g_WorldStaticMeshes[sortID];
#else
pLastMesh = g_WorldStaticMeshes[sortID];
#endif
lastSortID = sortID;
pBatch->surfaceCount++;
int vertCount = MSurf_VertCount( surfID );
int indexCount = (vertCount - 2) * 3;
pBatch->indexCount += indexCount;
renderT.totalIndexCount += indexCount;
renderT.totalVertexCount += vertCount;
}
renderT.pMeshes = new brushrendermesh_t[meshCount];
memcpy( renderT.pMeshes, tmpMesh, sizeof(brushrendermesh_t) * meshCount );
renderT.meshCount = meshCount;
renderT.pBatches = new brushrenderbatch_t[batchCount];
memcpy( renderT.pBatches, tmpBatch, sizeof(brushrenderbatch_t) * batchCount );
renderT.batchCount = batchCount;
return &renderT;
}
//-----------------------------------------------------------------------------
// Draws an opaque (parts of a) brush model
//-----------------------------------------------------------------------------
void CBrushBatchRender::DrawOpaqueBrushModel( IClientEntity *baseentity, model_t *model, const Vector& origin, ERenderDepthMode DepthMode )
{
VPROF( "R_DrawOpaqueBrushModel" );
SurfaceHandle_t firstSurfID = SurfaceHandleFromIndex( model->brush.firstmodelsurface, model->brush.pShared );
brushrender_t *pRender = FindOrCreateRenderBatch( model );
int i;
if ( !pRender )
return;
bool skipLight = false;
CMatRenderContextPtr pRenderContext( materials );
PIXEVENT( pRenderContext, "DrawOpaqueBrushModel" );
if ( (g_pMaterialSystemConfig->nFullbright == 1) || DepthMode == DEPTH_MODE_SHADOW )
{
pRenderContext->BindLightmapPage( MATERIAL_SYSTEM_LIGHTMAP_PAGE_WHITE_BUMP );
skipLight = true;
}
void *pProxyData = baseentity ? baseentity->GetClientRenderable() : NULL;
bool backface[1024];
Assert( pRender->planeCount < 1024 );
// NOTE: Backface culling is almost no perf gain. Can be removed from brush model rendering.
// Check the shared planes once
for ( i = 0; i < pRender->planeCount; i++ )
{
float dot = DotProduct( modelorg, pRender->pPlanes[i]->normal) - pRender->pPlanes[i]->dist;
backface[i] = ( DepthMode == DEPTH_MODE_NORMAL && ( dot < BACKFACE_EPSILON ) ) ? true : false; // don't backface cull when rendering to shadow map
}
float pOldColor[4];
for ( i = 0; i < pRender->meshCount; i++ )
{
brushrendermesh_t &mesh = pRender->pMeshes[i];
for ( int j = 0; j < mesh.batchCount; j++ )
{
brushrenderbatch_t &batch = pRender->pBatches[mesh.firstBatch + j];
int k;
for ( k = 0; k < batch.surfaceCount; k++ )
{
brushrendersurface_t &surface = pRender->pSurfaces[batch.firstSurface + k];
if ( !backface[surface.planeIndex] )
break;
}
if ( k == batch.surfaceCount )
continue;
CMeshBuilder meshBuilder;
IMaterial *pMaterial = NULL;
if ( DepthMode != DEPTH_MODE_NORMAL )
{
// Select proper override material
int nAlphaTest = (int) batch.pMaterial->IsAlphaTested();
int nNoCull = (int) batch.pMaterial->IsTwoSided();
IMaterial *pDepthWriteMaterial;
if ( DepthMode == DEPTH_MODE_SSA0 )
{
pDepthWriteMaterial = g_pMaterialSSAODepthWrite[nAlphaTest][nNoCull];
}
else
{
pDepthWriteMaterial = g_pMaterialDepthWrite[nAlphaTest][nNoCull];
}
if ( nAlphaTest == 1 )
{
static unsigned int originalTextureVarCache = 0;
IMaterialVar *pOriginalTextureVar = batch.pMaterial->FindVarFast( "$basetexture", &originalTextureVarCache );
static unsigned int originalTextureFrameVarCache = 0;
IMaterialVar *pOriginalTextureFrameVar = batch.pMaterial->FindVarFast( "$frame", &originalTextureFrameVarCache );
static unsigned int originalAlphaRefCache = 0;
IMaterialVar *pOriginalAlphaRefVar = batch.pMaterial->FindVarFast( "$AlphaTestReference", &originalAlphaRefCache );
static unsigned int textureVarCache = 0;
IMaterialVar *pTextureVar = pDepthWriteMaterial->FindVarFast( "$basetexture", &textureVarCache );
static unsigned int textureFrameVarCache = 0;
IMaterialVar *pTextureFrameVar = pDepthWriteMaterial->FindVarFast( "$frame", &textureFrameVarCache );
static unsigned int alphaRefCache = 0;
IMaterialVar *pAlphaRefVar = pDepthWriteMaterial->FindVarFast( "$AlphaTestReference", &alphaRefCache );
if( pTextureVar && pOriginalTextureVar )
{
pTextureVar->SetTextureValue( pOriginalTextureVar->GetTextureValue() );
}
if( pTextureFrameVar && pOriginalTextureFrameVar )
{
pTextureFrameVar->SetIntValue( pOriginalTextureFrameVar->GetIntValue() );
}
if( pAlphaRefVar && pOriginalAlphaRefVar )
{
pAlphaRefVar->SetFloatValue( pOriginalAlphaRefVar->GetFloatValue() );
}
}
pMaterial = pDepthWriteMaterial;
}
else
{
pMaterial = batch.pMaterial;
// Store off the old color + alpha
ModulateMaterial( pMaterial, pOldColor );
if ( !skipLight )
{
pRenderContext->BindLightmapPage( materialSortInfoArray[batch.sortID].lightmapPageID );
}
}
pRenderContext->Bind( pMaterial, pProxyData );
#ifdef NEWMESH
IIndexBuffer *pBuildIndexBuffer = pRenderContext->GetDynamicIndexBuffer( MATERIAL_INDEX_FORMAT_16BIT, false );
CIndexBufferBuilder indexBufferBuilder;
indexBufferBuilder.Begin( pBuildIndexBuffer, batch.indexCount );
#else
IMesh *pBuildMesh = pRenderContext->GetDynamicMesh( false, g_WorldStaticMeshes[batch.sortID], NULL, NULL );
meshBuilder.Begin( pBuildMesh, MATERIAL_TRIANGLES, 0, batch.indexCount );
#endif
for ( ; k < batch.surfaceCount; k++ )
{
brushrendersurface_t &surface = pRender->pSurfaces[batch.firstSurface + k];
if ( backface[surface.planeIndex] )
continue;
SurfaceHandle_t surfID = firstSurfID + surface.surfaceIndex;
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
#ifdef NEWMESH
BuildIndicesForSurface( indexBufferBuilder, surfID );
#else
BuildIndicesForSurface( meshBuilder, surfID );
#endif
if( SurfaceHasDecals( surfID ) && DepthMode == DEPTH_MODE_NORMAL )
{
DecalSurfaceAdd( surfID, BRUSHMODEL_DECAL_SORT_GROUP );
}
// Add overlay fragments to list.
// FIXME: A little code support is necessary to get overlays working on brush models
// OverlayMgr()->AddFragmentListToRenderList( MSurf_OverlayFragmentList( surfID ), false );
if ( DepthMode == DEPTH_MODE_NORMAL )
{
// Add render-to-texture shadows too....
ShadowDecalHandle_t decalHandle = MSurf_ShadowDecals( surfID );
if (decalHandle != SHADOW_DECAL_HANDLE_INVALID)
{
g_pShadowMgr->AddShadowsOnSurfaceToRenderList( decalHandle );
}
}
}
#ifdef NEWMESH
indexBufferBuilder.End( false ); // this one is broken (opaque brush model. .tv)
pRenderContext->BindVertexBuffer( 0, g_WorldStaticMeshes[batch.sortID], 0, g_WorldStaticMeshes[batch.sortID]->GetVertexFormat() );
pRenderContext->BindIndexBuffer( pBuildIndexBuffer, 0 );
pRenderContext->Draw( MATERIAL_TRIANGLES, 0, pBuildIndexBuffer->NumIndices() );//batch.indexCount );
#else
meshBuilder.End( false, true );
#endif
if ( DepthMode == DEPTH_MODE_NORMAL )
{
// Don't leave the material in a bogus state
UnModulateMaterial( pMaterial, pOldColor );
}
}
}
if ( DepthMode != DEPTH_MODE_NORMAL )
{
return;
}
if ( g_ShaderDebug.anydebug )
{
for ( i = 0; i < pRender->meshCount; i++ )
{
brushrendermesh_t &mesh = pRender->pMeshes[i];
CUtlVector<msurface2_t *> brushList;
for ( int j = 0; j < mesh.batchCount; j++ )
{
brushrenderbatch_t &batch = pRender->pBatches[mesh.firstBatch + j];
for ( int k = 0; k < batch.surfaceCount; k++ )
{
brushrendersurface_t &surface = pRender->pSurfaces[batch.firstSurface + k];
if ( backface[surface.planeIndex] )
continue;
SurfaceHandle_t surfID = firstSurfID + surface.surfaceIndex;
brushList.AddToTail(surfID);
}
}
// now draw debug for each drawn surface
DrawDebugInformation( brushList );
}
}
}
//-----------------------------------------------------------------------------
// Draws an translucent (sorted) brush model
//-----------------------------------------------------------------------------
void CBrushBatchRender::DrawTranslucentBrushModel( IClientEntity *baseentity, model_t *model, const Vector& origin, bool bShadowDepth, bool bDrawOpaque, bool bDrawTranslucent )
{
if ( bDrawOpaque )
{
DrawOpaqueBrushModel( baseentity, model, origin, bShadowDepth ? DEPTH_MODE_SHADOW : DEPTH_MODE_NORMAL );
}
if ( !bShadowDepth && bDrawTranslucent )
{
DrawTranslucentBrushModel( model, baseentity );
}
}
//-----------------------------------------------------------------------------
// Purpose: Draws a brush model shadow for render-to-texture shadows
//-----------------------------------------------------------------------------
// UNDONE: This is reasonable, but it could be much faster as follows:
// Build a vertex buffer cache. A block-allocated static mesh with 1024 verts
// per block or something.
// When a new brush is encountered, fill it in to the current block or the
// next one (first fit allocator). Then this routine could simply draw
// a static mesh with a single index buffer build, draw call (no dynamic vb).
void CBrushBatchRender::DrawBrushModelShadow( model_t *model, IClientRenderable *pRenderable )
{
brushrender_t *pRender = FindOrCreateRenderBatch( (model_t *)model );
if ( !pRender )
return;
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->Bind( g_pMaterialShadowBuild, pRenderable );
// Draws all surfaces in the brush model in arbitrary order
SurfaceHandle_t surfID = SurfaceHandleFromIndex( model->brush.firstmodelsurface, model->brush.pShared );
IMesh *pMesh = pRenderContext->GetDynamicMesh();
CMeshBuilder meshBuilder;
meshBuilder.Begin( pMesh, MATERIAL_TRIANGLES, pRender->totalVertexCount, pRender->totalIndexCount );
for ( int i=0 ; i<model->brush.nummodelsurfaces ; i++, surfID++)
{
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
if ( MSurf_Flags(surfID) & SURFDRAW_TRANS )
continue;
int startVert = MSurf_FirstVertIndex( surfID );
int vertCount = MSurf_VertCount( surfID );
int startIndex = meshBuilder.GetCurrentVertex();
int j;
for ( j = 0; j < vertCount; j++ )
{
int vertIndex = model->brush.pShared->vertindices[startVert + j];
// world-space vertex
meshBuilder.Position3fv( model->brush.pShared->vertexes[vertIndex].position.Base() );
meshBuilder.TexCoord2f( 0, 0.0f, 0.0f );
meshBuilder.AdvanceVertex();
}
for ( j = 0; j < vertCount-2; j++ )
{
meshBuilder.FastIndex( startIndex );
meshBuilder.FastIndex( startIndex + j + 1 );
meshBuilder.FastIndex( startIndex + j + 2 );
}
}
meshBuilder.End();
pMesh->Draw();
}
void R_Surface_LevelInit()
{
g_BrushBatchRenderer.LevelInit();
// reset this to the default at the start of each level
g_MaxLeavesVisible = 512;
}
void R_Surface_LevelShutdown()
{
CWorldRenderList::PurgeAll();
}
//-----------------------------------------------------------------------------
static void R_DrawBrushModel_Override( IClientEntity *baseentity, model_t *model, const Vector& origin )
{
VPROF( "R_DrawOpaqueBrushModel_Override" );
SurfaceHandle_t surfID = SurfaceHandleFromIndex( model->brush.firstmodelsurface, model->brush.pShared );
for (int i=0 ; i<model->brush.nummodelsurfaces ; i++, surfID++)
{
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
Shader_BrushSurface( surfID, model, baseentity );
}
// now draw debug for each drawn surface
if ( g_ShaderDebug.anydebug )
{
CUtlVector<msurface2_t *> surfaceList;
surfID = SurfaceHandleFromIndex( model->brush.firstmodelsurface, model->brush.pShared );
for (int i=0 ; i<model->brush.nummodelsurfaces ; i++, surfID++)
{
surfaceList.AddToTail(surfID);
}
DrawDebugInformation( surfaceList );
}
}
int R_MarkDlightsOnBrushModel( model_t *model, IClientRenderable *pRenderable )
{
int count = 0;
if ( g_bActiveDlights )
{
extern int R_MarkLights (dlight_t *light, int bit, mnode_t *node);
g_BrushToWorldMatrix.SetupMatrixOrgAngles( pRenderable->GetRenderOrigin(), pRenderable->GetRenderAngles() );
Vector saveOrigin;
for (int k=0 ; k<MAX_DLIGHTS ; k++)
{
if ((cl_dlights[k].die < cl.GetTime()) ||
(!cl_dlights[k].IsRadiusGreaterThanZero()))
continue;
VectorCopy( cl_dlights[k].origin, saveOrigin );
cl_dlights[k].origin = g_BrushToWorldMatrix.VMul4x3Transpose( saveOrigin );
mnode_t *node = model->brush.pShared->nodes + model->brush.firstnode;
if ( IsBoxIntersectingSphereExtents( node->m_vecCenter, node->m_vecHalfDiagonal, cl_dlights[k].origin, cl_dlights[k].GetRadius() ) )
{
count += R_MarkLights( &cl_dlights[k], 1<<k, node );
}
VectorCopy( saveOrigin, cl_dlights[k].origin );
}
if ( count )
{
model->flags |= MODELFLAG_HAS_DLIGHT;
}
g_BrushToWorldMatrix.Identity();
}
return count;
}
//-----------------------------------------------------------------------------
// Stuff to do right before and after brush model rendering
//-----------------------------------------------------------------------------
void Shader_BrushBegin( model_t *model, IClientEntity *baseentity /*=NULL*/ )
{
// Clear out the render list of decals
DecalSurfacesInit( true );
// Clear out the render lists of shadows
g_pShadowMgr->ClearShadowRenderList( );
}
void Shader_BrushEnd( IMatRenderContext *pRenderContext, VMatrix const* pBrushToWorld, model_t *model, bool bShadowDepth, IClientEntity *baseentity /* = NULL */ )
{
if ( bShadowDepth )
return;
DecalSurfaceDraw(pRenderContext, BRUSHMODEL_DECAL_SORT_GROUP);
// draw the flashlight lighting for the decals on the brush.
g_pShadowMgr->DrawFlashlightDecals( BRUSHMODEL_DECAL_SORT_GROUP, false );
// Draw all shadows on the brush
g_pShadowMgr->RenderProjectedTextures( pBrushToWorld );
}
class CBrushModelTransform
{
public:
CBrushModelTransform( const Vector &origin, const QAngle &angles, IMatRenderContext *pRenderContext )
{
bool rotated = ( angles[0] || angles[1] || angles[2] );
m_bIdentity = (origin == vec3_origin) && (!rotated);
// Don't change state if we don't need to
if (!m_bIdentity)
{
m_savedModelorg = modelorg;
pRenderContext->MatrixMode( MATERIAL_MODEL );
pRenderContext->PushMatrix();
g_BrushToWorldMatrix.SetupMatrixOrgAngles( origin, angles );
pRenderContext->LoadMatrix( g_BrushToWorldMatrix );
modelorg = g_BrushToWorldMatrix.VMul4x3Transpose(g_EngineRenderer->ViewOrigin());
}
}
~CBrushModelTransform()
{
if ( !m_bIdentity )
{
CMatRenderContextPtr pRenderContext( materials );
pRenderContext->MatrixMode( MATERIAL_MODEL );
pRenderContext->PopMatrix();
g_BrushToWorldMatrix.Identity();
modelorg = m_savedModelorg;
}
}
VMatrix *GetNonIdentityMatrix()
{
return m_bIdentity ? NULL : &g_BrushToWorldMatrix;
}
inline bool IsIdentity() { return m_bIdentity; }
Vector m_savedModelorg;
bool m_bIdentity;
};
//-----------------------------------------------------------------------------
// Purpose: Draws a brush model using the global shader/surfaceVisitor
// Input : *e - entity to draw
// Output : void R_DrawBrushModel
//-----------------------------------------------------------------------------
void R_DrawBrushModel( IClientEntity *baseentity, model_t *model,
const Vector& origin, const QAngle& angles, ERenderDepthMode DepthMode, bool bDrawOpaque, bool bDrawTranslucent )
{
VPROF( "R_DrawBrushModel" );
#ifdef USE_CONVARS
if ( !r_drawbrushmodels.GetInt() )
{
return;
}
bool bWireframe = false;
if ( r_drawbrushmodels.GetInt() == 2 )
{
// save and override
bWireframe = g_ShaderDebug.wireframe;
g_ShaderDebug.wireframe = true;
g_ShaderDebug.anydebug = true;
}
#endif
CMatRenderContextPtr pRenderContext( materials );
CBrushModelTransform brushTransform( origin, angles, pRenderContext );
Assert(model->brush.firstmodelsurface != 0);
// Draw the puppy...
Shader_BrushBegin( model, baseentity );
if ( model->flags & MODELFLAG_FRAMEBUFFER_TEXTURE )
{
CMatRenderContextPtr pRenderContextMat( materials );
pRenderContext->CopyRenderTargetToTexture( pRenderContextMat->GetFrameBufferCopyTexture( 0 ) );
}
if ( s_pBrushRenderOverride )
{
R_DrawBrushModel_Override( baseentity, model, origin );
}
else
{
if ( model->flags & MODELFLAG_TRANSLUCENT )
{
if ( DepthMode == DEPTH_MODE_NORMAL )
{
g_BrushBatchRenderer.DrawTranslucentBrushModel( baseentity, model, origin, false, bDrawOpaque, bDrawTranslucent );
}
}
else if ( bDrawOpaque )
{
g_BrushBatchRenderer.DrawOpaqueBrushModel( baseentity, model, origin, DepthMode );
}
}
Shader_BrushEnd( pRenderContext, brushTransform.GetNonIdentityMatrix(), model, DepthMode != DEPTH_MODE_NORMAL, baseentity );
#ifdef USE_CONVARS
if ( r_drawbrushmodels.GetInt() == 2 )
{
// restore
g_ShaderDebug.wireframe = bWireframe;
g_ShaderDebug.TestAnyDebug();
}
#endif
}
//-----------------------------------------------------------------------------
// Purpose: Draws a brush model shadow for render-to-texture shadows
//-----------------------------------------------------------------------------
void R_DrawBrushModelShadow( IClientRenderable *pRenderable )
{
if( !r_drawbrushmodels.GetInt() )
return;
model_t *model = (model_t *)pRenderable->GetModel();
const Vector& origin = pRenderable->GetRenderOrigin();
QAngle const& angles = pRenderable->GetRenderAngles();
CMatRenderContextPtr pRenderContext( materials );
CBrushModelTransform brushTransform( origin, angles, pRenderContext );
g_BrushBatchRenderer.DrawBrushModelShadow( model, pRenderable );
}
void R_DrawIdentityBrushModel( IWorldRenderList *pRenderListIn, model_t *model )
{
if ( !model )
return;
CWorldRenderList *pRenderList = assert_cast<CWorldRenderList *>(pRenderListIn);
SurfaceHandle_t surfID = SurfaceHandleFromIndex( model->brush.firstmodelsurface, model->brush.pShared );
for (int j=0 ; j<model->brush.nummodelsurfaces ; ++j, surfID++)
{
Assert( !(MSurf_Flags( surfID ) & SURFDRAW_NODRAW) );
// FIXME: Can't insert translucent stuff into the list
// of translucent surfaces because we don't know what leaf
// we're in. At the moment, the client doesn't add translucent
// brushes to the identity brush model list
// Assert ( (psurf->flags & SURFDRAW_TRANS ) == 0 );
// OPTIMIZE: Backface cull these guys?!?!?
if ( MSurf_Flags( surfID ) & SURFDRAW_TRANS)
// if ( psurf->texinfo->material->IsTranslucent() )
{
Shader_TranslucentWorldSurface( pRenderList, surfID );
}
else
{
Shader_WorldSurface( pRenderList, surfID );
}
}
}
#endif
//-----------------------------------------------------------------------------
// Converts leaf pointer to index
//-----------------------------------------------------------------------------
inline int LeafToIndex( mleaf_t* pLeaf )
{
return pLeaf - host_state.worldbrush->leafs;
}
//-----------------------------------------------------------------------------
// Structures to help out with enumeration
//-----------------------------------------------------------------------------
enum
{
ENUM_SPHERE_TEST_X = 0x1,
ENUM_SPHERE_TEST_Y = 0x2,
ENUM_SPHERE_TEST_Z = 0x4,
ENUM_SPHERE_TEST_ALL = 0x7
};
struct EnumLeafBoxInfo_t
{
VectorAligned m_vecBoxMax;
VectorAligned m_vecBoxMin;
VectorAligned m_vecBoxCenter;
VectorAligned m_vecBoxHalfDiagonal;
ISpatialLeafEnumerator *m_pIterator;
2022-02-23 11:50:30 +00:00
intp m_nContext;
2020-04-22 16:56:21 +00:00
};
struct EnumLeafSphereInfo_t
{
Vector m_vecCenter;
float m_flRadius;
Vector m_vecBoxCenter;
Vector m_vecBoxHalfDiagonal;
ISpatialLeafEnumerator *m_pIterator;
2022-02-23 11:50:30 +00:00
intp m_nContext;
2020-04-22 16:56:21 +00:00
};
//-----------------------------------------------------------------------------
// Finds all leaves of the BSP tree within a particular volume
//-----------------------------------------------------------------------------
static bool EnumerateLeafInBox_R(mnode_t *node, EnumLeafBoxInfo_t& info )
{
// no polygons in solid nodes (don't report these leaves either)
if (node->contents == CONTENTS_SOLID)
return true; // solid
// rough cull...
if (!IsBoxIntersectingBoxExtents(node->m_vecCenter, node->m_vecHalfDiagonal,
info.m_vecBoxCenter, info.m_vecBoxHalfDiagonal))
{
return true;
}
if (node->contents >= 0)
{
// if a leaf node, report it to the iterator...
return info.m_pIterator->EnumerateLeaf( LeafToIndex( (mleaf_t *)node ), info.m_nContext );
}
// Does the node plane split the box?
// find which side of the node we are on
cplane_t* plane = node->plane;
if ( plane->type <= PLANE_Z )
{
if (info.m_vecBoxMax[plane->type] <= plane->dist)
{
return EnumerateLeafInBox_R( node->children[1], info );
}
else if (info.m_vecBoxMin[plane->type] >= plane->dist)
{
return EnumerateLeafInBox_R( node->children[0], info );
}
else
{
// Here the box is split by the node
bool ret = EnumerateLeafInBox_R( node->children[0], info );
if (!ret)
return false;
return EnumerateLeafInBox_R( node->children[1], info );
}
}
// Arbitrary split plane here
Vector cornermin, cornermax;
for (int i = 0; i < 3; ++i)
{
if (plane->normal[i] >= 0)
{
cornermin[i] = info.m_vecBoxMin[i];
cornermax[i] = info.m_vecBoxMax[i];
}
else
{
cornermin[i] = info.m_vecBoxMax[i];
cornermax[i] = info.m_vecBoxMin[i];
}
}
if (DotProduct( plane->normal, cornermax ) <= plane->dist)
{
return EnumerateLeafInBox_R( node->children[1], info );
}
else if (DotProduct( plane->normal, cornermin ) >= plane->dist)
{
return EnumerateLeafInBox_R( node->children[0], info );
}
else
{
// Here the box is split by the node
bool ret = EnumerateLeafInBox_R( node->children[0], info );
if (!ret)
return false;
return EnumerateLeafInBox_R( node->children[1], info );
}
}
#ifdef _X360
static fltx4 AlignThatVector(const Vector &vc)
{
fltx4 out = __loadunalignedvector(vc.Base());
/*
out.x = vc.x;
out.y = vc.y;
out.z = vc.z;
*/
// squelch the w component
return __vrlimi( out, __vzero(), 1, 0 );
}
//-----------------------------------------------------------------------------
// Finds all leaves of the BSP tree within a particular volume
//-----------------------------------------------------------------------------
static bool EnumerateLeafInBox_R(mnode_t * RESTRICT node, const EnumLeafBoxInfo_t * RESTRICT pInfo )
{
// no polygons in solid nodes (don't report these leaves either)
if (node->contents == CONTENTS_SOLID)
return true; // solid
// speculatively get the children into the cache
__dcbt(0,node->children[0]);
__dcbt(0,node->children[1]);
// constructing these here prevents LHS if we spill.
// it's not quite a quick enough operation to do extemporaneously.
fltx4 infoBoxCenter = LoadAlignedSIMD(pInfo->m_vecBoxCenter);
fltx4 infoBoxHalfDiagonal = LoadAlignedSIMD(pInfo->m_vecBoxHalfDiagonal);
Assert(IsBoxIntersectingBoxExtents(AlignThatVector(node->m_vecCenter), AlignThatVector(node->m_vecHalfDiagonal),
LoadAlignedSIMD(pInfo->m_vecBoxCenter), LoadAlignedSIMD(pInfo->m_vecBoxHalfDiagonal)) ==
IsBoxIntersectingBoxExtents((node->m_vecCenter), node->m_vecHalfDiagonal,
pInfo->m_vecBoxCenter, pInfo->m_vecBoxHalfDiagonal));
// rough cull...
if (!IsBoxIntersectingBoxExtents(LoadAlignedSIMD(node->m_vecCenter), LoadAlignedSIMD(node->m_vecHalfDiagonal),
infoBoxCenter, infoBoxHalfDiagonal))
{
return true;
}
if (node->contents >= 0)
{
// if a leaf node, report it to the iterator...
return pInfo->m_pIterator->EnumerateLeaf( LeafToIndex( (mleaf_t *)node ), pInfo->m_nContext );
}
// Does the node plane split the box?
// find which side of the node we are on
cplane_t* RESTRICT plane = node->plane;
if ( plane->type <= PLANE_Z )
{
if (pInfo->m_vecBoxMax[plane->type] <= plane->dist)
{
return EnumerateLeafInBox_R( node->children[1], pInfo );
}
else if (pInfo->m_vecBoxMin[plane->type] >= plane->dist)
{
return EnumerateLeafInBox_R( node->children[0], pInfo );
}
else
{
// Here the box is split by the node
return EnumerateLeafInBox_R( node->children[0], pInfo ) &&
EnumerateLeafInBox_R( node->children[1], pInfo );
}
}
// Arbitrary split plane here
/*
Vector cornermin, cornermax;
for (int i = 0; i < 3; ++i)
{
if (plane->normal[i] >= 0)
{
cornermin[i] = info.m_vecBoxMin[i];
cornermax[i] = info.m_vecBoxMax[i];
}
else
{
cornermin[i] = info.m_vecBoxMax[i];
cornermax[i] = info.m_vecBoxMin[i];
}
}
*/
// take advantage of high throughput/high latency
2023-10-08 04:31:07 +00:00
fltx4 planeNormal = LoadUnaligned3SIMD( plane->normal.Base() );
2020-04-22 16:56:21 +00:00
fltx4 vecBoxMin = LoadAlignedSIMD(pInfo->m_vecBoxMin);
fltx4 vecBoxMax = LoadAlignedSIMD(pInfo->m_vecBoxMax);
fltx4 cornermin, cornermax;
// by now planeNormal is ready...
fltx4 control = XMVectorGreaterOrEqual( planeNormal, __vzero() );
// now control[i] = planeNormal[i] > 0 ? 0xFF : 0x00
cornermin = XMVectorSelect( vecBoxMax, vecBoxMin, control); // cornermin[i] = control[i] ? vecBoxMin[i] : vecBoxMax[i]
cornermax = XMVectorSelect( vecBoxMin, vecBoxMax, control);
// compute dot products
fltx4 dotCornerMax = __vmsum3fp(planeNormal, cornermax); // vsumfp ignores w component
fltx4 dotCornerMin = __vmsum3fp(planeNormal, cornermin);
fltx4 vPlaneDist = ReplicateX4(plane->dist);
UINT conditionRegister;
XMVectorGreaterR(&conditionRegister,vPlaneDist,dotCornerMax);
if (XMComparisonAllTrue(conditionRegister)) // plane->normal . cornermax <= plane->dist
return EnumerateLeafInBox_R( node->children[1], pInfo );
XMVectorGreaterOrEqualR(&conditionRegister,dotCornerMin,vPlaneDist);
if ( XMComparisonAllTrue(conditionRegister) )
return EnumerateLeafInBox_R( node->children[0], pInfo );
return EnumerateLeafInBox_R( node->children[0], pInfo ) &&
EnumerateLeafInBox_R( node->children[1], pInfo );
/*
if (DotProduct( plane->normal, cornermax ) <= plane->dist)
{
return EnumerateLeafInBox_R( node->children[1], info, infoBoxCenter, infoBoxHalfDiagonal );
}
else if (DotProduct( plane->normal, cornermin ) >= plane->dist)
{
return EnumerateLeafInBox_R( node->children[0], info, infoBoxCenter, infoBoxHalfDiagonal );
}
else
{
// Here the box is split by the node
bool ret = EnumerateLeafInBox_R( node->children[0], info, infoBoxCenter, infoBoxHalfDiagonal );
if (!ret)
return false;
return EnumerateLeafInBox_R( node->children[1], info, infoBoxCenter, infoBoxHalfDiagonal );
}
*/
}
#endif
//-----------------------------------------------------------------------------
// Returns all leaves that lie within a spherical volume
//-----------------------------------------------------------------------------
bool EnumerateLeafInSphere_R( mnode_t *node, EnumLeafSphereInfo_t& info, int nTestFlags )
{
while (true)
{
// no polygons in solid nodes (don't report these leaves either)
if (node->contents == CONTENTS_SOLID)
return true; // solid
if (node->contents >= 0)
{
// leaf cull...
// NOTE: using nTestFlags here means that we may be passing in some
// leaves that don't actually intersect the sphere, but instead intersect
// the box that surrounds the sphere.
if (nTestFlags)
{
if (!IsBoxIntersectingSphereExtents (node->m_vecCenter, node->m_vecHalfDiagonal, info.m_vecCenter, info.m_flRadius))
return true;
}
// if a leaf node, report it to the iterator...
return info.m_pIterator->EnumerateLeaf( LeafToIndex( (mleaf_t *)node ), info.m_nContext );
}
else if (nTestFlags)
{
if (node->contents == -1)
{
// faster cull...
if (nTestFlags & ENUM_SPHERE_TEST_X)
{
float flDelta = FloatMakePositive( node->m_vecCenter.x - info.m_vecBoxCenter.x );
float flSize = node->m_vecHalfDiagonal.x + info.m_vecBoxHalfDiagonal.x;
if ( flDelta > flSize )
return true;
// This checks for the node being completely inside the box...
if ( flDelta + node->m_vecHalfDiagonal.x < info.m_vecBoxHalfDiagonal.x )
nTestFlags &= ~ENUM_SPHERE_TEST_X;
}
if (nTestFlags & ENUM_SPHERE_TEST_Y)
{
float flDelta = FloatMakePositive( node->m_vecCenter.y - info.m_vecBoxCenter.y );
float flSize = node->m_vecHalfDiagonal.y + info.m_vecBoxHalfDiagonal.y;
if ( flDelta > flSize )
return true;
// This checks for the node being completely inside the box...
if ( flDelta + node->m_vecHalfDiagonal.y < info.m_vecBoxHalfDiagonal.y )
nTestFlags &= ~ENUM_SPHERE_TEST_Y;
}
if (nTestFlags & ENUM_SPHERE_TEST_Z)
{
float flDelta = FloatMakePositive( node->m_vecCenter.z - info.m_vecBoxCenter.z );
float flSize = node->m_vecHalfDiagonal.z + info.m_vecBoxHalfDiagonal.z;
if ( flDelta > flSize )
return true;
if ( flDelta + node->m_vecHalfDiagonal.z < info.m_vecBoxHalfDiagonal.z )
nTestFlags &= ~ENUM_SPHERE_TEST_Z;
}
}
else if (node->contents == -2)
{
// If the box is too small to bother with testing, then blat out the flags
nTestFlags = 0;
}
}
// Does the node plane split the sphere?
// find which side of the node we are on
float flNormalDotCenter;
cplane_t* plane = node->plane;
if ( plane->type <= PLANE_Z )
{
flNormalDotCenter = info.m_vecCenter[plane->type];
}
else
{
// Here, we've got a plane which is not axis aligned, so we gotta do more work
flNormalDotCenter = DotProduct( plane->normal, info.m_vecCenter );
}
if (flNormalDotCenter + info.m_flRadius <= plane->dist)
{
node = node->children[1];
}
else if (flNormalDotCenter - info.m_flRadius >= plane->dist)
{
node = node->children[0];
}
else
{
// Here the box is split by the node
if (!EnumerateLeafInSphere_R( node->children[0], info, nTestFlags ))
return false;
node = node->children[1];
}
}
}
//-----------------------------------------------------------------------------
// Enumerate leaves along a non-extruded ray
//-----------------------------------------------------------------------------
static bool EnumerateLeavesAlongRay_R( mnode_t *node, Ray_t const& ray,
2022-02-23 11:50:30 +00:00
float start, float end, ISpatialLeafEnumerator* pEnum, intp context )
2020-04-22 16:56:21 +00:00
{
// no polygons in solid nodes (don't report these leaves either)
if (node->contents == CONTENTS_SOLID)
return true; // solid, keep recursing
// didn't hit anything
if (node->contents >= 0)
{
// if a leaf node, report it to the iterator...
return pEnum->EnumerateLeaf( LeafToIndex( (mleaf_t *)node ), context );
}
// Determine which side of the node plane our points are on
cplane_t* plane = node->plane;
float startDotN,deltaDotN;
if (plane->type <= PLANE_Z)
{
startDotN = ray.m_Start[plane->type];
deltaDotN = ray.m_Delta[plane->type];
}
else
{
startDotN = DotProduct( ray.m_Start, plane->normal );
deltaDotN = DotProduct( ray.m_Delta, plane->normal );
}
float front = startDotN + start * deltaDotN - plane->dist;
float back = startDotN + end * deltaDotN - plane->dist;
int side = front < 0;
// If they're both on the same side of the plane, don't bother to split
// just check the appropriate child
if ( (back < 0) == side )
{
return EnumerateLeavesAlongRay_R (node->children[side], ray, start, end, pEnum, context );
}
// calculate mid point
float frac = front / (front - back);
float mid = start * (1.0f - frac) + end * frac;
// go down front side
bool ok = EnumerateLeavesAlongRay_R (node->children[side], ray, start, mid, pEnum, context );
if (!ok)
return ok;
// go down back side
return EnumerateLeavesAlongRay_R (node->children[!side], ray, mid, end, pEnum, context );
}
//-----------------------------------------------------------------------------
// Enumerate leaves along a non-extruded ray
//-----------------------------------------------------------------------------
static bool EnumerateLeavesAlongExtrudedRay_R( mnode_t *node, Ray_t const& ray,
2022-02-23 11:50:30 +00:00
float start, float end, ISpatialLeafEnumerator* pEnum, intp context )
2020-04-22 16:56:21 +00:00
{
// no polygons in solid nodes (don't report these leaves either)
if (node->contents == CONTENTS_SOLID)
return true; // solid, keep recursing
// didn't hit anything
if (node->contents >= 0)
{
// if a leaf node, report it to the iterator...
return pEnum->EnumerateLeaf( LeafToIndex( (mleaf_t *)node ), context );
}
// Determine which side of the node plane our points are on
cplane_t* plane = node->plane;
//
float t1, t2, offset;
float startDotN,deltaDotN;
if (plane->type <= PLANE_Z)
{
startDotN = ray.m_Start[plane->type];
deltaDotN = ray.m_Delta[plane->type];
offset = ray.m_Extents[plane->type] + DIST_EPSILON;
}
else
{
startDotN = DotProduct( ray.m_Start, plane->normal );
deltaDotN = DotProduct( ray.m_Delta, plane->normal );
offset = fabs(ray.m_Extents[0]*plane->normal[0]) +
fabs(ray.m_Extents[1]*plane->normal[1]) +
fabs(ray.m_Extents[2]*plane->normal[2]) + DIST_EPSILON;
}
t1 = startDotN + start * deltaDotN - plane->dist;
t2 = startDotN + end * deltaDotN - plane->dist;
// If they're both on the same side of the plane (further than the trace
// extents), don't bother to split, just check the appropriate child
if (t1 > offset && t2 > offset )
// if (t1 >= offset && t2 >= offset)
{
return EnumerateLeavesAlongExtrudedRay_R( node->children[0], ray,
start, end, pEnum, context );
}
if (t1 < -offset && t2 < -offset)
{
return EnumerateLeavesAlongExtrudedRay_R( node->children[1], ray,
start, end, pEnum, context );
}
// For the segment of the line that we are going to use
// to test against the back side of the plane, we're going
// to use the part that goes from start to plane + extent
// (which causes it to extend somewhat into the front halfspace,
// since plane + extent is in the front halfspace).
// Similarly, front the segment which tests against the front side,
// we use the entire front side part of the ray + a portion of the ray that
// extends by -extents into the back side.
if (fabs(t1-t2) < DIST_EPSILON)
{
// Parallel case, send entire ray to both children...
bool ret = EnumerateLeavesAlongExtrudedRay_R( node->children[0],
ray, start, end, pEnum, context );
if (!ret)
return false;
return EnumerateLeavesAlongExtrudedRay_R( node->children[1],
ray, start, end, pEnum, context );
}
// Compute the two fractions...
// We need one at plane + extent and another at plane - extent.
// put the crosspoint DIST_EPSILON pixels on the near side
float idist, frac2, frac;
int side;
if (t1 < t2)
{
idist = 1.0/(t1-t2);
side = 1;
frac2 = (t1 + offset) * idist;
frac = (t1 - offset) * idist;
}
else if (t1 > t2)
{
idist = 1.0/(t1-t2);
side = 0;
frac2 = (t1 - offset) * idist;
frac = (t1 + offset) * idist;
}
else
{
side = 0;
frac = 1;
frac2 = 0;
}
// move up to the node
frac = clamp( frac, 0.f, 1.f );
float midf = start + (end - start)*frac;
bool ret = EnumerateLeavesAlongExtrudedRay_R( node->children[side], ray, start, midf, pEnum, context );
if (!ret)
return ret;
// go past the node
frac2 = clamp( frac2, 0.f, 1.f );
midf = start + (end - start)*frac2;
return EnumerateLeavesAlongExtrudedRay_R( node->children[!side], ray, midf, end, pEnum, context );
}
//-----------------------------------------------------------------------------
//
// Helper class to iterate over leaves
//
//-----------------------------------------------------------------------------
class CEngineBSPTree : public IEngineSpatialQuery
{
public:
// Returns the number of leaves
int LeafCount() const;
// Enumerates the leaves along a ray, box, etc.
2022-02-23 11:50:30 +00:00
bool EnumerateLeavesAtPoint( const Vector& pt, ISpatialLeafEnumerator* pEnum, intp context );
bool EnumerateLeavesInBox( const Vector& mins, const Vector& maxs, ISpatialLeafEnumerator* pEnum, intp context );
bool EnumerateLeavesInSphere( const Vector& center, float radius, ISpatialLeafEnumerator* pEnum, intp context );
bool EnumerateLeavesAlongRay( Ray_t const& ray, ISpatialLeafEnumerator* pEnum, intp context );
2020-04-22 16:56:21 +00:00
};
//-----------------------------------------------------------------------------
// Singleton accessor
//-----------------------------------------------------------------------------
static CEngineBSPTree s_ToolBSPTree;
IEngineSpatialQuery* g_pToolBSPTree = &s_ToolBSPTree;
//-----------------------------------------------------------------------------
// Returns the number of leaves
//-----------------------------------------------------------------------------
int CEngineBSPTree::LeafCount() const
{
return host_state.worldbrush->numleafs;
}
//-----------------------------------------------------------------------------
// Enumerates the leaves at a point
//-----------------------------------------------------------------------------
bool CEngineBSPTree::EnumerateLeavesAtPoint( const Vector& pt,
2022-02-23 11:50:30 +00:00
ISpatialLeafEnumerator* pEnum, intp context )
2020-04-22 16:56:21 +00:00
{
int leaf = CM_PointLeafnum( pt );
return pEnum->EnumerateLeaf( leaf, context );
}
static ConVar opt_EnumerateLeavesFastAlgorithm( "opt_EnumerateLeavesFastAlgorithm", "1", FCVAR_NONE, "Use the new SIMD version of CEngineBSPTree::EnumerateLeavesInBox." );
bool CEngineBSPTree::EnumerateLeavesInBox( const Vector& mins, const Vector& maxs,
2022-02-23 11:50:30 +00:00
ISpatialLeafEnumerator* pEnum, intp context )
2020-04-22 16:56:21 +00:00
{
if ( !host_state.worldmodel )
return false;
EnumLeafBoxInfo_t info;
VectorAdd( mins, maxs, info.m_vecBoxCenter );
info.m_vecBoxCenter *= 0.5f;
VectorSubtract( maxs, info.m_vecBoxCenter, info.m_vecBoxHalfDiagonal );
info.m_pIterator = pEnum;
info.m_nContext = context;
info.m_vecBoxMax = maxs;
info.m_vecBoxMin = mins;
#ifdef _X360
if (opt_EnumerateLeavesFastAlgorithm.GetBool())
return EnumerateLeafInBox_R( host_state.worldbrush->nodes, &info );
else
return EnumerateLeafInBox_R( host_state.worldbrush->nodes, info );
#else
return EnumerateLeafInBox_R( host_state.worldbrush->nodes, info );
#endif
}
bool CEngineBSPTree::EnumerateLeavesInSphere( const Vector& center, float radius,
2022-02-23 11:50:30 +00:00
ISpatialLeafEnumerator* pEnum, intp context )
2020-04-22 16:56:21 +00:00
{
EnumLeafSphereInfo_t info;
info.m_vecCenter = center;
info.m_flRadius = radius;
info.m_pIterator = pEnum;
info.m_nContext = context;
info.m_vecBoxCenter = center;
info.m_vecBoxHalfDiagonal.Init( radius, radius, radius );
return EnumerateLeafInSphere_R( host_state.worldbrush->nodes, info, ENUM_SPHERE_TEST_ALL );
}
2022-02-23 11:50:30 +00:00
bool CEngineBSPTree::EnumerateLeavesAlongRay( Ray_t const& ray, ISpatialLeafEnumerator* pEnum, intp context )
2020-04-22 16:56:21 +00:00
{
if (!ray.m_IsSwept)
{
Vector mins, maxs;
VectorAdd( ray.m_Start, ray.m_Extents, maxs );
VectorSubtract( ray.m_Start, ray.m_Extents, mins );
return EnumerateLeavesInBox( mins, maxs, pEnum, context );
}
Vector end;
VectorAdd( ray.m_Start, ray.m_Delta, end );
if ( ray.m_IsRay )
{
return EnumerateLeavesAlongRay_R( host_state.worldbrush->nodes, ray, 0.0f, 1.0f, pEnum, context );
}
else
{
return EnumerateLeavesAlongExtrudedRay_R( host_state.worldbrush->nodes, ray, 0.0f, 1.0f, pEnum, context );
}
}