Xash3D FWGS engine.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

626 lines
14 KiB

/*
Copyright (C) 1997-2001 Id Software, Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// r_bsp.c
#include "r_local.h"
//
// current entity info
//
qboolean insubmodel;
vec3_t modelorg; // modelorg is the viewpoint reletive to
// the currently rendering entity
vec3_t r_entorigin; // the currently rendering entity in world
// coordinates
float entity_rotation[3][3];
int r_currentbkey;
typedef enum {touchessolid, drawnode, nodrawnode} solidstate_t;
#define MAX_BMODEL_VERTS 500 // 6K
#define MAX_BMODEL_EDGES 1000 // 12K
static mvertex_t *pbverts;
static bedge_t *pbedges;
static int numbverts, numbedges;
static mvertex_t *pfrontenter, *pfrontexit;
static qboolean makeclippededge;
//===========================================================================
/*
================
R_EntityRotate
================
*/
void R_EntityRotate (vec3_t vec)
{
vec3_t tvec;
VectorCopy (vec, tvec);
vec[0] = DotProduct (entity_rotation[0], tvec);
vec[1] = DotProduct (entity_rotation[1], tvec);
vec[2] = DotProduct (entity_rotation[2], tvec);
}
/*
================
R_RotateBmodel
================
*/
void R_RotateBmodel (void)
{
float angle, s, c, temp1[3][3], temp2[3][3], temp3[3][3];
// TODO: should use a look-up table
// TODO: should really be stored with the entity instead of being reconstructed
// TODO: could cache lazily, stored in the entity
// TODO: share work with R_SetUpAliasTransform
// yaw
angle = RI.currententity->angles[YAW];
angle = angle * M_PI*2 / 360;
s = sin(angle);
c = cos(angle);
temp1[0][0] = c;
temp1[0][1] = s;
temp1[0][2] = 0;
temp1[1][0] = -s;
temp1[1][1] = c;
temp1[1][2] = 0;
temp1[2][0] = 0;
temp1[2][1] = 0;
temp1[2][2] = 1;
// pitch
angle = RI.currententity->angles[PITCH];
angle = angle * M_PI*2 / 360;
s = sin(angle);
c = cos(angle);
temp2[0][0] = c;
temp2[0][1] = 0;
temp2[0][2] = -s;
temp2[1][0] = 0;
temp2[1][1] = 1;
temp2[1][2] = 0;
temp2[2][0] = s;
temp2[2][1] = 0;
temp2[2][2] = c;
R_ConcatRotations (temp2, temp1, temp3);
// roll
angle = RI.currententity->angles[ROLL];
angle = angle * M_PI*2 / 360;
s = sin(angle);
c = cos(angle);
temp1[0][0] = 1;
temp1[0][1] = 0;
temp1[0][2] = 0;
temp1[1][0] = 0;
temp1[1][1] = c;
temp1[1][2] = s;
temp1[2][0] = 0;
temp1[2][1] = -s;
temp1[2][2] = c;
R_ConcatRotations (temp1, temp3, entity_rotation);
//
// rotate modelorg and the transformation matrix
//
R_EntityRotate (modelorg);
R_EntityRotate (vpn);
R_EntityRotate (vright);
R_EntityRotate (vup);
R_TransformFrustum ();
}
/*
================
R_RecursiveClipBPoly
Clip a bmodel poly down the world bsp tree
================
*/
void R_RecursiveClipBPoly (bedge_t *pedges, mnode_t *pnode, msurface_t *psurf)
{
bedge_t *psideedges[2], *pnextedge, *ptedge;
int i, side, lastside;
float dist, frac, lastdist;
mplane_t *splitplane, tplane;
mvertex_t *pvert, *plastvert, *ptvert;
mnode_t *pn;
int area;
psideedges[0] = psideedges[1] = NULL;
makeclippededge = false;
// transform the BSP plane into model space
// FIXME: cache these?
splitplane = pnode->plane;
tplane.dist = splitplane->dist -
DotProduct(r_entorigin, splitplane->normal);
tplane.normal[0] = DotProduct (entity_rotation[0], splitplane->normal);
tplane.normal[1] = DotProduct (entity_rotation[1], splitplane->normal);
tplane.normal[2] = DotProduct (entity_rotation[2], splitplane->normal);
// clip edges to BSP plane
for ( ; pedges ; pedges = pnextedge)
{
pnextedge = pedges->pnext;
// set the status for the last point as the previous point
// FIXME: cache this stuff somehow?
plastvert = pedges->v[0];
lastdist = DotProduct (plastvert->position, tplane.normal) -
tplane.dist;
if (lastdist > 0)
lastside = 0;
else
lastside = 1;
pvert = pedges->v[1];
dist = DotProduct (pvert->position, tplane.normal) - tplane.dist;
if (dist > 0)
side = 0;
else
side = 1;
if (side != lastside)
{
// clipped
if (numbverts >= MAX_BMODEL_VERTS)
return;
// generate the clipped vertex
frac = lastdist / (lastdist - dist);
ptvert = &pbverts[numbverts++];
ptvert->position[0] = plastvert->position[0] +
frac * (pvert->position[0] -
plastvert->position[0]);
ptvert->position[1] = plastvert->position[1] +
frac * (pvert->position[1] -
plastvert->position[1]);
ptvert->position[2] = plastvert->position[2] +
frac * (pvert->position[2] -
plastvert->position[2]);
// split into two edges, one on each side, and remember entering
// and exiting points
// FIXME: share the clip edge by having a winding direction flag?
if (numbedges >= (MAX_BMODEL_EDGES - 1))
{
gEngfuncs.Con_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[lastside];
psideedges[lastside] = ptedge;
ptedge->v[0] = plastvert;
ptedge->v[1] = ptvert;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[side];
psideedges[side] = ptedge;
ptedge->v[0] = ptvert;
ptedge->v[1] = pvert;
numbedges += 2;
if (side == 0)
{
// entering for front, exiting for back
pfrontenter = ptvert;
makeclippededge = true;
}
else
{
pfrontexit = ptvert;
makeclippededge = true;
}
}
else
{
// add the edge to the appropriate side
pedges->pnext = psideedges[side];
psideedges[side] = pedges;
}
}
// if anything was clipped, reconstitute and add the edges along the clip
// plane to both sides (but in opposite directions)
if (makeclippededge)
{
if (numbedges >= (MAX_BMODEL_EDGES - 2))
{
gEngfuncs.Con_Printf ("Out of edges for bmodel\n");
return;
}
ptedge = &pbedges[numbedges];
ptedge->pnext = psideedges[0];
psideedges[0] = ptedge;
ptedge->v[0] = pfrontexit;
ptedge->v[1] = pfrontenter;
ptedge = &pbedges[numbedges + 1];
ptedge->pnext = psideedges[1];
psideedges[1] = ptedge;
ptedge->v[0] = pfrontenter;
ptedge->v[1] = pfrontexit;
numbedges += 2;
}
// draw or recurse further
for (i=0 ; i<2 ; i++)
{
if (psideedges[i])
{
// draw if we've reached a non-solid leaf, done if all that's left is a
// solid leaf, and continue down the tree if it's not a leaf
pn = pnode->children[i];
// we're done with this branch if the node or leaf isn't in the PVS
if (pn->visframe == r_visframecount)
{
if (pn->contents < 0)
{
if (pn->contents != CONTENTS_SOLID)
{
r_currentbkey = ((mleaf_t *)pn)->cluster;
R_RenderBmodelFace (psideedges[i], psurf);
}
}
else
{
R_RecursiveClipBPoly (psideedges[i], pnode->children[i],
psurf);
}
}
}
}
}
/*
================
R_DrawSolidClippedSubmodelPolygons
Bmodel crosses multiple leafs
================
*/
void R_DrawSolidClippedSubmodelPolygons (model_t *pmodel, mnode_t *topnode)
{
int i, j, lindex;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
mplane_t *pplane;
mvertex_t bverts[MAX_BMODEL_VERTS];
bedge_t bedges[MAX_BMODEL_EDGES], *pbedge;
medge_t *pedge, *pedges;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &pmodel->surfaces[pmodel->firstmodelsurface];
numsurfaces = pmodel->nummodelsurfaces;
pedges = pmodel->edges;
for (i=0 ; i<numsurfaces ; i++, psurf++)
{
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (( !(psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
((psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON)))
continue;
// FIXME: use bounding-box-based frustum clipping info?
// copy the edges to bedges, flipping if necessary so always
// clockwise winding
// FIXME: if edges and vertices get caches, these assignments must move
// outside the loop, and overflow checking must be done here
pbverts = bverts;
pbedges = bedges;
numbverts = numbedges = 0;
pbedge = &bedges[numbedges];
numbedges += psurf->numedges;
for (j=0 ; j<psurf->numedges ; j++)
{
lindex = pmodel->surfedges[psurf->firstedge+j];
if (lindex > 0)
{
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[0]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[1]];
}
else
{
lindex = -lindex;
pedge = &pedges[lindex];
pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[1]];
pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[0]];
}
pbedge[j].pnext = &pbedge[j+1];
}
pbedge[j-1].pnext = NULL; // mark end of edges
//if ( !( psurf->texinfo->flags & ( SURF_TRANS66 | SURF_TRANS33 ) ) )
R_RecursiveClipBPoly (pbedge, topnode, psurf);
//else
// R_RenderBmodelFace( pbedge, psurf );
}
}
/*
================
R_DrawSubmodelPolygons
All in one leaf
================
*/
void R_DrawSubmodelPolygons (model_t *pmodel, int clipflags, mnode_t *topnode)
{
int i;
vec_t dot;
msurface_t *psurf;
int numsurfaces;
mplane_t *pplane;
// FIXME: use bounding-box-based frustum clipping info?
psurf = &pmodel->surfaces[pmodel->firstmodelsurface];
numsurfaces = pmodel->nummodelsurfaces;
for (i=0 ; i<numsurfaces ; i++, psurf++)
{
// find which side of the node we are on
pplane = psurf->plane;
dot = DotProduct (modelorg, pplane->normal) - pplane->dist;
// draw the polygon
if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) ||
(!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON)))
{
r_currentkey = ((mleaf_t *)topnode)->cluster;
// FIXME: use bounding-box-based frustum clipping info?
R_RenderFace (psurf, clipflags);
}
}
}
int c_drawnode;
/*
================
R_RecursiveWorldNode
================
*/
void R_RecursiveWorldNode (mnode_t *node, int clipflags)
{
int i, c, side, *pindex;
vec3_t acceptpt, rejectpt;
mplane_t *plane;
msurface_t *surf, **mark;
mleaf_t *pleaf;
double d, dot;
if (node->contents == CONTENTS_SOLID)
return; // solid
if (node->visframe != r_visframecount)
return;
// cull the clipping planes if not trivial accept
// FIXME: the compiler is doing a lousy job of optimizing here; it could be
// twice as fast in ASM
if (clipflags)
{
for (i=0 ; i<4 ; i++)
{
if (! (clipflags & (1<<i)) )
continue; // don't need to clip against it
// generate accept and reject points
// FIXME: do with fast look-ups or integer tests based on the sign bit
// of the floating point values
pindex = pfrustum_indexes[i];
rejectpt[0] = (float)node->minmaxs[pindex[0]];
rejectpt[1] = (float)node->minmaxs[pindex[1]];
rejectpt[2] = (float)node->minmaxs[pindex[2]];
d = DotProduct (rejectpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d <= 0)
return;
acceptpt[0] = (float)node->minmaxs[pindex[3+0]];
acceptpt[1] = (float)node->minmaxs[pindex[3+1]];
acceptpt[2] = (float)node->minmaxs[pindex[3+2]];
d = DotProduct (acceptpt, view_clipplanes[i].normal);
d -= view_clipplanes[i].dist;
if (d >= 0)
clipflags &= ~(1<<i); // node is entirely on screen
}
}
// if a leaf node, draw stuff
if (node->contents < 0)
{
pleaf = (mleaf_t *)node;
mark = pleaf->firstmarksurface;
c = pleaf->nummarksurfaces;
if (c)
{
do
{
(*mark)->visframe = r_framecount;
mark++;
} while (--c);
}
// deal with model fragments in this leaf
if (pleaf->efrags)
{
gEngfuncs.R_StoreEfrags(&pleaf->efrags,tr.realframecount);
}
pleaf->cluster = r_currentkey;
r_currentkey++; // all bmodels in a leaf share the same key
}
else
{
// node is just a decision point, so go down the apropriate sides
// find which side of the node we are on
plane = node->plane;
switch (plane->type)
{
case PLANE_X:
dot = modelorg[0] - plane->dist;
break;
case PLANE_Y:
dot = modelorg[1] - plane->dist;
break;
case PLANE_Z:
dot = modelorg[2] - plane->dist;
break;
default:
dot = DotProduct (modelorg, plane->normal) - plane->dist;
break;
}
if (dot >= 0)
side = 0;
else
side = 1;
// recurse down the children, front side first
R_RecursiveWorldNode (node->children[side], clipflags);
// draw stuff
c = node->numsurfaces;
if (c)
{
surf = WORLDMODEL->surfaces + node->firstsurface;
if (dot < -BACKFACE_EPSILON)
{
do
{
if ((surf->flags & SURF_PLANEBACK) &&
(surf->visframe == r_framecount))
{
R_RenderFace (surf, clipflags);
}
surf++;
} while (--c);
}
else if (dot > BACKFACE_EPSILON)
{
do
{
if (!(surf->flags & SURF_PLANEBACK) &&
(surf->visframe == r_framecount))
{
R_RenderFace (surf, clipflags);
}
surf++;
} while (--c);
}
// all surfaces on the same node share the same sequence number
r_currentkey++;
}
// recurse down the back side
R_RecursiveWorldNode (node->children[!side], clipflags);
}
}
/*
================
R_RenderWorld
================
*/
void R_RenderWorld (void)
{
//if (!r_drawworld->value)
// return;
if ( !RI.drawWorld )
return;
c_drawnode=0;
// auto cycle the world frame for texture animation
RI.currententity = gEngfuncs.GetEntityByIndex(0);
//RI.currententity->frame = (int)(gpGlobals->time*2);
VectorCopy (r_origin, modelorg);
RI.currentmodel = WORLDMODEL;
r_pcurrentvertbase = RI.currentmodel->vertexes;
R_RecursiveWorldNode (RI.currentmodel->nodes, 15);
}