2775 lines
69 KiB
C

/*
gl_image.c - texture uploading and processing
Copyright (C) 2010 Uncle Mike
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include "common.h"
#include "client.h"
#include "gl_local.h"
#include "studio.h"
#define TEXTURES_HASH_SIZE (MAX_TEXTURES >> 2)
static gltexture_t r_textures[MAX_TEXTURES];
static gltexture_t *r_texturesHashTable[TEXTURES_HASH_SIZE];
static byte data2D[BLOCK_SIZE_MAX*BLOCK_SIZE_MAX*4]; // intermediate texbuffer
static int r_numTextures;
static rgbdata_t r_image; // generic pixelbuffer used for internal textures
// internal tables
static vec3_t r_luminanceTable[256]; // RGB to luminance
#define IsLightMap( tex ) ( FBitSet(( tex )->flags, TF_ATLAS_PAGE ))
/*
=================
R_GetTexture
acess to array elem
=================
*/
gltexture_t *R_GetTexture( GLenum texnum )
{
ASSERT( texnum >= 0 && texnum < MAX_TEXTURES );
return &r_textures[texnum];
}
/*
=================
GL_TargetToString
=================
*/
static const char *GL_TargetToString( GLenum target )
{
switch( target )
{
case GL_TEXTURE_1D:
return "1D";
case GL_TEXTURE_2D:
return "2D";
case GL_TEXTURE_3D:
return "3D";
case GL_TEXTURE_CUBE_MAP_ARB:
return "Cube";
case GL_TEXTURE_2D_ARRAY_EXT:
return "Array";
case GL_TEXTURE_RECTANGLE_EXT:
return "Rect";
}
return "??";
}
/*
=================
GL_Bind
=================
*/
void GL_Bind( GLint tmu, GLenum texnum )
{
gltexture_t *texture;
GLuint glTarget;
// missed texture ?
if( texnum <= 0 ) texnum = tr.defaultTexture;
Assert( texnum > 0 && texnum < MAX_TEXTURES );
if( tmu != GL_KEEP_UNIT )
GL_SelectTexture( tmu );
else tmu = glState.activeTMU;
texture = &r_textures[texnum];
glTarget = texture->target;
if( glTarget == GL_TEXTURE_2D_ARRAY_EXT )
glTarget = GL_TEXTURE_2D;
if( glState.currentTextureTargets[tmu] != glTarget )
{
if( glState.currentTextureTargets[tmu] != GL_NONE )
pglDisable( glState.currentTextureTargets[tmu] );
glState.currentTextureTargets[tmu] = glTarget;
pglEnable( glState.currentTextureTargets[tmu] );
}
if( glState.currentTextures[tmu] == texture->texnum )
return;
pglBindTexture( texture->target, texture->texnum );
glState.currentTextures[tmu] = texture->texnum;
}
/*
=================
GL_ApplyTextureParams
=================
*/
void GL_ApplyTextureParams( gltexture_t *tex )
{
vec4_t border = { 0.0f, 0.0f, 0.0f, 1.0f };
Assert( tex != NULL );
// set texture filter
if( FBitSet( tex->flags, TF_DEPTHMAP ))
{
if( !FBitSet( tex->flags, TF_NOCOMPARE ))
{
pglTexParameteri( tex->target, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB );
pglTexParameteri( tex->target, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL );
}
if( FBitSet( tex->flags, TF_LUMINANCE ))
pglTexParameteri( tex->target, GL_DEPTH_TEXTURE_MODE_ARB, GL_LUMINANCE );
else pglTexParameteri( tex->target, GL_DEPTH_TEXTURE_MODE_ARB, GL_INTENSITY );
if( FBitSet( tex->flags, TF_NEAREST ))
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
// allow max anisotropy as 1.0f on depth textures
if( GL_Support( GL_ANISOTROPY_EXT ))
pglTexParameterf( tex->target, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f );
}
else if( FBitSet( tex->flags, TF_NOMIPMAP ) || tex->numMips <= 1 )
{
if( FBitSet( tex->flags, TF_NEAREST ) || ( IsLightMap( tex ) && gl_lightmap_nearest->value ))
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
}
else
{
if( FBitSet( tex->flags, TF_NEAREST ) || gl_texture_nearest->value )
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
// set texture anisotropy if available
if( GL_Support( GL_ANISOTROPY_EXT ) && ( tex->numMips > 1 ))
pglTexParameterf( tex->target, GL_TEXTURE_MAX_ANISOTROPY_EXT, gl_texture_anisotropy->value );
// set texture LOD bias if available
if( GL_Support( GL_TEXTURE_LOD_BIAS ) && ( tex->numMips > 1 ))
pglTexParameterf( tex->target, GL_TEXTURE_LOD_BIAS_EXT, gl_texture_lodbias->value );
}
// check if border is not supported
if( FBitSet( tex->flags, TF_BORDER ) && !GL_Support( GL_CLAMP_TEXBORDER_EXT ))
{
ClearBits( tex->flags, TF_BORDER );
SetBits( tex->flags, TF_CLAMP );
}
// only seamless cubemaps allows wrap 'clamp_to_border"
if( tex->target == GL_TEXTURE_CUBE_MAP_ARB && !GL_Support( GL_ARB_SEAMLESS_CUBEMAP ) && FBitSet( tex->flags, TF_BORDER ))
ClearBits( tex->flags, TF_BORDER );
// set texture wrap
if( FBitSet( tex->flags, TF_BORDER ))
{
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER );
if( tex->target != GL_TEXTURE_1D )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER );
if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_BORDER );
pglTexParameterfv( tex->target, GL_TEXTURE_BORDER_COLOR, border );
}
else if( FBitSet( tex->flags, TF_CLAMP ))
{
if( GL_Support( GL_CLAMPTOEDGE_EXT ))
{
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
if( tex->target != GL_TEXTURE_1D )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_CLAMP );
if( tex->target != GL_TEXTURE_1D )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_CLAMP );
if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_CLAMP );
}
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_REPEAT );
if( tex->target != GL_TEXTURE_1D )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_REPEAT );
if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB )
pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_REPEAT );
}
}
/*
=================
GL_UpdateTextureParams
=================
*/
static void GL_UpdateTextureParams( int iTexture )
{
gltexture_t *tex = &r_textures[iTexture];
Assert( tex != NULL );
if( !tex->texnum ) return; // free slot
GL_Bind( GL_TEXTURE0, iTexture );
// set texture anisotropy if available
if( GL_Support( GL_ANISOTROPY_EXT ) && ( tex->numMips > 1 ) && !FBitSet( tex->flags, TF_DEPTHMAP ))
pglTexParameterf( tex->target, GL_TEXTURE_MAX_ANISOTROPY_EXT, gl_texture_anisotropy->value );
// set texture LOD bias if available
if( GL_Support( GL_TEXTURE_LOD_BIAS ) && ( tex->numMips > 1 ) && !FBitSet( tex->flags, TF_DEPTHMAP ))
pglTexParameterf( tex->target, GL_TEXTURE_LOD_BIAS_EXT, gl_texture_lodbias->value );
if( IsLightMap( tex ))
{
if( gl_lightmap_nearest->value )
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
}
if( tex->numMips <= 1 ) return;
if( FBitSet( tex->flags, TF_NEAREST ) || gl_texture_nearest->value )
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST );
}
else
{
pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR );
}
}
/*
=================
R_SetTextureParameters
=================
*/
void R_SetTextureParameters( void )
{
int i;
if( GL_Support( GL_ANISOTROPY_EXT ))
{
if( gl_texture_anisotropy->value > glConfig.max_texture_anisotropy )
Cvar_SetValue( "gl_anisotropy", glConfig.max_texture_anisotropy );
else if( gl_texture_anisotropy->value < 1.0f )
Cvar_SetValue( "gl_anisotropy", 1.0f );
}
if( GL_Support( GL_TEXTURE_LOD_BIAS ))
{
if( gl_texture_lodbias->value < -glConfig.max_texture_lod_bias )
Cvar_SetValue( "gl_mipmap_bias", -glConfig.max_texture_lod_bias );
else if( gl_texture_lodbias->value > glConfig.max_texture_lod_bias )
Cvar_SetValue( "gl_mipmap_bias", glConfig.max_texture_lod_bias );
}
ClearBits( gl_texture_anisotropy->flags, FCVAR_CHANGED );
ClearBits( gl_texture_lodbias->flags, FCVAR_CHANGED );
ClearBits( gl_texture_nearest->flags, FCVAR_CHANGED );
ClearBits( gl_lightmap_nearest->flags, FCVAR_CHANGED );
// change all the existing mipmapped texture objects
for( i = 0; i < r_numTextures; i++ )
GL_UpdateTextureParams( i );
}
/*
================
GL_CalcTextureSamples
================
*/
static int GL_CalcTextureSamples( int flags )
{
if( FBitSet( flags, IMAGE_HAS_COLOR ))
return FBitSet( flags, IMAGE_HAS_ALPHA ) ? 4 : 3;
return FBitSet( flags, IMAGE_HAS_ALPHA ) ? 2 : 1;
}
/*
==================
GL_CalcImageSize
==================
*/
static size_t GL_CalcImageSize( pixformat_t format, int width, int height, int depth )
{
size_t size = 0;
// check the depth error
depth = Q_max( 1, depth );
switch( format )
{
case PF_RGB_24:
case PF_BGR_24:
size = width * height * depth * 3;
break;
case PF_BGRA_32:
case PF_RGBA_32:
size = width * height * depth * 4;
break;
case PF_DXT1:
size = (((width + 3) >> 2) * ((height + 3) >> 2) * 8) * depth;
break;
case PF_DXT3:
case PF_DXT5:
size = (((width + 3) >> 2) * ((height + 3) >> 2) * 16) * depth;
break;
}
return size;
}
/*
==================
GL_CalcTextureSize
==================
*/
static size_t GL_CalcTextureSize( GLenum format, int width, int height, int depth )
{
size_t size = 0;
// check the depth error
depth = Q_max( 1, depth );
switch( format )
{
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
size = (((width + 3) >> 2) * ((height + 3) >> 2) * 8) * depth;
break;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
size = (((width + 3) >> 2) * ((height + 3) >> 2) * 16) * depth;
break;
case GL_RGBA8:
case GL_RGBA:
size = width * height * depth * 4;
break;
case GL_RGB8:
case GL_RGB:
size = width * height * depth * 4;
break;
case GL_INTENSITY:
case GL_LUMINANCE:
case GL_INTENSITY8:
case GL_LUMINANCE8:
size = (width * height * depth);
break;
case GL_LUMINANCE_ALPHA:
case GL_LUMINANCE8_ALPHA8:
size = width * height * depth * 2;
break;
case GL_R8:
size = width * height * depth;
break;
case GL_RG8:
size = width * height * depth * 2;
break;
case GL_R16:
size = width * height * depth * 2;
break;
case GL_RG16:
size = width * height * depth * 4;
break;
case GL_R16F:
case GL_LUMINANCE16F_ARB:
size = width * height * depth * 2; // half-floats
break;
case GL_R32F:
case GL_LUMINANCE32F_ARB:
size = width * height * depth * 4;
break;
case GL_RG16F:
case GL_LUMINANCE_ALPHA16F_ARB:
size = width * height * depth * 4;
break;
case GL_RG32F:
case GL_LUMINANCE_ALPHA32F_ARB:
size = width * height * depth * 8;
break;
case GL_RGB16F_ARB:
case GL_RGBA16F_ARB:
size = width * height * depth * 8;
break;
case GL_RGB32F_ARB:
case GL_RGBA32F_ARB:
size = width * height * depth * 16;
break;
case GL_DEPTH_COMPONENT16:
size = width * height * depth * 2;
break;
case GL_DEPTH_COMPONENT24:
size = width * height * depth * 4;
break;
case GL_DEPTH_COMPONENT32F:
size = width * height * depth * 4;
break;
default:
Host_Error( "GL_CalcTextureSize: bad texture internal format (%u)\n", format );
break;
}
return size;
}
static int GL_CalcMipmapCount( gltexture_t *tex, qboolean haveBuffer )
{
int width, height;
int mipcount;
Assert( tex != NULL );
if( !haveBuffer || tex->target == GL_TEXTURE_3D )
return 1;
// generate mip-levels by user request
if( FBitSet( tex->flags, TF_NOMIPMAP ))
return 1;
// mip-maps can't exceeds 16
for( mipcount = 0; mipcount < 16; mipcount++ )
{
width = Q_max( 1, ( tex->width >> mipcount ));
height = Q_max( 1, ( tex->height >> mipcount ));
if( width == 1 && height == 1 )
break;
}
return mipcount + 1;
}
/*
================
GL_SetTextureDimensions
================
*/
static void GL_SetTextureDimensions( gltexture_t *tex, int width, int height, int depth )
{
int maxTextureSize;
int maxDepthSize = 1;
Assert( tex != NULL );
switch( tex->target )
{
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
maxTextureSize = glConfig.max_2d_texture_size;
break;
case GL_TEXTURE_2D_ARRAY_EXT:
maxDepthSize = glConfig.max_2d_texture_layers;
maxTextureSize = glConfig.max_2d_texture_size;
break;
case GL_TEXTURE_RECTANGLE_EXT:
maxTextureSize = glConfig.max_2d_rectangle_size;
break;
case GL_TEXTURE_CUBE_MAP_ARB:
maxTextureSize = glConfig.max_cubemap_size;
break;
case GL_TEXTURE_3D:
maxDepthSize = glConfig.max_3d_texture_size;
maxTextureSize = glConfig.max_3d_texture_size;
break;
}
// store original sizes
tex->srcWidth = width;
tex->srcHeight = height;
if( !GL_Support( GL_ARB_TEXTURE_NPOT_EXT ))
{
width = (width + 3) & ~3;
height = (height + 3) & ~3;
}
if( width > maxTextureSize || height > maxTextureSize || depth > maxDepthSize )
{
if( tex->target == GL_TEXTURE_1D )
{
while( width > maxTextureSize )
width >>= 1;
}
else if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_2D_ARRAY_EXT )
{
while( width > maxTextureSize || height > maxTextureSize || depth > maxDepthSize )
{
width >>= 1;
height >>= 1;
depth >>= 1;
}
}
else // all remaining cases
{
while( width > maxTextureSize || height > maxTextureSize )
{
width >>= 1;
height >>= 1;
}
}
}
// set the texture dimensions
tex->width = Q_max( 1, width );
tex->height = Q_max( 1, height );
tex->depth = Q_max( 1, depth );
}
/*
===============
GL_SetTextureTarget
===============
*/
static void GL_SetTextureTarget( gltexture_t *tex, rgbdata_t *pic )
{
Assert( pic != NULL );
Assert( tex != NULL );
// correct depth size
pic->depth = Q_max( 1, pic->depth );
tex->numMips = 0; // begin counting
// correct mip count
pic->numMips = Q_max( 1, pic->numMips );
// trying to determine texture type
if( pic->width > 1 && pic->height <= 1 )
tex->target = GL_TEXTURE_1D;
else if( FBitSet( pic->flags, IMAGE_CUBEMAP ))
tex->target = GL_TEXTURE_CUBE_MAP_ARB;
else if( FBitSet( pic->flags, IMAGE_MULTILAYER ) && pic->depth >= 1 )
tex->target = GL_TEXTURE_2D_ARRAY_EXT;
else if( pic->width > 1 && pic->height > 1 && pic->depth > 1 )
tex->target = GL_TEXTURE_3D;
else if( FBitSet( tex->flags, TF_TEXTURE_RECTANGLE ) && pic->width == glState.width && pic->height == glState.height )
tex->target = GL_TEXTURE_RECTANGLE_EXT;
else tex->target = GL_TEXTURE_2D; // default case
// check for hardware support
if(( tex->target == GL_TEXTURE_CUBE_MAP_ARB ) && !GL_Support( GL_TEXTURE_CUBEMAP_EXT ))
tex->target = GL_NONE;
if(( tex->target == GL_TEXTURE_RECTANGLE_EXT ) && !GL_Support( GL_TEXTURE_2D_RECT_EXT ))
tex->target = GL_TEXTURE_2D; // fallback
if(( tex->target == GL_TEXTURE_2D_ARRAY_EXT ) && !GL_Support( GL_TEXTURE_ARRAY_EXT ))
tex->target = GL_NONE;
if(( tex->target == GL_TEXTURE_3D ) && !GL_Support( GL_TEXTURE_3D_EXT ))
tex->target = GL_NONE;
// check if depth textures are not supported
if( FBitSet( tex->flags, TF_DEPTHMAP ) && !GL_Support( GL_DEPTH_TEXTURE ))
tex->target = GL_NONE;
// depth cubemaps only allowed when GL_EXT_gpu_shader4 is supported
if( tex->target == GL_TEXTURE_CUBE_MAP_ARB && !GL_Support( GL_EXT_GPU_SHADER4 ) && FBitSet( tex->flags, TF_DEPTHMAP ))
tex->target = GL_NONE;
if( tex->target == GL_TEXTURE_CUBE_MAP_ARB )
tex->flags |= TF_CUBEMAP; // it's cubemap!
}
/*
===============
GL_SetTextureFormat
===============
*/
static void GL_SetTextureFormat( gltexture_t *tex, pixformat_t format, int channelMask )
{
qboolean haveColor = ( channelMask & IMAGE_HAS_COLOR );
qboolean haveAlpha = ( channelMask & IMAGE_HAS_ALPHA );
Assert( tex != NULL );
if( ImageDXT( format ))
{
switch( format )
{
case PF_DXT1: tex->format = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break; // never use DXT1 with 1-bit alpha
case PF_DXT3: tex->format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break;
case PF_DXT5: tex->format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break;
}
return;
}
else if( FBitSet( tex->flags, TF_DEPTHMAP ))
{
if( FBitSet( tex->flags, TF_ARB_16BIT ))
tex->format = GL_DEPTH_COMPONENT16;
else if( FBitSet( tex->flags, TF_ARB_FLOAT ) && GL_Support( GL_ARB_DEPTH_FLOAT_EXT ))
tex->format = GL_DEPTH_COMPONENT32F;
else tex->format = GL_DEPTH_COMPONENT24;
}
else if( FBitSet( tex->flags, TF_ARB_FLOAT ) && GL_Support( GL_ARB_TEXTURE_FLOAT_EXT ))
{
if( haveColor && haveAlpha )
{
if( FBitSet( tex->flags, TF_ARB_16BIT ) || glw_state.desktopBitsPixel == 16 )
tex->format = GL_RGBA16F_ARB;
else tex->format = GL_RGBA32F_ARB;
}
else if( haveColor )
{
if( FBitSet( tex->flags, TF_ARB_16BIT ) || glw_state.desktopBitsPixel == 16 )
tex->format = GL_RGB16F_ARB;
else tex->format = GL_RGB32F_ARB;
}
else if( haveAlpha )
{
if( FBitSet( tex->flags, TF_ARB_16BIT ) || glw_state.desktopBitsPixel == 16 )
tex->format = GL_LUMINANCE_ALPHA16F_ARB;
else tex->format = GL_LUMINANCE_ALPHA32F_ARB;
}
else
{
if( FBitSet( tex->flags, TF_ARB_16BIT ) || glw_state.desktopBitsPixel == 16 )
tex->format = GL_LUMINANCE16F_ARB;
else tex->format = GL_LUMINANCE32F_ARB;
}
}
else
{
// NOTE: not all the types will be compressed
int bits = glw_state.desktopBitsPixel;
switch( GL_CalcTextureSamples( channelMask ) )
{
case 1: tex->format = GL_LUMINANCE8; break;
case 2: tex->format = GL_LUMINANCE8_ALPHA8; break;
case 3:
switch( bits )
{
case 16: tex->format = GL_RGB5; break;
case 32: tex->format = GL_RGB8; break;
default: tex->format = GL_RGB; break;
}
break;
case 4:
default:
switch( bits )
{
case 16: tex->format = GL_RGBA4; break;
case 32: tex->format = GL_RGBA8; break;
default: tex->format = GL_RGBA; break;
}
break;
}
}
}
/*
=================
GL_ResampleTexture
Assume input buffer is RGBA
=================
*/
byte *GL_ResampleTexture( const byte *source, int inWidth, int inHeight, int outWidth, int outHeight, qboolean isNormalMap )
{
uint frac, fracStep;
uint *in = (uint *)source;
uint p1[0x1000], p2[0x1000];
byte *pix1, *pix2, *pix3, *pix4;
uint *out, *inRow1, *inRow2;
static byte *scaledImage = NULL; // pointer to a scaled image
vec3_t normal;
int i, x, y;
if( !source ) return NULL;
scaledImage = Mem_Realloc( r_temppool, scaledImage, outWidth * outHeight * 4 );
fracStep = inWidth * 0x10000 / outWidth;
out = (uint *)scaledImage;
frac = fracStep >> 2;
for( i = 0; i < outWidth; i++ )
{
p1[i] = 4 * (frac >> 16);
frac += fracStep;
}
frac = (fracStep >> 2) * 3;
for( i = 0; i < outWidth; i++ )
{
p2[i] = 4 * (frac >> 16);
frac += fracStep;
}
if( isNormalMap )
{
for( y = 0; y < outHeight; y++, out += outWidth )
{
inRow1 = in + inWidth * (int)(((float)y + 0.25f) * inHeight / outHeight);
inRow2 = in + inWidth * (int)(((float)y + 0.75f) * inHeight / outHeight);
for( x = 0; x < outWidth; x++ )
{
pix1 = (byte *)inRow1 + p1[x];
pix2 = (byte *)inRow1 + p2[x];
pix3 = (byte *)inRow2 + p1[x];
pix4 = (byte *)inRow2 + p2[x];
normal[0] = MAKE_SIGNED( pix1[0] ) + MAKE_SIGNED( pix2[0] ) + MAKE_SIGNED( pix3[0] ) + MAKE_SIGNED( pix4[0] );
normal[1] = MAKE_SIGNED( pix1[1] ) + MAKE_SIGNED( pix2[1] ) + MAKE_SIGNED( pix3[1] ) + MAKE_SIGNED( pix4[1] );
normal[2] = MAKE_SIGNED( pix1[2] ) + MAKE_SIGNED( pix2[2] ) + MAKE_SIGNED( pix3[2] ) + MAKE_SIGNED( pix4[2] );
if( !VectorNormalizeLength( normal ))
VectorSet( normal, 0.5f, 0.5f, 1.0f );
((byte *)(out+x))[0] = 128 + (byte)(127.0f * normal[0]);
((byte *)(out+x))[1] = 128 + (byte)(127.0f * normal[1]);
((byte *)(out+x))[2] = 128 + (byte)(127.0f * normal[2]);
((byte *)(out+x))[3] = 255;
}
}
}
else
{
for( y = 0; y < outHeight; y++, out += outWidth )
{
inRow1 = in + inWidth * (int)(((float)y + 0.25f) * inHeight / outHeight);
inRow2 = in + inWidth * (int)(((float)y + 0.75f) * inHeight / outHeight);
for( x = 0; x < outWidth; x++ )
{
pix1 = (byte *)inRow1 + p1[x];
pix2 = (byte *)inRow1 + p2[x];
pix3 = (byte *)inRow2 + p1[x];
pix4 = (byte *)inRow2 + p2[x];
((byte *)(out+x))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0]) >> 2;
((byte *)(out+x))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1]) >> 2;
((byte *)(out+x))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2]) >> 2;
((byte *)(out+x))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3]) >> 2;
}
}
}
return scaledImage;
}
/*
=================
GL_BoxFilter3x3
box filter 3x3
=================
*/
void GL_BoxFilter3x3( byte *out, const byte *in, int w, int h, int x, int y )
{
int r = 0, g = 0, b = 0, a = 0;
int count = 0, acount = 0;
int i, j, u, v;
const byte *pixel;
for( i = 0; i < 3; i++ )
{
u = ( i - 1 ) + x;
for( j = 0; j < 3; j++ )
{
v = ( j - 1 ) + y;
if( u >= 0 && u < w && v >= 0 && v < h )
{
pixel = &in[( u + v * w ) * 4];
if( pixel[3] != 0 )
{
r += pixel[0];
g += pixel[1];
b += pixel[2];
a += pixel[3];
acount++;
}
}
}
}
if( acount == 0 )
acount = 1;
out[0] = r / acount;
out[1] = g / acount;
out[2] = b / acount;
// out[3] = (int)( SimpleSpline( ( a / 12.0f ) / 255.0f ) * 255 );
}
/*
=================
GL_ApplyFilter
Apply box-filter to 1-bit alpha
=================
*/
byte *GL_ApplyFilter( const byte *source, int width, int height )
{
byte *in = (byte *)source;
byte *out = (byte *)source;
int i;
if( FBitSet( host.features, ENGINE_QUAKE_COMPATIBLE ))
return in;
for( i = 0; source && i < width * height; i++, in += 4 )
{
if( in[0] == 0 && in[1] == 0 && in[2] == 0 && in[3] == 0 )
GL_BoxFilter3x3( in, source, width, height, i % width, i / width );
}
return out;
}
/*
=================
GL_ApplyGamma
Assume input buffer is RGBA
=================
*/
byte *GL_ApplyGamma( const byte *source, int pixels, qboolean isNormalMap )
{
byte *in = (byte *)source;
byte *out = (byte *)source;
int i;
if( source && !isNormalMap )
{
for( i = 0; i < pixels; i++, in += 4 )
{
in[0] = TextureToGamma( in[0] );
in[1] = TextureToGamma( in[1] );
in[2] = TextureToGamma( in[2] );
}
}
return out;
}
/*
=================
GL_BuildMipMap
Operates in place, quartering the size of the texture
=================
*/
static void GL_BuildMipMap( byte *in, int srcWidth, int srcHeight, int srcDepth, qboolean isNormalMap )
{
byte *out = in;
int instride = ALIGN( srcWidth * 4, 1 );
int mipWidth, mipHeight, outpadding;
int row, x, y, z;
vec3_t normal;
if( !in ) return;
mipWidth = max( 1, ( srcWidth >> 1 ));
mipHeight = max( 1, ( srcHeight >> 1 ));
outpadding = ALIGN( mipWidth * 4, 1 ) - mipWidth * 4;
row = srcWidth << 2;
// move through all layers
for( z = 0; z < srcDepth; z++ )
{
if( isNormalMap )
{
for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding )
{
byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in;
for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 )
{
if((( x << 1 ) + 1 ) < srcWidth )
{
normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( in[row+4] )
+ MAKE_SIGNED( next[row+0] ) + MAKE_SIGNED( next[row+4] );
normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( in[row+5] )
+ MAKE_SIGNED( next[row+1] ) + MAKE_SIGNED( next[row+5] );
normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( in[row+6] )
+ MAKE_SIGNED( next[row+2] ) + MAKE_SIGNED( next[row+6] );
}
else
{
normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( next[row+0] );
normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( next[row+1] );
normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( next[row+2] );
}
if( !VectorNormalizeLength( normal ))
VectorSet( normal, 0.5f, 0.5f, 1.0f );
out[0] = 128 + (byte)(127.0f * normal[0]);
out[1] = 128 + (byte)(127.0f * normal[1]);
out[2] = 128 + (byte)(127.0f * normal[2]);
out[3] = 255;
}
}
}
else
{
for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding )
{
byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in;
for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 )
{
if((( x << 1 ) + 1 ) < srcWidth )
{
out[0] = (in[row+0] + in[row+4] + next[row+0] + next[row+4]) >> 2;
out[1] = (in[row+1] + in[row+5] + next[row+1] + next[row+5]) >> 2;
out[2] = (in[row+2] + in[row+6] + next[row+2] + next[row+6]) >> 2;
out[3] = (in[row+3] + in[row+7] + next[row+3] + next[row+7]) >> 2;
}
else
{
out[0] = (in[row+0] + next[row+0]) >> 1;
out[1] = (in[row+1] + next[row+1]) >> 1;
out[2] = (in[row+2] + next[row+2]) >> 1;
out[3] = (in[row+3] + next[row+3]) >> 1;
}
}
}
}
}
}
/*
=================
GL_MakeLuminance
Converts the given image to luminance
=================
*/
void GL_MakeLuminance( rgbdata_t *in )
{
byte luminance;
float r, g, b;
int x, y;
for( y = 0; y < in->height; y++ )
{
for( x = 0; x < in->width; x++ )
{
r = r_luminanceTable[in->buffer[4*(y*in->width+x)+0]][0];
g = r_luminanceTable[in->buffer[4*(y*in->width+x)+1]][1];
b = r_luminanceTable[in->buffer[4*(y*in->width+x)+2]][2];
luminance = (byte)(r + g + b);
in->buffer[4*(y*in->width+x)+0] = luminance;
in->buffer[4*(y*in->width+x)+1] = luminance;
in->buffer[4*(y*in->width+x)+2] = luminance;
}
}
}
static void GL_TextureImageRAW( gltexture_t *tex, GLint side, GLint level, GLint width, GLint height, GLint depth, GLint type, const void *data )
{
GLuint cubeTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB;
qboolean subImage = ( tex->flags & TF_IMG_UPLOADED );
GLenum inFormat = PFDesc[type].glFormat;
GLint dataType = GL_UNSIGNED_BYTE;
Assert( tex != NULL );
if( tex->flags & TF_DEPTHMAP )
inFormat = GL_DEPTH_COMPONENT;
if( tex->target == GL_TEXTURE_1D )
{
if( subImage ) pglTexSubImage1D( tex->target, level, 0, width, inFormat, dataType, data );
else pglTexImage1D( tex->target, level, tex->format, width, 0, inFormat, dataType, data );
}
else if( tex->target == GL_TEXTURE_CUBE_MAP_ARB )
{
if( subImage ) pglTexSubImage2D( cubeTarget + side, level, 0, 0, width, height, inFormat, dataType, data );
else pglTexImage2D( cubeTarget + side, level, tex->format, width, height, 0, inFormat, dataType, data );
}
else if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_2D_ARRAY_EXT )
{
if( subImage ) pglTexSubImage3D( tex->target, level, 0, 0, 0, width, height, depth, inFormat, dataType, data );
else pglTexImage3D( tex->target, level, tex->format, width, height, depth, 0, inFormat, dataType, data );
}
else // 2D or RECT
{
if( subImage ) pglTexSubImage2D( tex->target, level, 0, 0, width, height, inFormat, dataType, data );
else pglTexImage2D( tex->target, level, tex->format, width, height, 0, inFormat, dataType, data );
}
}
static void GL_TextureImageDXT( gltexture_t *tex, GLint side, GLint level, GLint width, GLint height, GLint depth, size_t size, const void *data )
{
GLuint cubeTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB;
qboolean subImage = ( tex->flags & TF_IMG_UPLOADED );
Assert( tex != NULL );
if( tex->target == GL_TEXTURE_1D )
{
if( subImage ) pglCompressedTexSubImage1DARB( tex->target, level, 0, width, tex->format, size, data );
else pglCompressedTexImage1DARB( tex->target, level, tex->format, width, 0, size, data );
}
else if( tex->target == GL_TEXTURE_CUBE_MAP_ARB )
{
if( subImage ) pglCompressedTexSubImage2DARB( cubeTarget + side, level, 0, 0, width, height, tex->format, size, data );
else pglCompressedTexImage2DARB( cubeTarget + side, level, tex->format, width, height, 0, size, data );
}
else if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_2D_ARRAY_EXT )
{
if( subImage ) pglCompressedTexSubImage3DARB( tex->target, level, 0, 0, 0, width, height, depth, tex->format, size, data );
else pglCompressedTexImage3DARB( tex->target, level, tex->format, width, height, depth, 0, size, data );
}
else // 2D or RECT
{
if( subImage ) pglCompressedTexSubImage2DARB( tex->target, level, 0, 0, width, height, tex->format, size, data );
else pglCompressedTexImage2DARB( tex->target, level, tex->format, width, height, 0, size, data );
}
}
/*
===============
GL_CheckTexImageError
show GL-errors on load images
===============
*/
static void GL_CheckTexImageError( gltexture_t *tex )
{
int err;
Assert( tex != NULL );
// catch possible errors
if(( err = pglGetError()) != GL_NO_ERROR )
MsgDev( D_ERROR, "GL_UploadTexture: error %x while uploading %s [%s]\n", err, tex->name, GL_TargetToString( tex->target ));
}
/*
===============
GL_UploadTexture
upload texture into video memory
===============
*/
static qboolean GL_UploadTexture( gltexture_t *tex, rgbdata_t *pic )
{
byte *buf, *data;
size_t texsize, size;
uint width, height;
uint i, j, numSides;
uint offset = 0;
qboolean normalMap;
const byte *bufend;
Assert( pic != NULL );
Assert( tex != NULL );
GL_SetTextureTarget( tex, pic ); // must be first
// make sure what target is correct
if( tex->target == GL_NONE )
{
MsgDev( D_ERROR, "GL_UploadTexture: %s is not supported by your hardware\n", tex->name );
return false;
}
GL_SetTextureDimensions( tex, pic->width, pic->height, pic->depth );
GL_SetTextureFormat( tex, pic->type, pic->flags );
tex->fogParams[0] = pic->fogParams[0];
tex->fogParams[1] = pic->fogParams[1];
tex->fogParams[2] = pic->fogParams[2];
tex->fogParams[3] = pic->fogParams[3];
if(( pic->width * pic->height ) & 3 )
{
// will be resampled, just tell me for debug targets
MsgDev( D_NOTE, "GL_UploadTexture: %s s&3 [%d x %d]\n", tex->name, pic->width, pic->height );
}
buf = pic->buffer;
bufend = pic->buffer + pic->size; // total image size include all the layers, cube sides, mipmaps
offset = GL_CalcImageSize( pic->type, pic->width, pic->height, pic->depth );
texsize = GL_CalcTextureSize( tex->format, tex->width, tex->height, tex->depth );
normalMap = FBitSet( tex->flags, TF_NORMALMAP ) ? true : false;
numSides = FBitSet( pic->flags, IMAGE_CUBEMAP ) ? 6 : 1;
// uploading texture into video memory, change the binding
glState.currentTextures[glState.activeTMU] = tex->texnum;
pglBindTexture( tex->target, tex->texnum );
for( i = 0; i < numSides; i++ )
{
// track the buffer bounds
if( buf != NULL && buf >= bufend )
Host_Error( "GL_UploadTexture: %s image buffer overflow\n", tex->name );
if( ImageDXT( pic->type ))
{
for( j = 0; j < Q_max( 1, pic->numMips ); j++ )
{
width = Q_max( 1, ( tex->width >> j ));
height = Q_max( 1, ( tex->height >> j ));
texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth );
size = GL_CalcImageSize( pic->type, width, height, tex->depth );
GL_TextureImageDXT( tex, i, j, width, height, tex->depth, size, buf );
tex->size += texsize;
buf += size; // move pointer
tex->numMips++;
GL_CheckTexImageError( tex );
}
}
else if( Q_max( 1, pic->numMips ) > 1 ) // not-compressed DDS
{
for( j = 0; j < Q_max( 1, pic->numMips ); j++ )
{
width = Q_max( 1, ( tex->width >> j ));
height = Q_max( 1, ( tex->height >> j ));
texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth );
size = GL_CalcImageSize( pic->type, width, height, tex->depth );
GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, buf );
tex->size += texsize;
buf += size; // move pointer
tex->numMips++;
GL_CheckTexImageError( tex );
}
}
else // RGBA32
{
int mipCount = GL_CalcMipmapCount( tex, ( buf != NULL ));
// NOTE: only single uncompressed textures can be resamples, no mips, no layers, no sides
if(( tex->depth == 1 ) && ( pic->width != tex->width ) || ( pic->height != tex->height ))
data = GL_ResampleTexture( buf, pic->width, pic->height, tex->width, tex->height, normalMap );
else data = buf;
if( !ImageDXT( pic->type ) && !FBitSet( tex->flags, TF_NOMIPMAP|TF_SKYSIDE ))
data = GL_ApplyGamma( data, tex->width * tex->height * tex->depth, FBitSet( tex->flags, TF_NORMALMAP ));
if( !ImageDXT( pic->type ) && !FBitSet( tex->flags, TF_NOMIPMAP ) && FBitSet( pic->flags, IMAGE_ONEBIT_ALPHA ))
data = GL_ApplyFilter( data, tex->width, tex->height );
// mips will be auto-generated if desired
for( j = 0; j < mipCount; j++ )
{
width = Q_max( 1, ( tex->width >> j ));
height = Q_max( 1, ( tex->height >> j ));
texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth );
size = GL_CalcImageSize( pic->type, width, height, tex->depth );
GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, data );
if( mipCount > 1 )
GL_BuildMipMap( data, width, height, tex->depth, normalMap );
tex->size += texsize;
tex->numMips++;
GL_CheckTexImageError( tex );
}
// move to next side
if( numSides > 1 && ( buf != NULL ))
buf += GL_CalcImageSize( pic->type, pic->width, pic->height, 1 );
}
}
tex->flags |= TF_IMG_UPLOADED; // done
tex->numMips /= numSides;
return true;
}
/*
===============
GL_ProcessImage
do specified actions on pixels
===============
*/
static void GL_ProcessImage( gltexture_t *tex, rgbdata_t *pic, imgfilter_t *filter )
{
uint img_flags = 0;
// force upload texture as RGB or RGBA (detail textures requires this)
if( tex->flags & TF_FORCE_COLOR ) pic->flags |= IMAGE_HAS_COLOR;
if( pic->flags & IMAGE_HAS_ALPHA ) tex->flags |= TF_HAS_ALPHA;
tex->encode = pic->encode; // share encode method
if( ImageDXT( pic->type ))
{
if( !pic->numMips )
tex->flags |= TF_NOMIPMAP; // disable mipmapping by user request
// clear all the unsupported flags
tex->flags &= ~TF_KEEP_SOURCE;
}
else
{
// copy flag about luma pixels
if( pic->flags & IMAGE_HAS_LUMA )
tex->flags |= TF_HAS_LUMA;
if( pic->flags & IMAGE_QUAKEPAL )
tex->flags |= TF_QUAKEPAL;
// create luma texture from quake texture
if( tex->flags & TF_MAKELUMA )
{
img_flags |= IMAGE_MAKE_LUMA;
tex->flags &= ~TF_MAKELUMA;
}
if( !FBitSet( tex->flags, TF_IMG_UPLOADED ) && FBitSet( tex->flags, TF_KEEP_SOURCE ))
tex->original = FS_CopyImage( pic ); // because current pic will be expanded to rgba
// we need to expand image into RGBA buffer
if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 )
img_flags |= IMAGE_FORCE_RGBA;
// processing image before uploading (force to rgba, make luma etc)
if( pic->buffer ) Image_Process( &pic, 0, 0, img_flags, filter );
if( tex->flags & TF_LUMINANCE )
{
if( !( tex->flags & TF_DEPTHMAP ))
{
GL_MakeLuminance( pic );
tex->flags &= ~TF_LUMINANCE;
}
pic->flags &= ~IMAGE_HAS_COLOR;
}
}
}
/*
================
GL_LoadTexture
================
*/
int GL_LoadTexture( const char *name, const byte *buf, size_t size, int flags, imgfilter_t *filter )
{
gltexture_t *tex;
rgbdata_t *pic;
uint i, hash;
uint picFlags = 0;
if( !COM_CheckString( name ) || !glw_state.initialized )
return 0;
if( Q_strlen( name ) >= sizeof( r_textures->name ))
{
Con_Printf( S_ERROR "LoadTexture: too long name %s (%d)\n", name, Q_strlen( name ));
return 0;
}
// see if already loaded
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
for( tex = r_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash )
{
if( !Q_stricmp( tex->name, name ))
return (tex - r_textures);
}
if( flags & TF_NOFLIP_TGA )
picFlags |= IL_DONTFLIP_TGA;
if( FBitSet( flags, TF_KEEP_SOURCE ) && !FBitSet( flags, TF_EXPAND_SOURCE ))
picFlags |= IL_KEEP_8BIT;
// set some image flags
Image_SetForceFlags( picFlags );
pic = FS_LoadImage( name, buf, size );
if( !pic ) return 0; // couldn't loading image
// find a free texture slot
if( r_numTextures == MAX_TEXTURES )
Host_Error( "GL_LoadTexture: MAX_TEXTURES limit exceeds\n" );
// find a free texture_t slot
for( i = 0, tex = r_textures; i < r_numTextures; i++, tex++ )
if( !tex->name[0] ) break;
if( i == r_numTextures )
{
if( r_numTextures == MAX_TEXTURES )
Host_Error( "GL_LoadTexture: MAX_TEXTURES limit exceeds\n" );
r_numTextures++;
}
tex = &r_textures[i];
Q_strncpy( tex->name, name, sizeof( tex->name ));
tex->flags = flags;
if( flags & TF_SKYSIDE )
tex->texnum = tr.skyboxbasenum++;
else tex->texnum = i; // texnum is used for fast acess into r_textures array too
GL_ProcessImage( tex, pic, filter );
if( !GL_UploadTexture( tex, pic ))
{
memset( tex, 0, sizeof( gltexture_t ));
FS_FreeImage( pic ); // release source texture
return 0;
}
GL_ApplyTextureParams( tex ); // update texture filter, wrap etc
FS_FreeImage( pic ); // release source texture
// add to hash table
tex->hashValue = COM_HashKey( tex->name, TEXTURES_HASH_SIZE );
tex->nextHash = r_texturesHashTable[tex->hashValue];
r_texturesHashTable[tex->hashValue] = tex;
// NOTE: always return texnum as index in array or engine will stop work !!!
return i;
}
/*
================
GL_LoadTextureArray
================
*/
int GL_LoadTextureArray( const char **names, int flags, imgfilter_t *filter )
{
gltexture_t *tex;
rgbdata_t *pic, *src;
char basename[256];
uint numLayers = 0;
uint picFlags = 0;
char name[256];
uint i, j, hash;
if( !names || !names[0] || !glw_state.initialized )
return 0;
// count layers (g-cont. this is pontentially unsafe loop)
for( i = 0; i < glConfig.max_2d_texture_layers && ( *names[i] != '\0' ); i++ )
numLayers++;
name[0] = '\0';
if( numLayers <= 0 ) return 0;
// create complexname from layer names
for( i = 0; i < numLayers; i++ )
{
COM_FileBase( names[i], basename );
Q_strncat( name, va( "%s", basename ), sizeof( name ));
if( i != ( numLayers - 1 )) Q_strncat( name, "|", sizeof( name ));
}
Q_strncat( name, va( "[%i]", numLayers ), sizeof( name ));
if( Q_strlen( name ) >= sizeof( r_textures->name ))
{
Con_Printf( S_ERROR "LoadTextureArray: too long name %s (%d)\n", name, Q_strlen( name ));
return 0;
}
// see if already loaded
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
for( tex = r_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash )
{
if( !Q_stricmp( tex->name, name ))
return (tex - r_textures);
}
// load all the images and pack it into single image
for( i = 0, pic = NULL; i < numLayers; i++ )
{
size_t srcsize, dstsize, mipsize;
src = FS_LoadImage( names[i], NULL, 0 );
if( !src ) break; // coldn't find layer
if( pic )
{
// mixed mode: DXT + RGB
if( pic->type != src->type )
{
MsgDev( D_ERROR, "GL_LoadTextureArray: mismatch image format for %s and %s\n", names[0], names[i] );
break;
}
// different mipcount
if( pic->numMips != src->numMips )
{
MsgDev( D_ERROR, "GL_LoadTextureArray: mismatch mip count for %s and %s\n", names[0], names[i] );
break;
}
if( pic->encode != src->encode )
{
MsgDev( D_ERROR, "GL_LoadTextureArray: mismatch custom encoding for %s and %s\n", names[0], names[i] );
break;
}
// but allow to rescale raw images
if( ImageRAW( pic->type ) && ImageRAW( src->type ) && ( pic->width != src->width || pic->height != src->height ))
Image_Process( &src, pic->width, pic->height, IMAGE_RESAMPLE, NULL );
if( pic->size != src->size )
{
MsgDev( D_ERROR, "GL_LoadTextureArray: mismatch image size for %s and %s\n", names[0], names[i] );
break;
}
}
else
{
// create new image
pic = Mem_Alloc( host.imagepool, sizeof( rgbdata_t ));
memcpy( pic, src, sizeof( rgbdata_t ));
// expand pic buffer for all layers
pic->buffer = Mem_Alloc( host.imagepool, pic->size * numLayers );
pic->depth = 0;
}
mipsize = srcsize = dstsize = 0;
for( j = 0; j < max( 1, pic->numMips ); j++ )
{
int width = max( 1, ( pic->width >> j ));
int height = max( 1, ( pic->height >> j ));
mipsize = GL_CalcImageSize( pic->type, width, height, 1 );
memcpy( pic->buffer + dstsize + mipsize * i, src->buffer + srcsize, mipsize );
dstsize += mipsize * numLayers;
srcsize += mipsize;
}
FS_FreeImage( src );
// increase layers
pic->depth++;
}
// there were errors
if( !pic || ( pic->depth != numLayers ))
{
MsgDev( D_ERROR, "GL_LoadTextureArray: not all layers were loaded. Texture array is not created\n" );
if( pic ) FS_FreeImage( pic );
return 0;
}
// it's multilayer image!
pic->flags |= IMAGE_MULTILAYER;
pic->size *= numLayers;
// find a free texture slot
if( r_numTextures == MAX_TEXTURES )
Host_Error( "GL_LoadTexture: MAX_TEXTURES limit exceeds\n" );
// find a free texture_t slot
for( i = 0, tex = r_textures; i < r_numTextures; i++, tex++ )
if( !tex->name[0] ) break;
if( i == r_numTextures )
{
if( r_numTextures == MAX_TEXTURES )
Host_Error( "GL_LoadTexture: MAX_TEXTURES limit exceeds\n" );
r_numTextures++;
}
tex = &r_textures[i];
Q_strncpy( tex->name, name, sizeof( tex->name ));
tex->flags = flags;
tex->texnum = i; // texnum is used for fast acess into r_textures array too
GL_ProcessImage( tex, pic, filter );
if( !GL_UploadTexture( tex, pic ))
{
memset( tex, 0, sizeof( gltexture_t ));
FS_FreeImage( pic ); // release source texture
return 0;
}
GL_ApplyTextureParams( tex ); // update texture filter, wrap etc
FS_FreeImage( pic ); // release source texture
// add to hash table
tex->hashValue = COM_HashKey( tex->name, TEXTURES_HASH_SIZE );
tex->nextHash = r_texturesHashTable[tex->hashValue];
r_texturesHashTable[tex->hashValue] = tex;
// NOTE: always return texnum as index in array or engine will stop work !!!
return i;
}
/*
================
GL_LoadTextureInternal
================
*/
int GL_LoadTextureInternal( const char *name, rgbdata_t *pic, texFlags_t flags, qboolean update )
{
gltexture_t *tex;
uint i, hash;
if( !COM_CheckString( name ) || !glw_state.initialized )
return 0;
if( Q_strlen( name ) >= sizeof( r_textures->name ))
{
Con_Printf( S_ERROR "LoadTexture: too long name %s (%d)\n", name, Q_strlen( name ));
return 0;
}
// see if already loaded
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
for( tex = r_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash )
{
if( !Q_stricmp( tex->name, name ))
{
if( update ) break;
return (tex - r_textures);
}
}
if( !pic ) return 0; // couldn't loading image
if( update && !tex )
{
Host_Error( "Couldn't find texture %s for update\n", name );
}
// find a free texture slot
if( r_numTextures == MAX_TEXTURES )
Host_Error( "GL_LoadTexture: MAX_TEXTURES limit exceeds\n" );
if( !update )
{
// find a free texture_t slot
for( i = 0, tex = r_textures; i < r_numTextures; i++, tex++ )
if( !tex->name[0] ) break;
if( i == r_numTextures )
{
if( r_numTextures == MAX_TEXTURES )
Host_Error( "GL_LoadTexture: MAX_TEXTURES limit exceeds\n" );
r_numTextures++;
}
tex = &r_textures[i];
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
Q_strncpy( tex->name, name, sizeof( tex->name ));
tex->texnum = i; // texnum is used for fast acess into r_textures array too
tex->flags = flags;
}
else
{
tex->flags |= flags;
}
GL_ProcessImage( tex, pic, NULL );
if( !GL_UploadTexture( tex, pic ))
{
memset( tex, 0, sizeof( gltexture_t ));
return 0;
}
GL_ApplyTextureParams( tex ); // update texture filter, wrap etc
if( !update )
{
// add to hash table
tex->hashValue = COM_HashKey( tex->name, TEXTURES_HASH_SIZE );
tex->nextHash = r_texturesHashTable[tex->hashValue];
r_texturesHashTable[tex->hashValue] = tex;
}
return (tex - r_textures);
}
/*
================
GL_CreateTexture
creates texture from buffer
================
*/
int GL_CreateTexture( const char *name, int width, int height, const void *buffer, texFlags_t flags )
{
rgbdata_t r_empty;
int texture;
memset( &r_empty, 0, sizeof( r_empty ));
r_empty.width = width;
r_empty.height = height;
r_empty.type = PF_RGBA_32;
r_empty.size = r_empty.width * r_empty.height * 4;
r_empty.flags = IMAGE_HAS_COLOR | (( flags & TF_HAS_ALPHA ) ? IMAGE_HAS_ALPHA : 0 );
r_empty.buffer = (byte *)buffer;
if( FBitSet( flags, TF_TEXTURE_1D ))
{
r_empty.height = 1;
r_empty.size = r_empty.width * 4;
}
else if( FBitSet( flags, TF_TEXTURE_3D ))
{
if( !GL_Support( GL_TEXTURE_3D_EXT ))
return 0;
r_empty.depth = r_empty.width; // assume 3D texture as cube
r_empty.size = r_empty.width * r_empty.height * r_empty.depth * 4;
}
else if( FBitSet( flags, TF_CUBEMAP ))
{
SetBits( r_empty.flags, IMAGE_CUBEMAP );
ClearBits( flags, TF_CUBEMAP ); // will be set later
r_empty.size *= 6;
}
texture = GL_LoadTextureInternal( name, &r_empty, flags, false );
return texture;
}
/*
================
GL_CreateTextureArray
creates texture array from buffer
================
*/
int GL_CreateTextureArray( const char *name, int width, int height, int depth, const void *buffer, texFlags_t flags )
{
rgbdata_t r_empty;
int texture;
memset( &r_empty, 0, sizeof( r_empty ));
r_empty.width = width;
r_empty.height = height;
r_empty.depth = depth;
r_empty.type = PF_RGBA_32;
r_empty.size = r_empty.width * r_empty.height * r_empty.depth * 4;
r_empty.flags = IMAGE_HAS_COLOR | (( flags & TF_HAS_ALPHA ) ? IMAGE_HAS_ALPHA : 0 );
r_empty.buffer = (byte *)buffer;
if( FBitSet( flags, TF_TEXTURE_3D ))
{
if( !GL_Support( GL_TEXTURE_3D_EXT ))
return 0;
}
else
{
if( !GL_Support( GL_TEXTURE_ARRAY_EXT ))
return 0;
SetBits( r_empty.flags, IMAGE_MULTILAYER );
}
texture = GL_LoadTextureInternal( name, &r_empty, flags, false );
return texture;
}
/*
================
GL_ProcessTexture
================
*/
void GL_ProcessTexture( int texnum, float gamma, int topColor, int bottomColor )
{
gltexture_t *image;
rgbdata_t *pic;
int flags = 0;
if( texnum <= 0 ) return; // missed image
Assert( texnum > 0 && texnum < MAX_TEXTURES );
image = &r_textures[texnum];
// select mode
if( gamma != -1.0f )
{
flags = IMAGE_LIGHTGAMMA;
}
else if( topColor != -1 && bottomColor != -1 )
{
flags = IMAGE_REMAP;
}
else
{
MsgDev( D_ERROR, "GL_ProcessTexture: bad operation for %s\n", image->name );
return;
}
if( !image->original )
{
MsgDev( D_ERROR, "GL_ProcessTexture: no input data for %s\n", image->name );
return;
}
if( ImageDXT( image->original->type ))
{
MsgDev( D_ERROR, "GL_ProcessTexture: can't process compressed texture %s\n", image->name );
return;
}
// all the operations makes over the image copy not an original
pic = FS_CopyImage( image->original );
Image_Process( &pic, topColor, bottomColor, flags, NULL );
GL_UploadTexture( image, pic );
GL_ApplyTextureParams( image ); // update texture filter, wrap etc
FS_FreeImage( pic );
}
/*
================
GL_LoadTexture
================
*/
int GL_FindTexture( const char *name )
{
gltexture_t *tex;
uint hash;
if( !COM_CheckString( name ) || !glw_state.initialized )
return 0;
if( Q_strlen( name ) >= sizeof( r_textures->name ))
{
Con_Printf( S_ERROR "FindTexture: too long name %s (%d)\n", name, Q_strlen( name ));
return 0;
}
// see if already loaded
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
for( tex = r_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash )
{
if( !Q_stricmp( tex->name, name ))
return (tex - r_textures);
}
return 0;
}
/*
================
GL_FreeImage
Frees image by name
================
*/
void GL_FreeImage( const char *name )
{
gltexture_t *tex;
uint hash;
if( !COM_CheckString( name ) || !glw_state.initialized )
return;
if( Q_strlen( name ) >= sizeof( r_textures->name ))
{
Con_Printf( S_ERROR "FreeTexture: too long name %s (%d)\n", name, Q_strlen( name ));
return;
}
// see if already loaded
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
for( tex = r_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash )
{
if( !Q_stricmp( tex->name, name ))
{
R_FreeImage( tex );
return;
}
}
}
/*
================
GL_FreeTexture
================
*/
void GL_FreeTexture( GLenum texnum )
{
// number 0 it's already freed
if( texnum <= 0 || !glw_state.initialized )
return;
Assert( texnum > 0 && texnum < MAX_TEXTURES );
R_FreeImage( &r_textures[texnum] );
}
/*
================
R_FreeImage
================
*/
void R_FreeImage( gltexture_t *image )
{
gltexture_t *cur;
gltexture_t **prev;
Assert( image != NULL );
if( !image->name[0] )
{
if( image->texnum != 0 )
MsgDev( D_ERROR, "trying to free unnamed texture with texnum %i\n", image->texnum );
return;
}
// remove from hash table
prev = &r_texturesHashTable[image->hashValue];
while( 1 )
{
cur = *prev;
if( !cur ) break;
if( cur == image )
{
*prev = cur->nextHash;
break;
}
prev = &cur->nextHash;
}
// release source
if( image->original )
FS_FreeImage( image->original );
pglDeleteTextures( 1, &image->texnum );
memset( image, 0, sizeof( *image ));
}
/*
==============================================================================
INTERNAL TEXTURES
==============================================================================
*/
/*
==================
R_InitDefaultTexture
==================
*/
static rgbdata_t *R_InitDefaultTexture( texFlags_t *flags )
{
int x, y;
// also use this for bad textures, but without alpha
r_image.width = r_image.height = 16;
r_image.buffer = data2D;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * 4;
*flags = 0;
// emo-texture from quake1
for( y = 0; y < 16; y++ )
{
for( x = 0; x < 16; x++ )
{
if(( y < 8 ) ^ ( x < 8 ))
((uint *)&data2D)[y*16+x] = 0xFFFF00FF;
else ((uint *)&data2D)[y*16+x] = 0xFF000000;
}
}
return &r_image;
}
/*
==================
R_InitParticleTexture
==================
*/
static rgbdata_t *R_InitParticleTexture( texFlags_t *flags )
{
int x, y;
int dx2, dy, d;
// particle texture
r_image.width = r_image.height = 16;
r_image.buffer = data2D;
r_image.flags = (IMAGE_HAS_COLOR|IMAGE_HAS_ALPHA);
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * 4;
*flags = TF_CLAMP;
for( x = 0; x < 16; x++ )
{
dx2 = x - 8;
dx2 = dx2 * dx2;
for( y = 0; y < 16; y++ )
{
dy = y - 8;
d = 255 - 35 * sqrt( dx2 + dy * dy );
data2D[( y*16 + x ) * 4 + 3] = bound( 0, d, 255 );
}
}
return &r_image;
}
/*
==================
R_InitSkyTexture
==================
*/
static rgbdata_t *R_InitSkyTexture( texFlags_t *flags )
{
int i;
// skybox texture
for( i = 0; i < 256; i++ )
((uint *)&data2D)[i] = 0xFFFFDEB5;
*flags = 0;
r_image.buffer = data2D;
r_image.width = r_image.height = 16;
r_image.size = r_image.width * r_image.height * 4;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitCinematicTexture
==================
*/
static rgbdata_t *R_InitCinematicTexture( texFlags_t *flags )
{
r_image.buffer = data2D;
r_image.type = PF_RGBA_32;
r_image.flags = IMAGE_HAS_COLOR;
r_image.width = r_image.height = 256;
r_image.size = r_image.width * r_image.height * 4;
*flags = TF_NOMIPMAP|TF_CLAMP;
return &r_image;
}
/*
==================
R_InitSolidColorTexture
==================
*/
static rgbdata_t *R_InitSolidColorTexture( texFlags_t *flags, int color )
{
// solid color texture
r_image.width = r_image.height = 1;
r_image.buffer = data2D;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGB_24;
r_image.size = r_image.width * r_image.height * 3;
*flags = 0;
data2D[0] = data2D[1] = data2D[2] = color;
return &r_image;
}
/*
==================
R_InitWhiteTexture
==================
*/
static rgbdata_t *R_InitWhiteTexture( texFlags_t *flags )
{
return R_InitSolidColorTexture( flags, 255 );
}
/*
==================
R_InitGrayTexture
==================
*/
static rgbdata_t *R_InitGrayTexture( texFlags_t *flags )
{
return R_InitSolidColorTexture( flags, 127 );
}
/*
==================
R_InitBlackTexture
==================
*/
static rgbdata_t *R_InitBlackTexture( texFlags_t *flags )
{
return R_InitSolidColorTexture( flags, 0 );
}
/*
==================
R_InitBlankBumpTexture
==================
*/
static rgbdata_t *R_InitBlankBumpTexture( texFlags_t *flags )
{
int i;
// default normalmap texture
for( i = 0; i < 256; i++ )
{
data2D[i*4+0] = 127;
data2D[i*4+1] = 127;
data2D[i*4+2] = 255;
}
*flags = TF_NORMALMAP;
r_image.buffer = data2D;
r_image.width = r_image.height = 16;
r_image.size = r_image.width * r_image.height * 4;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitBlankDeluxeTexture
==================
*/
static rgbdata_t *R_InitBlankDeluxeTexture( texFlags_t *flags )
{
int i;
// default normalmap texture
for( i = 0; i < 256; i++ )
{
data2D[i*4+0] = 127;
data2D[i*4+1] = 127;
data2D[i*4+2] = 0; // light from ceiling
}
*flags = TF_NORMALMAP;
r_image.buffer = data2D;
r_image.width = r_image.height = 16;
r_image.size = r_image.width * r_image.height * 4;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitAttenuationTexture
==================
*/
static rgbdata_t *R_InitAttenTextureGamma( texFlags_t *flags, float gamma )
{
int i;
// 1d attenuation texture
r_image.width = 256;
r_image.height = 1;
r_image.buffer = data2D;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * 4;
for( i = 0; i < r_image.width; i++ )
{
float atten = 255 - bound( 0, 255 * pow((i + 0.5f) / r_image.width, gamma ) + 0.5f, 255 );
// clear attenuation at ends to prevent light go outside
if( i == (r_image.width - 1) || i == 0 )
atten = 0.0f;
data2D[(i * 4) + 0] = (byte)atten;
data2D[(i * 4) + 1] = (byte)atten;
data2D[(i * 4) + 2] = (byte)atten;
data2D[(i * 4) + 3] = (byte)atten;
}
*flags = TF_NOMIPMAP|TF_CLAMP|TF_TEXTURE_1D;
return &r_image;
}
static rgbdata_t *R_InitAttenuationTexture( texFlags_t *flags )
{
return R_InitAttenTextureGamma( flags, 1.5f );
}
static rgbdata_t *R_InitAttenuationTexture2( texFlags_t *flags )
{
return R_InitAttenTextureGamma( flags, 0.5f );
}
static rgbdata_t *R_InitAttenuationTexture3( texFlags_t *flags )
{
return R_InitAttenTextureGamma( flags, 3.5f );
}
static rgbdata_t *R_InitAttenuationTextureNoAtten( texFlags_t *flags )
{
// 1d attenuation texture
r_image.width = 256;
r_image.height = 1;
r_image.buffer = data2D;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * 4;
memset( data2D, 0xFF, r_image.size );
*flags = TF_NOMIPMAP|TF_CLAMP|TF_TEXTURE_1D;
return &r_image;
}
/*
==================
R_InitAttenuationTexture3D
==================
*/
static rgbdata_t *R_InitAttenTexture3D( texFlags_t *flags )
{
vec3_t v = { 0, 0, 0 };
int x, y, z, d, size, size2, halfsize;
float intensity;
if( !GL_Support( GL_TEXTURE_3D_EXT ))
return NULL;
// 3d attenuation texture
r_image.width = 32;
r_image.height = 32;
r_image.depth = 32;
r_image.buffer = data2D;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * r_image.depth * 4;
size = 32;
halfsize = size / 2;
intensity = halfsize * halfsize;
size2 = size * size;
for( x = 0; x < r_image.width; x++ )
{
for( y = 0; y < r_image.height; y++ )
{
for( z = 0; z < r_image.depth; z++ )
{
v[0] = (( x + 0.5f ) * ( 2.0f / (float)size ) - 1.0f );
v[1] = (( y + 0.5f ) * ( 2.0f / (float)size ) - 1.0f );
if( r_image.depth > 1 ) v[2] = (( z + 0.5f ) * ( 2.0f / (float)size ) - 1.0f );
intensity = 1.0f - sqrt( DotProduct( v, v ) );
if( intensity > 0 ) intensity = intensity * intensity * 215.5f;
d = bound( 0, intensity, 255 );
data2D[((z * size + y) * size + x) * 4 + 0] = d;
data2D[((z * size + y) * size + x) * 4 + 1] = d;
data2D[((z * size + y) * size + x) * 4 + 2] = d;
}
}
}
*flags = TF_NOMIPMAP|TF_CLAMP|TF_TEXTURE_3D;
return &r_image;
}
static rgbdata_t *R_InitDlightTexture( texFlags_t *flags )
{
// solid color texture
r_image.width = BLOCK_SIZE_DEFAULT;
r_image.height = BLOCK_SIZE_DEFAULT;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * 4;
r_image.buffer = data2D;
memset( data2D, 0x00, r_image.size );
*flags = TF_NOMIPMAP|TF_CLAMP|TF_ATLAS_PAGE;
return &r_image;
}
static rgbdata_t *R_InitDlightTexture2( texFlags_t *flags )
{
// solid color texture
r_image.width = BLOCK_SIZE_MAX;
r_image.height = BLOCK_SIZE_MAX;
r_image.flags = IMAGE_HAS_COLOR;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * 4;
r_image.buffer = data2D;
memset( data2D, 0x00, r_image.size );
*flags = TF_NOMIPMAP|TF_CLAMP|TF_ATLAS_PAGE;
return &r_image;
}
/*
==================
R_InitNormalizeCubemap
==================
*/
static rgbdata_t *R_InitNormalizeCubemap( texFlags_t *flags )
{
int i, x, y, size = 32;
byte *dataCM = data2D;
float s, t;
vec3_t normal;
if( !GL_Support( GL_TEXTURE_CUBEMAP_EXT ))
return NULL;
// normal cube map texture
for( i = 0; i < 6; i++ )
{
for( y = 0; y < size; y++ )
{
for( x = 0; x < size; x++ )
{
s = (((float)x + 0.5f) * (2.0f / size )) - 1.0f;
t = (((float)y + 0.5f) * (2.0f / size )) - 1.0f;
switch( i )
{
case 0: VectorSet( normal, 1.0f, -t, -s ); break;
case 1: VectorSet( normal, -1.0f, -t, s ); break;
case 2: VectorSet( normal, s, 1.0f, t ); break;
case 3: VectorSet( normal, s, -1.0f, -t ); break;
case 4: VectorSet( normal, s, -t, 1.0f ); break;
case 5: VectorSet( normal, -s, -t, -1.0f); break;
}
VectorNormalize( normal );
dataCM[4*(y*size+x)+0] = (byte)(128 + 127 * normal[0]);
dataCM[4*(y*size+x)+1] = (byte)(128 + 127 * normal[1]);
dataCM[4*(y*size+x)+2] = (byte)(128 + 127 * normal[2]);
dataCM[4*(y*size+x)+3] = 255;
}
}
dataCM += (size*size*4); // move pointer
}
*flags = (TF_NOMIPMAP|TF_CUBEMAP|TF_CLAMP);
r_image.width = r_image.height = size;
r_image.size = r_image.width * r_image.height * 4 * 6;
r_image.flags |= (IMAGE_CUBEMAP|IMAGE_HAS_COLOR); // yes it's cubemap
r_image.buffer = data2D;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitDlightCubemap
==================
*/
static rgbdata_t *R_InitDlightCubemap( texFlags_t *flags )
{
int i, x, y, size = 4;
byte *dataCM = data2D;
int dx2, dy, d;
if( !GL_Support( GL_TEXTURE_CUBEMAP_EXT ))
return NULL;
// normal cube map texture
for( i = 0; i < 6; i++ )
{
for( x = 0; x < size; x++ )
{
dx2 = x - size / 2;
dx2 = dx2 * dx2;
for( y = 0; y < size; y++ )
{
dy = y - size / 2;
d = 255 - 35 * sqrt( dx2 + dy * dy );
dataCM[( y * size + x ) * 4 + 0] = bound( 0, d, 255 );
dataCM[( y * size + x ) * 4 + 1] = bound( 0, d, 255 );
dataCM[( y * size + x ) * 4 + 2] = bound( 0, d, 255 );
}
}
dataCM += (size * size * 4); // move pointer
}
*flags = (TF_NOMIPMAP|TF_CUBEMAP|TF_CLAMP);
r_image.width = r_image.height = size;
r_image.size = r_image.width * r_image.height * 4 * 6;
r_image.flags |= (IMAGE_CUBEMAP|IMAGE_HAS_COLOR); // yes it's cubemap
r_image.buffer = data2D;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitGrayCubemap
==================
*/
static rgbdata_t *R_InitGrayCubemap( texFlags_t *flags )
{
int size = 4;
byte *dataCM = data2D;
if( !GL_Support( GL_TEXTURE_CUBEMAP_EXT ))
return NULL;
// gray cubemap - just stub for pointlights
memset( dataCM, 0x7F, size * size * 6 * 4 );
*flags = (TF_NOMIPMAP|TF_CUBEMAP|TF_CLAMP);
r_image.width = r_image.height = size;
r_image.size = r_image.width * r_image.height * 4 * 6;
r_image.flags |= (IMAGE_CUBEMAP|IMAGE_HAS_COLOR); // yes it's cubemap
r_image.buffer = data2D;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitWhiteCubemap
==================
*/
static rgbdata_t *R_InitWhiteCubemap( texFlags_t *flags )
{
int size = 4;
byte *dataCM = data2D;
if( !GL_Support( GL_TEXTURE_CUBEMAP_EXT ))
return NULL;
// white cubemap - just stub for pointlights
memset( dataCM, 0xFF, size * size * 6 * 4 );
*flags = (TF_NOMIPMAP|TF_CUBEMAP|TF_CLAMP);
r_image.width = r_image.height = size;
r_image.size = r_image.width * r_image.height * 4 * 6;
r_image.flags |= (IMAGE_CUBEMAP|IMAGE_HAS_COLOR); // yes it's cubemap
r_image.buffer = data2D;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitVSDCTCubemap
==================
*/
static rgbdata_t *R_InitVSDCTCubemap( texFlags_t *flags )
{
// maps to a 2x3 texture rectangle with normalized coordinates
// +-
// XX
// YY
// ZZ
// stores abs(dir.xy), offset.xy/2.5
static byte data[4*6] =
{
0xFF, 0x00, 0x33, 0x33, // +X: <1, 0>, <0.5, 0.5>
0xFF, 0x00, 0x99, 0x33, // -X: <1, 0>, <1.5, 0.5>
0x00, 0xFF, 0x33, 0x99, // +Y: <0, 1>, <0.5, 1.5>
0x00, 0xFF, 0x99, 0x99, // -Y: <0, 1>, <1.5, 1.5>
0x00, 0x00, 0x33, 0xFF, // +Z: <0, 0>, <0.5, 2.5>
0x00, 0x00, 0x99, 0xFF, // -Z: <0, 0>, <1.5, 2.5>
};
*flags = (TF_NEAREST|TF_CUBEMAP|TF_CLAMP);
r_image.width = r_image.height = 1;
r_image.size = r_image.width * r_image.height * 4 * 6;
r_image.flags |= (IMAGE_CUBEMAP|IMAGE_HAS_COLOR|IMAGE_HAS_ALPHA); // yes it's cubemap
r_image.buffer = data;
r_image.type = PF_RGBA_32;
return &r_image;
}
/*
==================
R_InitBuiltinTextures
==================
*/
static void R_InitBuiltinTextures( void )
{
rgbdata_t *pic;
texFlags_t flags;
const struct
{
char *name;
int *texnum;
rgbdata_t *(*init)( texFlags_t *flags );
}
textures[] =
{
{ "*default", &tr.defaultTexture, R_InitDefaultTexture },
{ "*white", &tr.whiteTexture, R_InitWhiteTexture },
{ "*gray", &tr.grayTexture, R_InitGrayTexture },
{ "*black", &tr.blackTexture, R_InitBlackTexture },
{ "*particle", &tr.particleTexture, R_InitParticleTexture },
{ "*cintexture", &tr.cinTexture, R_InitCinematicTexture }, // force linear filter
{ "*dlight", &tr.dlightTexture, R_InitDlightTexture },
{ "*dlight2", &tr.dlightTexture2, R_InitDlightTexture2 },
{ "*atten", &tr.attenuationTexture, R_InitAttenuationTexture },
{ "*atten2", &tr.attenuationTexture2, R_InitAttenuationTexture2 },
{ "*atten3", &tr.attenuationTexture3, R_InitAttenuationTexture3 },
{ "*attnno", &tr.attenuationStubTexture, R_InitAttenuationTextureNoAtten },
{ "*normalize", &tr.normalizeTexture, R_InitNormalizeCubemap },
{ "*blankbump", &tr.blankbumpTexture, R_InitBlankBumpTexture },
{ "*blankdeluxe", &tr.blankdeluxeTexture, R_InitBlankDeluxeTexture },
{ "*lightCube", &tr.dlightCubeTexture, R_InitDlightCubemap },
{ "*grayCube", &tr.grayCubeTexture, R_InitGrayCubemap },
{ "*whiteCube", &tr.whiteCubeTexture, R_InitWhiteCubemap },
{ "*atten3D", &tr.attenuationTexture3D, R_InitAttenTexture3D },
{ "*sky", &tr.skyTexture, R_InitSkyTexture },
{ "*vsdct", &tr.vsdctCubeTexture, R_InitVSDCTCubemap },
{ NULL, NULL, NULL }
};
size_t i, num_builtin_textures = sizeof( textures ) / sizeof( textures[0] ) - 1;
for( i = 0; i < num_builtin_textures; i++ )
{
memset( &r_image, 0, sizeof( rgbdata_t ));
memset( data2D, 0xFF, sizeof( data2D ));
pic = textures[i].init( &flags );
if( pic == NULL ) continue;
*textures[i].texnum = GL_LoadTextureInternal( textures[i].name, pic, flags, false );
}
}
/*
===============
R_TextureList_f
===============
*/
void R_TextureList_f( void )
{
gltexture_t *image;
int i, texCount, bytes = 0;
Con_Printf( "\n" );
Con_Printf( " -id- -w- -h- -size- -fmt- -type- -data- -encode- -wrap- -depth- -name--------\n" );
for( i = texCount = 0, image = r_textures; i < r_numTextures; i++, image++ )
{
if( !image->texnum ) continue;
bytes += image->size;
texCount++;
Con_Printf( "%4i: ", i );
Con_Printf( "%4i %4i ", image->width, image->height );
Con_Printf( "%12s ", Q_memprint( image->size ));
switch( image->format )
{
case GL_COMPRESSED_RGBA_ARB:
Con_Printf( "CRGBA " );
break;
case GL_COMPRESSED_RGB_ARB:
Con_Printf( "CRGB " );
break;
case GL_COMPRESSED_LUMINANCE_ALPHA_ARB:
Con_Printf( "CLA " );
break;
case GL_COMPRESSED_LUMINANCE_ARB:
Con_Printf( "CL " );
break;
case GL_COMPRESSED_ALPHA_ARB:
Con_Printf( "CA " );
break;
case GL_COMPRESSED_INTENSITY_ARB:
Con_Printf( "CI " );
break;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
Con_Printf( "DXT1c " );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
Con_Printf( "DXT1a " );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
Con_Printf( "DXT3 " );
break;
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
Con_Printf( "DXT5 " );
break;
case GL_RGBA:
Con_Printf( "RGBA " );
break;
case GL_RGBA8:
Con_Printf( "RGBA8 " );
break;
case GL_RGBA4:
Con_Printf( "RGBA4 " );
break;
case GL_RGB:
Con_Printf( "RGB " );
break;
case GL_RGB8:
Con_Printf( "RGB8 " );
break;
case GL_RGB5:
Con_Printf( "RGB5 " );
break;
case GL_LUMINANCE4_ALPHA4:
Con_Printf( "L4A4 " );
break;
case GL_LUMINANCE_ALPHA:
case GL_LUMINANCE8_ALPHA8:
Con_Printf( "L8A8 " );
break;
case GL_LUMINANCE4:
Con_Printf( "L4 " );
break;
case GL_LUMINANCE:
case GL_LUMINANCE8:
Con_Printf( "L8 " );
break;
case GL_ALPHA8:
Con_Printf( "A8 " );
break;
case GL_INTENSITY8:
Con_Printf( "I8 " );
break;
case GL_DEPTH_COMPONENT:
case GL_DEPTH_COMPONENT24:
Con_Printf( "DPTH24" );
break;
case GL_DEPTH_COMPONENT32F:
Con_Printf( "DPTH32" );
break;
case GL_LUMINANCE16F_ARB:
Con_Printf( "L16F " );
break;
case GL_LUMINANCE32F_ARB:
Con_Printf( "L32F " );
break;
case GL_LUMINANCE_ALPHA16F_ARB:
Con_Printf( "LA16F " );
break;
case GL_LUMINANCE_ALPHA32F_ARB:
Con_Printf( "LA32F " );
break;
case GL_RGB16F_ARB:
Con_Printf( "RGB16F" );
break;
case GL_RGB32F_ARB:
Con_Printf( "RGB32F" );
break;
case GL_RGBA16F_ARB:
Con_Printf( "RGBA16F" );
break;
case GL_RGBA32F_ARB:
Con_Printf( "RGBA32F" );
break;
default:
Con_Printf( " ^1ERROR^7 " );
break;
}
switch( image->target )
{
case GL_TEXTURE_1D:
Con_Printf( " 1D " );
break;
case GL_TEXTURE_2D:
Con_Printf( " 2D " );
break;
case GL_TEXTURE_3D:
Con_Printf( " 3D " );
break;
case GL_TEXTURE_CUBE_MAP_ARB:
Con_Printf( "CUBE " );
break;
case GL_TEXTURE_RECTANGLE_EXT:
Con_Printf( "RECT " );
break;
case GL_TEXTURE_2D_ARRAY_EXT:
Con_Printf( "ARRAY " );
break;
default:
Con_Printf( "???? " );
break;
}
if( image->flags & TF_NORMALMAP )
Con_Printf( "normal " );
else Con_Printf( "diffuse " );
switch( image->encode )
{
case DXT_ENCODE_COLOR_YCoCg:
Con_Printf( "YCoCg " );
break;
case DXT_ENCODE_NORMAL_AG_ORTHO:
Con_Printf( "ortho " );
break;
case DXT_ENCODE_NORMAL_AG_STEREO:
Con_Printf( "stereo " );
break;
case DXT_ENCODE_NORMAL_AG_PARABOLOID:
Con_Printf( "parabolic " );
break;
case DXT_ENCODE_NORMAL_AG_QUARTIC:
Con_Printf( "quartic " );
break;
case DXT_ENCODE_NORMAL_AG_AZIMUTHAL:
Con_Printf( "azimuthal " );
break;
default:
Con_Printf( "default " );
break;
}
if( image->flags & TF_CLAMP )
Con_Printf( "clamp " );
else if( image->flags & TF_BORDER )
Con_Printf( "border " );
else Con_Printf( "repeat " );
Con_Printf( " %d ", image->depth );
Con_Printf( " %s\n", image->name );
}
Con_Printf( "---------------------------------------------------------\n" );
Con_Printf( "%i total textures\n", texCount );
Con_Printf( "%s total memory used\n", Q_memprint( bytes ));
Con_Printf( "\n" );
}
/*
===============
R_InitImages
===============
*/
void R_InitImages( void )
{
float f;
uint i;
memset( r_textures, 0, sizeof( r_textures ));
memset( r_texturesHashTable, 0, sizeof( r_texturesHashTable ));
r_numTextures = 0;
// create unused 0-entry
Q_strncpy( r_textures->name, "*unused*", sizeof( r_textures->name ));
r_textures->hashValue = COM_HashKey( r_textures->name, TEXTURES_HASH_SIZE );
r_textures->nextHash = r_texturesHashTable[r_textures->hashValue];
r_texturesHashTable[r_textures->hashValue] = r_textures;
r_numTextures = 1;
// build luminance table
for( i = 0; i < 256; i++ )
{
f = (float)i;
r_luminanceTable[i][0] = f * 0.299f;
r_luminanceTable[i][1] = f * 0.587f;
r_luminanceTable[i][2] = f * 0.114f;
}
// set texture parameters
R_SetTextureParameters();
R_InitBuiltinTextures();
R_ParseTexFilters( "scripts/texfilter.txt" );
Cmd_AddCommand( "texturelist", R_TextureList_f, "display loaded textures list" );
}
/*
===============
R_ShutdownImages
===============
*/
void R_ShutdownImages( void )
{
gltexture_t *image;
int i;
if( !glw_state.initialized ) return;
Cmd_RemoveCommand( "texturelist" );
GL_CleanupAllTextureUnits();
for( i = 0, image = r_textures; i < r_numTextures; i++, image++ )
R_FreeImage( image );
memset( tr.lightmapTextures, 0, sizeof( tr.lightmapTextures ));
memset( r_texturesHashTable, 0, sizeof( r_texturesHashTable ));
memset( r_textures, 0, sizeof( r_textures ));
r_numTextures = 0;
}