You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
471 lines
10 KiB
471 lines
10 KiB
/* |
|
img_quant.c - image quantizer. based on Antony Dekker original code |
|
Copyright (C) 2011 Uncle Mike |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
*/ |
|
|
|
#include "imagelib.h" |
|
|
|
|
|
#define netsize 256 // number of colours used |
|
#define prime1 499 |
|
#define prime2 491 |
|
#define prime3 487 |
|
#define prime4 503 |
|
|
|
#define minpicturebytes (3*prime4) // minimum size for input image |
|
|
|
#define maxnetpos (netsize-1) |
|
#define netbiasshift 4 // bias for colour values |
|
#define ncycles 100 // no. of learning cycles |
|
|
|
// defs for freq and bias |
|
#define intbiasshift 16 // bias for fractions |
|
#define intbias (1<<intbiasshift) |
|
#define gammashift 10 // gamma = 1024 |
|
#define gamma (1<<gammashift) |
|
#define betashift 10 |
|
#define beta (intbias>>betashift) // beta = 1 / 1024 |
|
#define betagamma (intbias<<(gammashift - betashift)) |
|
|
|
// defs for decreasing radius factor |
|
#define initrad (netsize>>3) // for 256 cols, radius starts |
|
#define radiusbiasshift 6 // at 32.0 biased by 6 bits |
|
#define radiusbias (1<<radiusbiasshift) |
|
#define initradius (initrad * radiusbias) // and decreases by a |
|
#define radiusdec 30 // factor of 1/30 each cycle |
|
|
|
// defs for decreasing alpha factor |
|
#define alphabiasshift 10 // alpha starts at 1.0 |
|
#define initalpha (1<<alphabiasshift) |
|
int alphadec; // biased by 10 bits |
|
|
|
// radbias and alpharadbias used for radpower calculation |
|
#define radbiasshift 8 |
|
#define radbias (1<<radbiasshift) |
|
#define alpharadbshift (alphabiasshift+radbiasshift) |
|
#define alpharadbias (1<<alpharadbshift) |
|
|
|
// types and global variables |
|
static byte *thepicture; // the input image itself |
|
static int lengthcount; // lengthcount = H*W*3 |
|
static int samplefac; // sampling factor 1..30 |
|
static int network[netsize][4]; // the network itself |
|
static int netindex[256]; // for network lookup - really 256 |
|
static int bias[netsize]; // bias and freq arrays for learning |
|
static int freq[netsize]; |
|
static int radpower[initrad]; // radpower for precomputation |
|
|
|
void initnet( byte *thepic, int len, int sample ) |
|
{ |
|
register int i, *p; |
|
|
|
thepicture = thepic; |
|
lengthcount = len; |
|
samplefac = sample; |
|
|
|
for( i = 0; i < netsize; i++ ) |
|
{ |
|
p = network[i]; |
|
p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize; |
|
freq[i] = intbias / netsize; // 1 / netsize |
|
bias[i] = 0; |
|
} |
|
} |
|
|
|
// Unbias network to give byte values 0..255 and record position i to prepare for sort |
|
void unbiasnet( void ) |
|
{ |
|
int i, j, temp; |
|
|
|
for( i = 0; i < netsize; i++ ) |
|
{ |
|
for( j = 0; j < 3; j++ ) |
|
{ |
|
// OLD CODE: network[i][j] >>= netbiasshift; |
|
// Fix based on bug report by Juergen Weigert jw@suse.de |
|
temp = (network[i][j] + (1 << (netbiasshift - 1))) >> netbiasshift; |
|
if( temp > 255 ) temp = 255; |
|
network[i][j] = temp; |
|
} |
|
|
|
network[i][3] = i; // record colour num |
|
} |
|
} |
|
|
|
// Insertion sort of network and building of netindex[0..255] (to do after unbias) |
|
void inxbuild( void ) |
|
{ |
|
register int *p, *q; |
|
register int i, j, smallpos, smallval; |
|
int previouscol, startpos; |
|
|
|
previouscol = 0; |
|
startpos = 0; |
|
|
|
for( i = 0; i < netsize; i++ ) |
|
{ |
|
p = network[i]; |
|
smallpos = i; |
|
smallval = p[1]; // index on g |
|
|
|
// find smallest in i..netsize-1 |
|
for( j = i + 1; j < netsize; j++ ) |
|
{ |
|
q = network[j]; |
|
if( q[1] < smallval ) |
|
{ |
|
// index on g |
|
smallpos = j; |
|
smallval = q[1]; // index on g |
|
} |
|
} |
|
|
|
q = network[smallpos]; |
|
|
|
// swap p (i) and q (smallpos) entries |
|
if( i != smallpos ) |
|
{ |
|
j = q[0]; q[0] = p[0]; p[0] = j; |
|
j = q[1]; q[1] = p[1]; p[1] = j; |
|
j = q[2]; q[2] = p[2]; p[2] = j; |
|
j = q[3]; q[3] = p[3]; p[3] = j; |
|
} |
|
|
|
// smallval entry is now in position i |
|
if( smallval != previouscol ) |
|
{ |
|
netindex[previouscol] = (startpos+i) >> 1; |
|
|
|
for( j = previouscol + 1; j < smallval; j++ ) |
|
netindex[j] = i; |
|
|
|
previouscol = smallval; |
|
startpos = i; |
|
} |
|
} |
|
|
|
netindex[previouscol] = (startpos + maxnetpos)>>1; |
|
|
|
for( j = previouscol + 1; j < 256; j++ ) |
|
netindex[j] = maxnetpos; // really 256 |
|
} |
|
|
|
|
|
// Search for BGR values 0..255 (after net is unbiased) and return colour index |
|
int inxsearch( int r, int g, int b ) |
|
{ |
|
register int i, j, dist, a, bestd; |
|
register int *p; |
|
int best; |
|
|
|
bestd = 1000; // biggest possible dist is 256 * 3 |
|
best = -1; |
|
i = netindex[g]; // index on g |
|
j = i - 1; // start at netindex[g] and work outwards |
|
|
|
while(( i < netsize ) || ( j >= 0 )) |
|
{ |
|
if( i < netsize ) |
|
{ |
|
p = network[i]; |
|
dist = p[1] - g; // inx key |
|
|
|
if( dist >= bestd ) |
|
{ |
|
i = netsize; // stop iter |
|
} |
|
else |
|
{ |
|
i++; |
|
if( dist < 0 ) dist = -dist; |
|
a = p[2] - b; |
|
if( a < 0 ) a = -a; |
|
dist += a; |
|
|
|
if( dist < bestd ) |
|
{ |
|
a = p[0] - r; |
|
if( a < 0 ) a = -a; |
|
dist += a; |
|
|
|
if( dist < bestd ) |
|
{ |
|
bestd = dist; |
|
best = p[3]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if( j >= 0 ) |
|
{ |
|
p = network[j]; |
|
dist = g - p[1]; // inx key - reverse dif |
|
|
|
if( dist >= bestd ) |
|
{ |
|
j = -1; // stop iter |
|
} |
|
else |
|
{ |
|
j--; |
|
if( dist < 0 ) dist = -dist; |
|
a = p[2] - b; |
|
if( a < 0 ) a = -a; |
|
dist += a; |
|
|
|
if( dist < bestd ) |
|
{ |
|
a = p[0] - r; |
|
if( a < 0 ) a = -a; |
|
dist += a; |
|
if( dist < bestd ) |
|
{ |
|
bestd = dist; |
|
best = p[3]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
return best; |
|
} |
|
|
|
// Search for biased BGR values |
|
int contest( int r, int g, int b ) |
|
{ |
|
register int *p, *f, *n; |
|
register int i, dist, a, biasdist, betafreq; |
|
int bestpos, bestbiaspos, bestd, bestbiasd; |
|
|
|
// finds closest neuron (min dist) and updates freq |
|
// finds best neuron (min dist-bias) and returns position |
|
// for frequently chosen neurons, freq[i] is high and bias[i] is negative |
|
// bias[i] = gamma * ((1 / netsize) - freq[i]) |
|
bestd = INT_MAX; |
|
bestbiasd = bestd; |
|
bestpos = -1; |
|
bestbiaspos = bestpos; |
|
p = bias; |
|
f = freq; |
|
|
|
for( i = 0; i < netsize; i++ ) |
|
{ |
|
n = network[i]; |
|
dist = n[2] - b; |
|
if( dist < 0 ) dist = -dist; |
|
a = n[1] - g; |
|
if( a < 0 ) a = -a; |
|
dist += a; |
|
a = n[0] - r; |
|
if( a < 0 ) a = -a; |
|
dist += a; |
|
|
|
if( dist < bestd ) |
|
{ |
|
bestd = dist; |
|
bestpos = i; |
|
} |
|
|
|
biasdist = dist - ((*p) >> (intbiasshift - netbiasshift)); |
|
|
|
if( biasdist < bestbiasd ) |
|
{ |
|
bestbiasd = biasdist; |
|
bestbiaspos = i; |
|
} |
|
|
|
betafreq = (*f >> betashift); |
|
*f++ -= betafreq; |
|
*p++ += (betafreq << gammashift); |
|
} |
|
|
|
freq[bestpos] += beta; |
|
bias[bestpos] -= betagamma; |
|
|
|
return bestbiaspos; |
|
} |
|
|
|
// Move neuron i towards biased (b,g,r) by factor alpha |
|
void altersingle( int alpha, int i, int r, int g, int b ) |
|
{ |
|
register int *n; |
|
|
|
n = network[i]; // alter hit neuron |
|
*n -= (alpha * (*n - r)) / initalpha; |
|
n++; |
|
*n -= (alpha * (*n - g)) / initalpha; |
|
n++; |
|
*n -= (alpha * (*n - b)) / initalpha; |
|
} |
|
|
|
// Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|] |
|
void alterneigh( int rad, int i, int r, int g, int b ) |
|
{ |
|
register int j, k, lo, hi, a; |
|
register int *p, *q; |
|
|
|
lo = i - rad; |
|
if( lo < -1 ) lo = -1; |
|
hi = i + rad; |
|
if( hi > netsize ) hi = netsize; |
|
|
|
j = i + 1; |
|
k = i - 1; |
|
q = radpower; |
|
|
|
while(( j < hi ) || ( k > lo )) |
|
{ |
|
a = (*(++q)); |
|
|
|
if( j < hi ) |
|
{ |
|
p = network[j]; |
|
*p -= (a * (*p - r)) / alpharadbias; |
|
p++; |
|
*p -= (a * (*p - g)) / alpharadbias; |
|
p++; |
|
*p -= (a * (*p - b)) / alpharadbias; |
|
j++; |
|
} |
|
|
|
if( k > lo ) |
|
{ |
|
p = network[k]; |
|
*p -= (a * (*p - r)) / alpharadbias; |
|
p++; |
|
*p -= (a * (*p - g)) / alpharadbias; |
|
p++; |
|
*p -= (a * (*p - b)) / alpharadbias; |
|
k--; |
|
} |
|
} |
|
} |
|
|
|
// Main Learning Loop |
|
void learn( void ) |
|
{ |
|
register byte *p; |
|
register int i, j, r, g, b; |
|
int radius, rad, alpha, step; |
|
int delta, samplepixels; |
|
byte *lim; |
|
|
|
alphadec = 30 + ((samplefac - 1) / 3); |
|
p = thepicture; |
|
lim = thepicture + lengthcount; |
|
samplepixels = lengthcount / (image.bpp * samplefac); |
|
delta = samplepixels / ncycles; |
|
alpha = initalpha; |
|
radius = initradius; |
|
|
|
rad = radius >> radiusbiasshift; |
|
if( rad <= 1 ) rad = 0; |
|
|
|
for( i = 0; i < rad; i++ ) |
|
radpower[i] = alpha * ((( rad * rad - i * i ) * radbias ) / ( rad * rad )); |
|
|
|
if( delta <= 0 ) return; |
|
|
|
if(( lengthcount % prime1 ) != 0 ) |
|
{ |
|
step = prime1 * image.bpp; |
|
} |
|
else if(( lengthcount % prime2 ) != 0 ) |
|
{ |
|
step = prime2 * image.bpp; |
|
} |
|
else if(( lengthcount % prime3 ) != 0 ) |
|
{ |
|
step = prime3 * image.bpp; |
|
} |
|
else |
|
{ |
|
step = prime4 * image.bpp; |
|
} |
|
|
|
i = 0; |
|
|
|
while( i < samplepixels ) |
|
{ |
|
r = p[0] << netbiasshift; |
|
g = p[1] << netbiasshift; |
|
b = p[2] << netbiasshift; |
|
j = contest( r, g, b ); |
|
|
|
altersingle( alpha, j, r, g, b ); |
|
if( rad ) alterneigh( rad, j, r, g, b ); // alter neighbours |
|
|
|
p += step; |
|
while( p >= lim ) p -= lengthcount; |
|
|
|
i++; |
|
|
|
if( i % delta == 0 ) |
|
{ |
|
alpha -= alpha / alphadec; |
|
radius -= radius / radiusdec; |
|
rad = radius >> radiusbiasshift; |
|
if( rad <= 1 ) rad = 0; |
|
|
|
for( j = 0; j < rad; j++ ) |
|
radpower[j] = alpha * ((( rad * rad - j * j ) * radbias ) / ( rad * rad )); |
|
} |
|
} |
|
} |
|
|
|
// returns the actual number of palette entries. |
|
rgbdata_t *Image_Quantize( rgbdata_t *pic ) |
|
{ |
|
int i; |
|
|
|
// quick case to reject unneeded conversions |
|
if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 ) |
|
return pic; |
|
|
|
Image_CopyParms( pic ); |
|
image.size = image.width * image.height; |
|
image.bpp = PFDesc[pic->type].bpp; |
|
image.ptr = 0; |
|
|
|
// allocate 8-bit buffer |
|
image.tempbuffer = Mem_Realloc( host.imagepool, image.tempbuffer, image.size ); |
|
|
|
initnet( pic->buffer, pic->size, 10 ); |
|
learn(); |
|
unbiasnet(); |
|
|
|
pic->palette = Mem_Malloc( host.imagepool, netsize * 3 ); |
|
|
|
for( i = 0; i < netsize; i++ ) |
|
{ |
|
pic->palette[i*3+0] = network[i][0]; // red |
|
pic->palette[i*3+1] = network[i][1]; // green |
|
pic->palette[i*3+2] = network[i][2]; // blue |
|
} |
|
|
|
inxbuild(); |
|
|
|
for( i = 0; i < image.width * image.height; i++ ) |
|
{ |
|
image.tempbuffer[i] = inxsearch( pic->buffer[i*image.bpp+0], pic->buffer[i*image.bpp+1], pic->buffer[i*image.bpp+2] ); |
|
} |
|
|
|
pic->buffer = Mem_Realloc( host.imagepool, pic->buffer, image.size ); |
|
memcpy( pic->buffer, image.tempbuffer, image.size ); |
|
pic->type = PF_INDEXED_24; |
|
pic->size = image.size; |
|
|
|
return pic; |
|
}
|
|
|