770 lines
20 KiB
C
Raw Permalink Normal View History

2020-04-22 12:56:21 -04:00
//========= Copyright <20> 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose: Multiple linked list container class
//
// $Revision: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLMULTILIST_H
#define UTLMULTILIST_H
#ifdef _WIN32
#pragma once
#endif
#include "utllinkedlist.h"
// memdbgon must be the last include file in a .h file!!!
#include "tier0/memdbgon.h"
//-----------------------------------------------------------------------------
// class CUtlMultiList:
// description:
// A lovely index-based linked list! T is the class type, I is the index
// type, which usually should be an unsigned short or smaller.
// This list can contain multiple lists
//-----------------------------------------------------------------------------
template <class T, class I>
class CUtlMultiList
{
protected:
// What the linked list element looks like
struct ListElem_t
{
T m_Element;
I m_Previous;
I m_Next;
};
struct List_t
{
I m_Head;
I m_Tail;
I m_Count;
};
typedef CUtlMemory<ListElem_t> M; // Keep naming similar to CUtlLinkedList
public:
typedef I ListHandle_t;
// constructor, destructor
CUtlMultiList( int growSize = 0, int initSize = 0 );
CUtlMultiList( void *pMemory, int memsize );
~CUtlMultiList( );
// gets particular elements
T& Element( I i );
T const& Element( I i ) const;
T& operator[]( I i );
T const& operator[]( I i ) const;
// Make sure we have a particular amount of memory
void EnsureCapacity( int num );
// Memory deallocation
void Purge();
// List Creation/deletion
ListHandle_t CreateList();
void DestroyList( ListHandle_t list );
bool IsValidList( ListHandle_t list ) const;
// Insertion methods (call default constructor)....
I InsertBefore( ListHandle_t list, I before );
I InsertAfter( ListHandle_t list, I after );
I AddToHead( ListHandle_t list );
I AddToTail( ListHandle_t list );
// Insertion methods (call copy constructor)....
I InsertBefore( ListHandle_t list, I before, T const& src );
I InsertAfter( ListHandle_t list, I after, T const& src );
I AddToHead( ListHandle_t list, T const& src );
I AddToTail( ListHandle_t list, T const& src );
// Removal methods
void Remove( ListHandle_t list, I elem );
// Removes all items in a single list
void RemoveAll( ListHandle_t list );
// Removes all items in all lists
void RemoveAll();
// Allocation/deallocation methods
// NOTE: To free, it must *not* be in a list!
I Alloc( );
void Free( I elem );
// list modification
void LinkBefore( ListHandle_t list, I before, I elem );
void LinkAfter( ListHandle_t list, I after, I elem );
void Unlink( ListHandle_t list, I elem );
void LinkToHead( ListHandle_t list, I elem );
void LinkToTail( ListHandle_t list, I elem );
// invalid index
static I InvalidIndex() { return (I)~0; }
static bool IndexInRange( int index );
static size_t ElementSize() { return sizeof(ListElem_t); }
// list statistics
int Count( ListHandle_t list ) const;
int TotalCount( ) const;
I MaxElementIndex() const;
// Traversing the list
I Head( ListHandle_t list ) const;
I Tail( ListHandle_t list ) const;
I Previous( I element ) const;
I Next( I element ) const;
// Are nodes in a list or valid?
bool IsValidIndex( I i ) const;
bool IsInList( I i ) const;
protected:
// constructs the class
void ConstructList( );
// Gets at the list element....
ListElem_t& InternalElement( I i ) { return m_Memory[i]; }
ListElem_t const& InternalElement( I i ) const { return m_Memory[i]; }
// A test for debug mode only...
bool IsElementInList( ListHandle_t list, I elem ) const;
// copy constructors not allowed
CUtlMultiList( CUtlMultiList<T, I> const& list ) { Assert(0); }
M m_Memory;
CUtlLinkedList<List_t, I> m_List;
I* m_pElementList;
I m_FirstFree;
I m_TotalElements;
int m_MaxElementIndex; // The number allocated (use int so we can catch overflow)
void ResetDbgInfo()
{
m_pElements = m_Memory.Base();
#ifdef _DEBUG
// Allocate space for the element list (which list is each element in)
if (m_Memory.NumAllocated() > 0)
{
if (!m_pElementList)
{
m_pElementList = (I*)malloc( m_Memory.NumAllocated() * sizeof(I) );
}
else
{
m_pElementList = (I*)realloc( m_pElementList, m_Memory.NumAllocated() * sizeof(I) );
}
}
#endif
}
// For debugging purposes;
// it's in release builds so this can be used in libraries correctly
ListElem_t *m_pElements;
};
//-----------------------------------------------------------------------------
// constructor, destructor
//-----------------------------------------------------------------------------
template <class T, class I>
CUtlMultiList<T,I>::CUtlMultiList( int growSize, int initSize ) :
m_Memory(growSize, initSize), m_pElementList(0)
{
ConstructList();
}
template <class T, class I>
CUtlMultiList<T,I>::CUtlMultiList( void* pMemory, int memsize ) :
m_Memory((ListElem_t *)pMemory, memsize/sizeof(ListElem_t)), m_pElementList(0)
{
ConstructList();
}
template <class T, class I>
CUtlMultiList<T,I>::~CUtlMultiList( )
{
RemoveAll();
if (m_pElementList)
free(m_pElementList);
}
template <class T, class I>
void CUtlMultiList<T,I>::ConstructList( )
{
m_FirstFree = InvalidIndex();
m_TotalElements = 0;
m_MaxElementIndex = 0;
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// gets particular elements
//-----------------------------------------------------------------------------
template <class T, class I>
inline T& CUtlMultiList<T,I>::Element( I i )
{
return m_Memory[i].m_Element;
}
template <class T, class I>
inline T const& CUtlMultiList<T,I>::Element( I i ) const
{
return m_Memory[i].m_Element;
}
template <class T, class I>
inline T& CUtlMultiList<T,I>::operator[]( I i )
{
return m_Memory[i].m_Element;
}
template <class T, class I>
inline T const& CUtlMultiList<T,I>::operator[]( I i ) const
{
return m_Memory[i].m_Element;
}
//-----------------------------------------------------------------------------
// list creation/destruction
//-----------------------------------------------------------------------------
template <class T, class I>
typename CUtlMultiList<T,I>::ListHandle_t CUtlMultiList<T,I>::CreateList()
{
ListHandle_t l = m_List.AddToTail();
m_List[l].m_Head = m_List[l].m_Tail = InvalidIndex();
m_List[l].m_Count = 0;
return l;
}
template <class T, class I>
void CUtlMultiList<T,I>::DestroyList( ListHandle_t list )
{
Assert( IsValidList(list) );
RemoveAll( list );
m_List.Remove(list);
}
template <class T, class I>
bool CUtlMultiList<T,I>::IsValidList( ListHandle_t list ) const
{
return m_List.IsValidIndex(list);
}
//-----------------------------------------------------------------------------
// list statistics
//-----------------------------------------------------------------------------
template <class T, class I>
inline int CUtlMultiList<T,I>::TotalCount() const
{
return m_TotalElements;
}
template <class T, class I>
inline int CUtlMultiList<T,I>::Count( ListHandle_t list ) const
{
Assert( IsValidList(list) );
return m_List[list].m_Count;
}
template <class T, class I>
inline I CUtlMultiList<T,I>::MaxElementIndex() const
{
return m_MaxElementIndex;
}
//-----------------------------------------------------------------------------
// Traversing the list
//-----------------------------------------------------------------------------
template <class T, class I>
inline I CUtlMultiList<T,I>::Head(ListHandle_t list) const
{
Assert( IsValidList(list) );
return m_List[list].m_Head;
}
template <class T, class I>
inline I CUtlMultiList<T,I>::Tail(ListHandle_t list) const
{
Assert( IsValidList(list) );
return m_List[list].m_Tail;
}
template <class T, class I>
inline I CUtlMultiList<T,I>::Previous( I i ) const
{
Assert( IsValidIndex(i) );
return InternalElement(i).m_Previous;
}
template <class T, class I>
inline I CUtlMultiList<T,I>::Next( I i ) const
{
Assert( IsValidIndex(i) );
return InternalElement(i).m_Next;
}
//-----------------------------------------------------------------------------
// Are nodes in the list or valid?
//-----------------------------------------------------------------------------
template <class T, class I>
inline bool CUtlMultiList<T,I>::IndexInRange( int index ) // Static method
{
// Since I is not necessarily the type returned by M (int), we need to check that M returns
// indices which are representable by I. A common case is 'I === unsigned short', in which case
// case CUtlMemory will have 'InvalidIndex == (int)-1' (which casts to 65535 in I), and will
// happily return elements at index 65535 and above.
// Do a couple of static checks here: the invalid index should be (I)~0 given how we use m_MaxElementIndex,
// and 'I' should be unsigned (to avoid signed arithmetic errors for plausibly exhaustible ranges).
COMPILE_TIME_ASSERT( (I)M::INVALID_INDEX == (I)~0 );
COMPILE_TIME_ASSERT( ( sizeof(I) > 2 ) || ( ( (I)-1 ) > 0 ) );
return ( ( (I)index == index ) && ( (I)index != InvalidIndex() ) );
}
template <class T, class I>
inline bool CUtlMultiList<T,I>::IsValidIndex( I i ) const
{
// GCC warns if I is an unsigned type and we do a ">= 0" against it (since the comparison is always 0).
// We get the warning even if we cast inside the expression. It only goes away if we assign to another variable.
long x = i;
return (i < m_MaxElementIndex) && (x >= 0) &&
((m_Memory[i].m_Previous != i) || (m_Memory[i].m_Next == i));
}
template <class T, class I>
inline bool CUtlMultiList<T,I>::IsInList( I i ) const
{
// GCC warns if I is an unsigned type and we do a ">= 0" against it (since the comparison is always 0).
// We get the warning even if we cast inside the expression. It only goes away if we assign to another variable.
long x = i;
return (i < m_MaxElementIndex) && (x >= 0) && (Previous(i) != i);
}
//-----------------------------------------------------------------------------
// Makes sure we have enough memory allocated to store a requested # of elements
//-----------------------------------------------------------------------------
template< class T, class I >
void CUtlMultiList<T, I>::EnsureCapacity( int num )
{
m_Memory.EnsureCapacity(num);
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Deallocate memory
//-----------------------------------------------------------------------------
template <class T, class I>
void CUtlMultiList<T,I>::Purge()
{
RemoveAll();
m_List.Purge();
m_Memory.Purge( );
m_List.Purge();
m_FirstFree = InvalidIndex();
m_TotalElements = 0;
m_MaxElementIndex = 0;
ResetDbgInfo();
}
//-----------------------------------------------------------------------------
// Node allocation/deallocation
//-----------------------------------------------------------------------------
template <class T, class I>
I CUtlMultiList<T,I>::Alloc( )
{
I elem;
if (m_FirstFree == InvalidIndex())
{
// We can overflow before the utlmemory overflows, since we have have I != int
if ( !IndexInRange( m_MaxElementIndex ) )
{
ExecuteNTimes( 10, Warning( "CUtlMultiList overflow! (exhausted index range)\n" ) );
return InvalidIndex();
}
// Nothing in the free list; add.
// Since nothing is in the free list, m_TotalElements == total # of elements
// the list knows about.
if (m_MaxElementIndex == m_Memory.NumAllocated())
{
m_Memory.Grow();
ResetDbgInfo();
if ( m_MaxElementIndex >= m_Memory.NumAllocated() )
{
ExecuteNTimes( 10, Warning( "CUtlMultiList overflow! (exhausted memory allocator)\n" ) );
return InvalidIndex();
}
}
elem = (I)m_MaxElementIndex;
++m_MaxElementIndex;
}
else
{
elem = m_FirstFree;
m_FirstFree = InternalElement(m_FirstFree).m_Next;
}
// Mark the element as not being in a list
InternalElement(elem).m_Next = InternalElement(elem).m_Previous = elem;
++m_TotalElements;
Construct( &Element(elem) );
return elem;
}
template <class T, class I>
void CUtlMultiList<T,I>::Free( I elem )
{
Assert( IsValidIndex(elem) && !IsInList(elem) );
Destruct( &Element(elem) );
InternalElement(elem).m_Next = m_FirstFree;
m_FirstFree = elem;
--m_TotalElements;
}
//-----------------------------------------------------------------------------
// A test for debug mode only...
//-----------------------------------------------------------------------------
template <class T, class I>
inline bool CUtlMultiList<T,I>::IsElementInList( ListHandle_t list, I elem ) const
{
if (!m_pElementList)
return true;
return m_pElementList[elem] == list;
}
//-----------------------------------------------------------------------------
// list modification
//-----------------------------------------------------------------------------
template <class T, class I>
void CUtlMultiList<T,I>::LinkBefore( ListHandle_t list, I before, I elem )
{
Assert( IsValidIndex(elem) && IsValidList(list) );
// Unlink it if it's in the list at the moment
Unlink(list, elem);
ListElem_t& newElem = InternalElement(elem);
// The element *after* our newly linked one is the one we linked before.
newElem.m_Next = before;
if (before == InvalidIndex())
{
// In this case, we're linking to the end of the list, so reset the tail
newElem.m_Previous = m_List[list].m_Tail;
m_List[list].m_Tail = elem;
}
else
{
// Here, we're not linking to the end. Set the prev pointer to point to
// the element we're linking.
Assert( IsInList(before) );
ListElem_t& beforeElem = InternalElement(before);
newElem.m_Previous = beforeElem.m_Previous;
beforeElem.m_Previous = elem;
}
// Reset the head if we linked to the head of the list
if (newElem.m_Previous == InvalidIndex())
m_List[list].m_Head = elem;
else
InternalElement(newElem.m_Previous).m_Next = elem;
// one more element baby
++m_List[list].m_Count;
// Store the element into the list
if (m_pElementList)
m_pElementList[elem] = list;
}
template <class T, class I>
void CUtlMultiList<T,I>::LinkAfter( ListHandle_t list, I after, I elem )
{
Assert( IsValidIndex(elem) );
// Unlink it if it's in the list at the moment
Unlink(list, elem);
ListElem_t& newElem = InternalElement(elem);
// The element *before* our newly linked one is the one we linked after
newElem.m_Previous = after;
if (after == InvalidIndex())
{
// In this case, we're linking to the head of the list, reset the head
newElem.m_Next = m_List[list].m_Head;
m_List[list].m_Head = elem;
}
else
{
// Here, we're not linking to the end. Set the next pointer to point to
// the element we're linking.
Assert( IsInList(after) );
ListElem_t& afterElem = InternalElement(after);
newElem.m_Next = afterElem.m_Next;
afterElem.m_Next = elem;
}
// Reset the tail if we linked to the tail of the list
if (newElem.m_Next == InvalidIndex())
m_List[list].m_Tail = elem;
else
InternalElement(newElem.m_Next).m_Previous = elem;
// one more element baby
++m_List[list].m_Count;
// Store the element into the list
if (m_pElementList)
m_pElementList[elem] = list;
}
template <class T, class I>
void CUtlMultiList<T,I>::Unlink( ListHandle_t list, I elem )
{
Assert( IsValidIndex(elem) && IsValidList(list) );
if (IsInList(elem))
{
// Make sure the element is in the right list
Assert( IsElementInList( list, elem ) );
ListElem_t& oldElem = InternalElement(elem);
// If we're the first guy, reset the head
// otherwise, make our previous node's next pointer = our next
if (oldElem.m_Previous != InvalidIndex())
InternalElement(oldElem.m_Previous).m_Next = oldElem.m_Next;
else
m_List[list].m_Head = oldElem.m_Next;
// If we're the last guy, reset the tail
// otherwise, make our next node's prev pointer = our prev
if (oldElem.m_Next != InvalidIndex())
InternalElement(oldElem.m_Next).m_Previous = oldElem.m_Previous;
else
m_List[list].m_Tail = oldElem.m_Previous;
// This marks this node as not in the list,
// but not in the free list either
oldElem.m_Previous = oldElem.m_Next = elem;
// One less puppy
--m_List[list].m_Count;
// Store the element into the list
if (m_pElementList)
m_pElementList[elem] = m_List.InvalidIndex();
}
}
template <class T, class I>
inline void CUtlMultiList<T,I>::LinkToHead( ListHandle_t list, I elem )
{
LinkAfter( list, InvalidIndex(), elem );
}
template <class T, class I>
inline void CUtlMultiList<T,I>::LinkToTail( ListHandle_t list, I elem )
{
LinkBefore( list, InvalidIndex(), elem );
}
//-----------------------------------------------------------------------------
// Insertion methods; allocates and links (uses default constructor)
//-----------------------------------------------------------------------------
template <class T, class I>
I CUtlMultiList<T,I>::InsertBefore( ListHandle_t list, I before )
{
// Make a new node
I newNode = Alloc();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkBefore( list, before, newNode );
// Construct the data
Construct( &Element(newNode) );
return newNode;
}
template <class T, class I>
I CUtlMultiList<T,I>::InsertAfter( ListHandle_t list, I after )
{
// Make a new node
I newNode = Alloc();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkAfter( list, after, newNode );
// Construct the data
Construct( &Element(newNode) );
return newNode;
}
template <class T, class I>
inline I CUtlMultiList<T,I>::AddToHead( ListHandle_t list )
{
return InsertAfter( list, InvalidIndex() );
}
template <class T, class I>
inline I CUtlMultiList<T,I>::AddToTail( ListHandle_t list )
{
return InsertBefore( list, InvalidIndex() );
}
//-----------------------------------------------------------------------------
// Insertion methods; allocates and links (uses copy constructor)
//-----------------------------------------------------------------------------
template <class T, class I>
I CUtlMultiList<T,I>::InsertBefore( ListHandle_t list, I before, T const& src )
{
// Make a new node
I newNode = Alloc();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkBefore( list, before, newNode );
// Construct the data
CopyConstruct( &Element(newNode), src );
return newNode;
}
template <class T, class I>
I CUtlMultiList<T,I>::InsertAfter( ListHandle_t list, I after, T const& src )
{
// Make a new node
I newNode = Alloc();
if ( newNode == InvalidIndex() )
return newNode;
// Link it in
LinkAfter( list, after, newNode );
// Construct the data
CopyConstruct( &Element(newNode), src );
return newNode;
}
template <class T, class I>
inline I CUtlMultiList<T,I>::AddToHead( ListHandle_t list, T const& src )
{
return InsertAfter( list, InvalidIndex(), src );
}
template <class T, class I>
inline I CUtlMultiList<T,I>::AddToTail( ListHandle_t list, T const& src )
{
return InsertBefore( list, InvalidIndex(), src );
}
//-----------------------------------------------------------------------------
// Removal methods
//-----------------------------------------------------------------------------
template <class T, class I>
void CUtlMultiList<T,I>::Remove( ListHandle_t list, I elem )
{
if (IsInList(elem))
Unlink(list, elem);
Free( elem );
}
// Removes all items in a single list
template <class T, class I>
void CUtlMultiList<T,I>::RemoveAll( ListHandle_t list )
{
Assert( IsValidList(list) );
I i = Head(list);
I next;
while( i != InvalidIndex() )
{
next = Next(i);
Remove(list, i);
i = next;
}
}
template <class T, class I>
void CUtlMultiList<T,I>::RemoveAll()
{
if (m_MaxElementIndex == 0)
return;
// Put everything into the free list
I prev = InvalidIndex();
for (int i = (int)m_MaxElementIndex; --i >= 0; )
{
// Invoke the destructor
if (IsValidIndex((I)i))
Destruct( &Element((I)i) );
// next points to the next free list item
InternalElement((I)i).m_Next = prev;
// Indicates it's in the free list
InternalElement((I)i).m_Previous = (I)i;
prev = (I)i;
}
// First free points to the first element
m_FirstFree = 0;
// Clear everything else out
for (I list = m_List.Head(); list != m_List.InvalidIndex(); list = m_List.Next(list) )
{
m_List[list].m_Head = InvalidIndex();
m_List[list].m_Tail = InvalidIndex();
m_List[list].m_Count = 0;
}
m_TotalElements = 0;
}
#include "tier0/memdbgoff.h"
#endif // UTLMULTILIST_H