You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1289 lines
31 KiB
1289 lines
31 KiB
//=========== (C) Copyright 1999 Valve, L.L.C. All rights reserved. =========== |
|
// |
|
// The copyright to the contents herein is the property of Valve, L.L.C. |
|
// The contents may be used and/or copied only with the written permission of |
|
// Valve, L.L.C., or in accordance with the terms and conditions stipulated in |
|
// the agreement/contract under which the contents have been supplied. |
|
// |
|
// Purpose: |
|
// |
|
// $Header: $ |
|
// $NoKeywords: $ |
|
//============================================================================= |
|
|
|
#ifndef UTLRBTREE_H |
|
#define UTLRBTREE_H |
|
|
|
#include "port.h" |
|
#include "utlmemory.h" |
|
//----------------------------------------------------------------------------- |
|
// Tool to generate a default compare function for any type that implements |
|
// operator<, including all simple types |
|
//----------------------------------------------------------------------------- |
|
|
|
template <typename T > |
|
class CDefOps |
|
{ |
|
public: |
|
static bool LessFunc( const T &lhs, const T &rhs ) { return ( lhs < rhs ); } |
|
}; |
|
|
|
#define DefLessFunc( type ) CDefOps<type>::LessFunc |
|
|
|
//------------------------------------- |
|
|
|
inline bool StringLessThan( const char * const &lhs, const char * const &rhs) { return ( strcmp( lhs, rhs) < 0 ); } |
|
inline bool CaselessStringLessThan( const char * const &lhs, const char * const &rhs ) { return ( strcasecmp( lhs, rhs) < 0 ); } |
|
|
|
//------------------------------------- |
|
// inline these two templates to stop multiple definitions of the same code |
|
template <> inline bool CDefOps<const char *>::LessFunc( const char * const &lhs, const char * const &rhs ) { return StringLessThan( lhs, rhs ); } |
|
template <> inline bool CDefOps<char *>::LessFunc( char * const &lhs, char * const &rhs ) { return StringLessThan( lhs, rhs ); } |
|
|
|
//------------------------------------- |
|
|
|
template <typename RBTREE_T> |
|
void SetDefLessFunc( RBTREE_T &RBTree ) |
|
{ |
|
#ifdef _WIN32 |
|
RBTree.SetLessFunc( DefLessFunc( RBTREE_T::KeyType_t ) ); |
|
#elif _LINUX |
|
RBTree.SetLessFunc( DefLessFunc( typename RBTREE_T::KeyType_t ) ); |
|
#endif |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// A red-black binary search tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I = unsigned short> |
|
class CUtlRBTree |
|
{ |
|
public: |
|
// Less func typedef |
|
// Returns true if the first parameter is "less" than the second |
|
typedef bool (*LessFunc_t)( T const &, T const & ); |
|
|
|
typedef T KeyType_t; |
|
typedef T ElemType_t; |
|
typedef I IndexType_t; |
|
|
|
// constructor, destructor |
|
// Left at growSize = 0, the memory will first allocate 1 element and double in size |
|
// at each increment. |
|
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below |
|
CUtlRBTree( int growSize = 0, int initSize = 0, LessFunc_t lessfunc = 0 ); |
|
~CUtlRBTree( ); |
|
|
|
// gets particular elements |
|
T& Element( I i ); |
|
T const &Element( I i ) const; |
|
T& operator[]( I i ); |
|
T const &operator[]( I i ) const; |
|
|
|
// Gets the root |
|
I Root() const; |
|
|
|
// Num elements |
|
unsigned int Count() const; |
|
|
|
// Max "size" of the vector |
|
I MaxElement() const; |
|
|
|
// Gets the children |
|
I Parent( I i ) const; |
|
I LeftChild( I i ) const; |
|
I RightChild( I i ) const; |
|
|
|
// Tests if a node is a left or right child |
|
bool IsLeftChild( I i ) const; |
|
bool IsRightChild( I i ) const; |
|
|
|
// Tests if root or leaf |
|
bool IsRoot( I i ) const; |
|
bool IsLeaf( I i ) const; |
|
|
|
// Checks if a node is valid and in the tree |
|
bool IsValidIndex( I i ) const; |
|
|
|
// Checks if the tree as a whole is valid |
|
bool IsValid() const; |
|
|
|
// Invalid index |
|
static I InvalidIndex(); |
|
|
|
// returns the tree depth (not a very fast operation) |
|
int Depth( I node ) const; |
|
int Depth() const; |
|
|
|
// Sets the less func |
|
void SetLessFunc( LessFunc_t func ); |
|
|
|
// Allocation method |
|
I NewNode(); |
|
|
|
// Insert method (inserts in order) |
|
I Insert( T const &insert ); |
|
void Insert( const T *pArray, int nItems ); |
|
|
|
// Find method |
|
I Find( T const &search ) const; |
|
|
|
// Remove methods |
|
void RemoveAt( I i ); |
|
bool Remove( T const &remove ); |
|
void RemoveAll( ); |
|
|
|
// Allocation, deletion |
|
void FreeNode( I i ); |
|
|
|
// Iteration |
|
I FirstInorder() const; |
|
I NextInorder( I i ) const; |
|
I PrevInorder( I i ) const; |
|
I LastInorder() const; |
|
|
|
I FirstPreorder() const; |
|
I NextPreorder( I i ) const; |
|
I PrevPreorder( I i ) const; |
|
I LastPreorder( ) const; |
|
|
|
I FirstPostorder() const; |
|
I NextPostorder( I i ) const; |
|
|
|
// If you change the search key, this can be used to reinsert the |
|
// element into the tree. |
|
void Reinsert( I elem ); |
|
|
|
protected: |
|
enum NodeColor_t |
|
{ |
|
RED = 0, |
|
BLACK |
|
}; |
|
|
|
struct Links_t |
|
{ |
|
I m_Left; |
|
I m_Right; |
|
I m_Parent; |
|
I m_Tag; |
|
}; |
|
|
|
struct Node_t : public Links_t |
|
{ |
|
T m_Data; |
|
}; |
|
|
|
// Sets the children |
|
void SetParent( I i, I parent ); |
|
void SetLeftChild( I i, I child ); |
|
void SetRightChild( I i, I child ); |
|
void LinkToParent( I i, I parent, bool isLeft ); |
|
|
|
// Gets at the links |
|
Links_t const &Links( I i ) const; |
|
Links_t &Links( I i ); |
|
|
|
// Checks if a link is red or black |
|
bool IsRed( I i ) const; |
|
bool IsBlack( I i ) const; |
|
|
|
// Sets/gets node color |
|
NodeColor_t Color( I i ) const; |
|
void SetColor( I i, NodeColor_t c ); |
|
|
|
// operations required to preserve tree balance |
|
void RotateLeft(I i); |
|
void RotateRight(I i); |
|
void InsertRebalance(I i); |
|
void RemoveRebalance(I i); |
|
|
|
// Insertion, removal |
|
I InsertAt( I parent, bool leftchild ); |
|
|
|
// copy constructors not allowed |
|
CUtlRBTree( CUtlRBTree<T, I> const &tree ); |
|
|
|
// Inserts a node into the tree, doesn't copy the data in. |
|
void FindInsertionPosition( T const &insert, I &parent, bool &leftchild ); |
|
|
|
// Remove and add back an element in the tree. |
|
void Unlink( I elem ); |
|
void Link( I elem ); |
|
|
|
// Used for sorting. |
|
LessFunc_t m_LessFunc; |
|
|
|
CUtlMemory<Node_t> m_Elements; |
|
I m_Root; |
|
I m_NumElements; |
|
I m_FirstFree; |
|
I m_TotalElements; |
|
|
|
Node_t* m_pElements; |
|
|
|
void ResetDbgInfo() |
|
{ |
|
m_pElements = (Node_t*)m_Elements.Base(); |
|
} |
|
}; |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// constructor, destructor |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
CUtlRBTree<T, I>::CUtlRBTree( int growSize, int initSize, LessFunc_t lessfunc ) : |
|
m_Elements( growSize, initSize ), |
|
m_LessFunc( lessfunc ), |
|
m_Root( InvalidIndex() ), |
|
m_NumElements( 0 ), m_TotalElements( 0 ), |
|
m_FirstFree( InvalidIndex() ) |
|
{ |
|
ResetDbgInfo(); |
|
} |
|
|
|
template <class T, class I> |
|
CUtlRBTree<T, I>::~CUtlRBTree() |
|
{ |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// gets particular elements |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline T &CUtlRBTree<T, I>::Element( I i ) |
|
{ |
|
return m_Elements[i].m_Data; |
|
} |
|
|
|
template <class T, class I> |
|
inline T const &CUtlRBTree<T, I>::Element( I i ) const |
|
{ |
|
return m_Elements[i].m_Data; |
|
} |
|
|
|
template <class T, class I> |
|
inline T &CUtlRBTree<T, I>::operator[]( I i ) |
|
{ |
|
return Element(i); |
|
} |
|
|
|
template <class T, class I> |
|
inline T const &CUtlRBTree<T, I>::operator[]( I i ) const |
|
{ |
|
return Element(i); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// |
|
// various accessors |
|
// |
|
//----------------------------------------------------------------------------- |
|
|
|
//----------------------------------------------------------------------------- |
|
// Gets the root |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline I CUtlRBTree<T, I>::Root() const |
|
{ |
|
return m_Root; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Num elements |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline unsigned int CUtlRBTree<T, I>::Count() const |
|
{ |
|
return (unsigned int)m_NumElements; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Max "size" of the vector |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline I CUtlRBTree<T, I>::MaxElement() const |
|
{ |
|
return (I)m_TotalElements; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Gets the children |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline I CUtlRBTree<T, I>::Parent( I i ) const |
|
{ |
|
return Links(i).m_Parent; |
|
} |
|
|
|
template <class T, class I> |
|
inline I CUtlRBTree<T, I>::LeftChild( I i ) const |
|
{ |
|
return Links(i).m_Left; |
|
} |
|
|
|
template <class T, class I> |
|
inline I CUtlRBTree<T, I>::RightChild( I i ) const |
|
{ |
|
return Links(i).m_Right; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Tests if a node is a left or right child |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsLeftChild( I i ) const |
|
{ |
|
return LeftChild(Parent(i)) == i; |
|
} |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsRightChild( I i ) const |
|
{ |
|
return RightChild(Parent(i)) == i; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Tests if root or leaf |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsRoot( I i ) const |
|
{ |
|
return i == m_Root; |
|
} |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsLeaf( I i ) const |
|
{ |
|
return (LeftChild(i) == InvalidIndex()) && (RightChild(i) == InvalidIndex()); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Checks if a node is valid and in the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsValidIndex( I i ) const |
|
{ |
|
return LeftChild(i) != i; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Invalid index |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::InvalidIndex() |
|
{ |
|
return (I)~0; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// returns the tree depth (not a very fast operation) |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline int CUtlRBTree<T, I>::Depth() const |
|
{ |
|
return Depth(Root()); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Sets the children |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline void CUtlRBTree<T, I>::SetParent( I i, I parent ) |
|
{ |
|
Links(i).m_Parent = parent; |
|
} |
|
|
|
template <class T, class I> |
|
inline void CUtlRBTree<T, I>::SetLeftChild( I i, I child ) |
|
{ |
|
Links(i).m_Left = child; |
|
} |
|
|
|
template <class T, class I> |
|
inline void CUtlRBTree<T, I>::SetRightChild( I i, I child ) |
|
{ |
|
Links(i).m_Right = child; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Gets at the links |
|
//----------------------------------------------------------------------------- |
|
static const int s_Sentinel[4] = {-1, -1, -1, 1}; |
|
template <class T, class I> |
|
inline typename CUtlRBTree<T, I>::Links_t const &CUtlRBTree<T, I>::Links( I i ) const |
|
{ |
|
// Sentinel node, makes life easier |
|
|
|
return (i != InvalidIndex()) ? *(Links_t*)&m_Elements[i] : |
|
*(Links_t*)&s_Sentinel; |
|
} |
|
|
|
template <class T, class I> |
|
inline typename CUtlRBTree<T, I>::Links_t &CUtlRBTree<T, I>::Links( I i ) |
|
{ |
|
Assert(i != InvalidIndex()); |
|
return *(Links_t *)&m_Elements[i]; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Checks if a link is red or black |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsRed( I i ) const |
|
{ |
|
return (Links(i).m_Tag == RED); |
|
} |
|
|
|
template <class T, class I> |
|
inline bool CUtlRBTree<T, I>::IsBlack( I i ) const |
|
{ |
|
return (Links(i).m_Tag == BLACK); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Sets/gets node color |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
inline typename CUtlRBTree<T, I>::NodeColor_t CUtlRBTree<T, I>::Color( I i ) const |
|
{ |
|
return (NodeColor_t)Links(i).m_Tag; |
|
} |
|
|
|
template <class T, class I> |
|
inline void CUtlRBTree<T, I>::SetColor( I i, typename CUtlRBTree<T, I>::NodeColor_t c ) |
|
{ |
|
Links(i).m_Tag = (I)c; |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Allocates/ deallocates nodes |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::NewNode() |
|
{ |
|
I newElem; |
|
|
|
// Nothing in the free list; add. |
|
if (m_FirstFree == InvalidIndex()) |
|
{ |
|
if (m_Elements.NumAllocated() == m_TotalElements) |
|
m_Elements.Grow(); |
|
newElem = m_TotalElements++; |
|
} |
|
else |
|
{ |
|
newElem = m_FirstFree; |
|
m_FirstFree = RightChild(m_FirstFree); |
|
} |
|
|
|
#ifdef _DEBUG |
|
// reset links to invalid.... |
|
Links_t &node = Links(newElem); |
|
node.m_Left = node.m_Right = node.m_Parent = InvalidIndex(); |
|
#endif |
|
|
|
Construct( &Element(newElem) ); |
|
ResetDbgInfo(); |
|
|
|
return newElem; |
|
} |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::FreeNode( I i ) |
|
{ |
|
Assert( IsValidIndex(i) && (i != InvalidIndex()) ); |
|
Destruct( &Element(i) ); |
|
SetLeftChild( i, i ); // indicates it's in not in the tree |
|
SetRightChild( i, m_FirstFree ); |
|
m_FirstFree = i; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Rotates node i to the left |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::RotateLeft(I elem) |
|
{ |
|
I rightchild = RightChild(elem); |
|
SetRightChild( elem, LeftChild(rightchild) ); |
|
if (LeftChild(rightchild) != InvalidIndex()) |
|
SetParent( LeftChild(rightchild), elem ); |
|
|
|
if (rightchild != InvalidIndex()) |
|
SetParent( rightchild, Parent(elem) ); |
|
if (!IsRoot(elem)) |
|
{ |
|
if (IsLeftChild(elem)) |
|
SetLeftChild( Parent(elem), rightchild ); |
|
else |
|
SetRightChild( Parent(elem), rightchild ); |
|
} |
|
else |
|
m_Root = rightchild; |
|
|
|
SetLeftChild( rightchild, elem ); |
|
if (elem != InvalidIndex()) |
|
SetParent( elem, rightchild ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Rotates node i to the right |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::RotateRight(I elem) |
|
{ |
|
I leftchild = LeftChild(elem); |
|
SetLeftChild( elem, RightChild(leftchild) ); |
|
if (RightChild(leftchild) != InvalidIndex()) |
|
SetParent( RightChild(leftchild), elem ); |
|
|
|
if (leftchild != InvalidIndex()) |
|
SetParent( leftchild, Parent(elem) ); |
|
if (!IsRoot(elem)) |
|
{ |
|
if (IsRightChild(elem)) |
|
SetRightChild( Parent(elem), leftchild ); |
|
else |
|
SetLeftChild( Parent(elem), leftchild ); |
|
} |
|
else |
|
m_Root = leftchild; |
|
|
|
SetRightChild( leftchild, elem ); |
|
if (elem != InvalidIndex()) |
|
SetParent( elem, leftchild ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Rebalances the tree after an insertion |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::InsertRebalance(I elem) |
|
{ |
|
while ( !IsRoot(elem) && (Color(Parent(elem)) == RED) ) |
|
{ |
|
I parent = Parent(elem); |
|
I grandparent = Parent(parent); |
|
|
|
/* we have a violation */ |
|
if (IsLeftChild(parent)) |
|
{ |
|
I uncle = RightChild(grandparent); |
|
if (IsRed(uncle)) |
|
{ |
|
/* uncle is RED */ |
|
SetColor(parent, BLACK); |
|
SetColor(uncle, BLACK); |
|
SetColor(grandparent, RED); |
|
elem = grandparent; |
|
} |
|
else |
|
{ |
|
/* uncle is BLACK */ |
|
if (IsRightChild(elem)) |
|
{ |
|
/* make x a left child, will change parent and grandparent */ |
|
elem = parent; |
|
RotateLeft(elem); |
|
parent = Parent(elem); |
|
grandparent = Parent(parent); |
|
} |
|
/* recolor and rotate */ |
|
SetColor(parent, BLACK); |
|
SetColor(grandparent, RED); |
|
RotateRight(grandparent); |
|
} |
|
} |
|
else |
|
{ |
|
/* mirror image of above code */ |
|
I uncle = LeftChild(grandparent); |
|
if (IsRed(uncle)) |
|
{ |
|
/* uncle is RED */ |
|
SetColor(parent, BLACK); |
|
SetColor(uncle, BLACK); |
|
SetColor(grandparent, RED); |
|
elem = grandparent; |
|
} |
|
else |
|
{ |
|
/* uncle is BLACK */ |
|
if (IsLeftChild(elem)) |
|
{ |
|
/* make x a right child, will change parent and grandparent */ |
|
elem = parent; |
|
RotateRight(parent); |
|
parent = Parent(elem); |
|
grandparent = Parent(parent); |
|
} |
|
/* recolor and rotate */ |
|
SetColor(parent, BLACK); |
|
SetColor(grandparent, RED); |
|
RotateLeft(grandparent); |
|
} |
|
} |
|
} |
|
SetColor( m_Root, BLACK ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Insert a node into the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::InsertAt( I parent, bool leftchild ) |
|
{ |
|
I i = NewNode(); |
|
LinkToParent( i, parent, leftchild ); |
|
++m_NumElements; |
|
return i; |
|
} |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::LinkToParent( I i, I parent, bool isLeft ) |
|
{ |
|
Links_t &elem = Links(i); |
|
elem.m_Parent = parent; |
|
elem.m_Left = elem.m_Right = InvalidIndex(); |
|
elem.m_Tag = RED; |
|
|
|
/* insert node in tree */ |
|
if (parent != InvalidIndex()) |
|
{ |
|
if (isLeft) |
|
Links(parent).m_Left = i; |
|
else |
|
Links(parent).m_Right = i; |
|
} |
|
else |
|
{ |
|
m_Root = i; |
|
} |
|
|
|
InsertRebalance(i); |
|
|
|
Assert(IsValid()); |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Rebalance the tree after a deletion |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::RemoveRebalance(I elem) |
|
{ |
|
while (elem != m_Root && IsBlack(elem)) |
|
{ |
|
I parent = Parent(elem); |
|
|
|
// If elem is the left child of the parent |
|
if (elem == LeftChild(parent)) |
|
{ |
|
// Get our sibling |
|
I sibling = RightChild(parent); |
|
if (IsRed(sibling)) |
|
{ |
|
SetColor(sibling, BLACK); |
|
SetColor(parent, RED); |
|
RotateLeft(parent); |
|
|
|
// We may have a new parent now |
|
parent = Parent(elem); |
|
sibling = RightChild(parent); |
|
} |
|
if ( (IsBlack(LeftChild(sibling))) && (IsBlack(RightChild(sibling))) ) |
|
{ |
|
if (sibling != InvalidIndex()) |
|
SetColor(sibling, RED); |
|
elem = parent; |
|
} |
|
else |
|
{ |
|
if (IsBlack(RightChild(sibling))) |
|
{ |
|
SetColor(LeftChild(sibling), BLACK); |
|
SetColor(sibling, RED); |
|
RotateRight(sibling); |
|
|
|
// rotation may have changed this |
|
parent = Parent(elem); |
|
sibling = RightChild(parent); |
|
} |
|
SetColor( sibling, Color(parent) ); |
|
SetColor( parent, BLACK ); |
|
SetColor( RightChild(sibling), BLACK ); |
|
RotateLeft( parent ); |
|
elem = m_Root; |
|
} |
|
} |
|
else |
|
{ |
|
// Elem is the right child of the parent |
|
I sibling = LeftChild(parent); |
|
if (IsRed(sibling)) |
|
{ |
|
SetColor(sibling, BLACK); |
|
SetColor(parent, RED); |
|
RotateRight(parent); |
|
|
|
// We may have a new parent now |
|
parent = Parent(elem); |
|
sibling = LeftChild(parent); |
|
} |
|
if ( (IsBlack(RightChild(sibling))) && (IsBlack(LeftChild(sibling))) ) |
|
{ |
|
if (sibling != InvalidIndex()) |
|
SetColor( sibling, RED ); |
|
elem = parent; |
|
} |
|
else |
|
{ |
|
if (IsBlack(LeftChild(sibling))) |
|
{ |
|
SetColor( RightChild(sibling), BLACK ); |
|
SetColor( sibling, RED ); |
|
RotateLeft( sibling ); |
|
|
|
// rotation may have changed this |
|
parent = Parent(elem); |
|
sibling = LeftChild(parent); |
|
} |
|
SetColor( sibling, Color(parent) ); |
|
SetColor( parent, BLACK ); |
|
SetColor( LeftChild(sibling), BLACK ); |
|
RotateRight( parent ); |
|
elem = m_Root; |
|
} |
|
} |
|
} |
|
SetColor( elem, BLACK ); |
|
} |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::Unlink( I elem ) |
|
{ |
|
if ( elem != InvalidIndex() ) |
|
{ |
|
I x, y; |
|
|
|
if ((LeftChild(elem) == InvalidIndex()) || |
|
(RightChild(elem) == InvalidIndex())) |
|
{ |
|
/* y has a NIL node as a child */ |
|
y = elem; |
|
} |
|
else |
|
{ |
|
/* find tree successor with a NIL node as a child */ |
|
y = RightChild(elem); |
|
while (LeftChild(y) != InvalidIndex()) |
|
y = LeftChild(y); |
|
} |
|
|
|
/* x is y's only child */ |
|
if (LeftChild(y) != InvalidIndex()) |
|
x = LeftChild(y); |
|
else |
|
x = RightChild(y); |
|
|
|
/* remove y from the parent chain */ |
|
if (x != InvalidIndex()) |
|
SetParent( x, Parent(y) ); |
|
if (!IsRoot(y)) |
|
{ |
|
if (IsLeftChild(y)) |
|
SetLeftChild( Parent(y), x ); |
|
else |
|
SetRightChild( Parent(y), x ); |
|
} |
|
else |
|
m_Root = x; |
|
|
|
// need to store this off now, we'll be resetting y's color |
|
NodeColor_t ycolor = Color(y); |
|
if (y != elem) |
|
{ |
|
// Standard implementations copy the data around, we cannot here. |
|
// Hook in y to link to the same stuff elem used to. |
|
SetParent( y, Parent(elem) ); |
|
SetRightChild( y, RightChild(elem) ); |
|
SetLeftChild( y, LeftChild(elem) ); |
|
|
|
if (!IsRoot(elem)) |
|
if (IsLeftChild(elem)) |
|
SetLeftChild( Parent(elem), y ); |
|
else |
|
SetRightChild( Parent(elem), y ); |
|
else |
|
m_Root = y; |
|
|
|
if (LeftChild(y) != InvalidIndex()) |
|
SetParent( LeftChild(y), y ); |
|
if (RightChild(y) != InvalidIndex()) |
|
SetParent( RightChild(y), y ); |
|
|
|
SetColor( y, Color(elem) ); |
|
} |
|
|
|
if ((x != InvalidIndex()) && (ycolor == BLACK)) |
|
RemoveRebalance(x); |
|
} |
|
} |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::Link( I elem ) |
|
{ |
|
if ( elem != InvalidIndex() ) |
|
{ |
|
I parent; |
|
bool leftchild; |
|
|
|
FindInsertionPosition( Element( elem ), parent, leftchild ); |
|
|
|
LinkToParent( elem, parent, leftchild ); |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// Delete a node from the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::RemoveAt(I elem) |
|
{ |
|
if ( elem != InvalidIndex() ) |
|
{ |
|
Unlink( elem ); |
|
|
|
FreeNode(elem); |
|
--m_NumElements; |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// remove a node in the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> bool CUtlRBTree<T, I>::Remove( T const &search ) |
|
{ |
|
I node = Find( search ); |
|
if (node != InvalidIndex()) |
|
{ |
|
RemoveAt(node); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Removes all nodes from the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::RemoveAll() |
|
{ |
|
// Just iterate through the whole list and add to free list |
|
// much faster than doing all of the rebalancing |
|
// also, do it so the free list is pointing to stuff in order |
|
// to get better cache coherence when re-adding stuff to this tree. |
|
I prev = InvalidIndex(); |
|
for (int i = (int)m_TotalElements; --i >= 0; ) |
|
{ |
|
I idx = (I)i; |
|
if (IsValidIndex(idx)) |
|
Destruct( &Element(idx) ); |
|
SetRightChild( idx, prev ); |
|
SetLeftChild( idx, idx ); |
|
prev = idx; |
|
} |
|
m_FirstFree = m_TotalElements ? (I)0 : InvalidIndex(); |
|
m_Root = InvalidIndex(); |
|
m_NumElements = 0; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// iteration |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::FirstInorder() const |
|
{ |
|
I i = m_Root; |
|
while (LeftChild(i) != InvalidIndex()) |
|
i = LeftChild(i); |
|
return i; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::NextInorder( I i ) const |
|
{ |
|
Assert(IsValidIndex(i)); |
|
|
|
if (RightChild(i) != InvalidIndex()) |
|
{ |
|
i = RightChild(i); |
|
while (LeftChild(i) != InvalidIndex()) |
|
i = LeftChild(i); |
|
return i; |
|
} |
|
|
|
I parent = Parent(i); |
|
while (IsRightChild(i)) |
|
{ |
|
i = parent; |
|
if (i == InvalidIndex()) break; |
|
parent = Parent(i); |
|
} |
|
return parent; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::PrevInorder( I i ) const |
|
{ |
|
Assert(IsValidIndex(i)); |
|
|
|
if (LeftChild(i) != InvalidIndex()) |
|
{ |
|
i = LeftChild(i); |
|
while (RightChild(i) != InvalidIndex()) |
|
i = RightChild(i); |
|
return i; |
|
} |
|
|
|
I parent = Parent(i); |
|
while (IsLeftChild(i)) |
|
{ |
|
i = parent; |
|
if (i == InvalidIndex()) break; |
|
parent = Parent(i); |
|
} |
|
return parent; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::LastInorder() const |
|
{ |
|
I i = m_Root; |
|
while (RightChild(i) != InvalidIndex()) |
|
i = RightChild(i); |
|
return i; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::FirstPreorder() const |
|
{ |
|
return m_Root; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::NextPreorder( I i ) const |
|
{ |
|
if (LeftChild(i) != InvalidIndex()) |
|
return LeftChild(i); |
|
|
|
if (RightChild(i) != InvalidIndex()) |
|
return RightChild(i); |
|
|
|
I parent = Parent(i); |
|
while( parent != InvalidIndex()) |
|
{ |
|
if (IsLeftChild(i) && (RightChild(parent) != InvalidIndex())) |
|
return RightChild(parent); |
|
i = parent; |
|
parent = Parent(parent); |
|
} |
|
return InvalidIndex(); |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::PrevPreorder( I i ) const |
|
{ |
|
Assert(0); // not implemented yet |
|
return InvalidIndex(); |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::LastPreorder() const |
|
{ |
|
I i = m_Root; |
|
while (1) |
|
{ |
|
while (RightChild(i) != InvalidIndex()) |
|
i = RightChild(i); |
|
|
|
if (LeftChild(i) != InvalidIndex()) |
|
i = LeftChild(i); |
|
else |
|
break; |
|
} |
|
return i; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::FirstPostorder() const |
|
{ |
|
I i = m_Root; |
|
while (!IsLeaf(i)) |
|
{ |
|
if (LeftChild(i)) |
|
i = LeftChild(i); |
|
else |
|
i = RightChild(i); |
|
} |
|
return i; |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::NextPostorder( I i ) const |
|
{ |
|
I parent = Parent(i); |
|
if (parent == InvalidIndex()) |
|
return InvalidIndex(); |
|
|
|
if (IsRightChild(i)) |
|
return parent; |
|
|
|
if (RightChild(parent) == InvalidIndex()) |
|
return parent; |
|
|
|
i = RightChild(parent); |
|
while (!IsLeaf(i)) |
|
{ |
|
if (LeftChild(i)) |
|
i = LeftChild(i); |
|
else |
|
i = RightChild(i); |
|
} |
|
return i; |
|
} |
|
|
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::Reinsert( I elem ) |
|
{ |
|
Unlink( elem ); |
|
Link( elem ); |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// returns the tree depth (not a very fast operation) |
|
//----------------------------------------------------------------------------- |
|
#ifdef max |
|
#undef max |
|
#endif |
|
#define max(a,b) (a)>(b)?(a):(b) |
|
|
|
template <class T, class I> |
|
int CUtlRBTree<T, I>::Depth( I node ) const |
|
{ |
|
if (node == InvalidIndex()) |
|
return 0; |
|
|
|
int depthright = Depth( RightChild(node) ); |
|
int depthleft = Depth( LeftChild(node) ); |
|
return max(depthright, depthleft) + 1; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Makes sure the tree is valid after every operation |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
bool CUtlRBTree<T, I>::IsValid() const |
|
{ |
|
if ( !Count() ) |
|
return true; |
|
|
|
if (( Root() >= MaxElement()) || ( Parent( Root() ) != InvalidIndex() )) |
|
goto InvalidTree; |
|
|
|
#ifdef UTLTREE_PARANOID |
|
|
|
// First check to see that mNumEntries matches reality. |
|
// count items on the free list |
|
int numFree = 0; |
|
int curr = m_FirstFree; |
|
while (curr != InvalidIndex()) |
|
{ |
|
++numFree; |
|
curr = RightChild(curr); |
|
if ( (curr > MaxElement()) && (curr != InvalidIndex()) ) |
|
goto InvalidTree; |
|
} |
|
if (MaxElement() - numFree != Count()) |
|
goto InvalidTree; |
|
|
|
// iterate over all elements, looking for validity |
|
// based on the self pointers |
|
int numFree2 = 0; |
|
for (curr = 0; curr < MaxElement(); ++curr) |
|
{ |
|
if (!IsValidIndex(curr)) |
|
++numFree2; |
|
else |
|
{ |
|
int right = RightChild(curr); |
|
int left = LeftChild(curr); |
|
if ((right == left) && (right != InvalidIndex()) ) |
|
goto InvalidTree; |
|
|
|
if (right != InvalidIndex()) |
|
{ |
|
if (!IsValidIndex(right)) |
|
goto InvalidTree; |
|
if (Parent(right) != curr) |
|
goto InvalidTree; |
|
if (IsRed(curr) && IsRed(right)) |
|
goto InvalidTree; |
|
} |
|
|
|
if (left != InvalidIndex()) |
|
{ |
|
if (!IsValidIndex(left)) |
|
goto InvalidTree; |
|
if (Parent(left) != curr) |
|
goto InvalidTree; |
|
if (IsRed(curr) && IsRed(left)) |
|
goto InvalidTree; |
|
} |
|
} |
|
} |
|
if (numFree2 != numFree) |
|
goto InvalidTree; |
|
|
|
#endif // UTLTREE_PARANOID |
|
|
|
return true; |
|
|
|
InvalidTree: |
|
return false; |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Sets the less func |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::SetLessFunc( typename CUtlRBTree<T, I>::LessFunc_t func ) |
|
{ |
|
if (!m_LessFunc) |
|
m_LessFunc = func; |
|
else |
|
{ |
|
// need to re-sort the tree here.... |
|
Assert(0); |
|
} |
|
} |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// inserts a node into the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
// Inserts a node into the tree, doesn't copy the data in. |
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::FindInsertionPosition( T const &insert, I &parent, bool &leftchild ) |
|
{ |
|
Assert( m_LessFunc != NULL ); |
|
|
|
/* find where node belongs */ |
|
I current = m_Root; |
|
parent = InvalidIndex(); |
|
leftchild = false; |
|
while (current != InvalidIndex()) |
|
{ |
|
parent = current; |
|
if (m_LessFunc( insert, Element(current) )) |
|
{ |
|
leftchild = true; current = LeftChild(current); |
|
} |
|
else |
|
{ |
|
leftchild = false; current = RightChild(current); |
|
} |
|
} |
|
} |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::Insert( T const &insert ) |
|
{ |
|
// use copy constructor to copy it in |
|
I parent; |
|
bool leftchild; |
|
FindInsertionPosition( insert, parent, leftchild ); |
|
I newNode = InsertAt( parent, leftchild ); |
|
CopyConstruct( &Element( newNode ), insert ); |
|
return newNode; |
|
} |
|
|
|
|
|
template <class T, class I> |
|
void CUtlRBTree<T, I>::Insert( const T *pArray, int nItems ) |
|
{ |
|
while ( nItems-- ) |
|
{ |
|
Insert( *pArray++ ); |
|
} |
|
} |
|
|
|
//----------------------------------------------------------------------------- |
|
// finds a node in the tree |
|
//----------------------------------------------------------------------------- |
|
|
|
template <class T, class I> |
|
I CUtlRBTree<T, I>::Find( T const &search ) const |
|
{ |
|
Assert( m_LessFunc != NULL ); |
|
|
|
I current = m_Root; |
|
while (current != InvalidIndex()) |
|
{ |
|
if (m_LessFunc( search, Element(current) )) |
|
current = LeftChild(current); |
|
else if (m_LessFunc( Element(current), search )) |
|
current = RightChild(current); |
|
else |
|
break; |
|
} |
|
return current; |
|
} |
|
|
|
#endif//UTLRBTREE_H
|
|
|