mirror of
https://github.com/YGGverse/xash3d-fwgs.git
synced 2025-01-15 09:30:01 +00:00
5e0a0765ce
The `.editorconfig` file in this repo is configured to trim all trailing whitespace regardless of whether the line is modified. Trims all trailing whitespace in the repository to make the codebase easier to work with in editors that respect `.editorconfig`. `git blame` becomes less useful on these lines but it already isn't very useful. Commands: ``` find . -type f -name '*.h' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ find . -type f -name '*.c' -exec sed --in-place 's/[[:space:]]\+$//' {} \+ ```
322 lines
7.9 KiB
C
322 lines
7.9 KiB
C
/*
|
|
This is an optimized DCT from Jeff Tsay's maplay 1.2+ package.
|
|
Saved one multiplication by doing the 'twiddle factor' stuff
|
|
together with the window mul. (MH)
|
|
|
|
This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the
|
|
9 point IDCT needs to be reduced further. Unfortunately, I don't
|
|
know how to do that, because 9 is not an even number. - Jeff.
|
|
|
|
Original Message:
|
|
|
|
9 Point Inverse Discrete Cosine Transform
|
|
|
|
This piece of code is Copyright 1997 Mikko Tommila and is freely usable
|
|
by anybody. The algorithm itself is of course in the public domain.
|
|
|
|
Again derived heuristically from the 9-point WFTA.
|
|
|
|
The algorithm is optimized (?) for speed, not for small rounding errors or
|
|
good readability.
|
|
|
|
36 additions, 11 multiplications
|
|
|
|
Again this is very likely sub-optimal.
|
|
|
|
The code is optimized to use a minimum number of temporary variables,
|
|
so it should compile quite well even on 8-register Intel x86 processors.
|
|
This makes the code quite obfuscated and very difficult to understand.
|
|
|
|
References:
|
|
[1] S. Winograd: "On Computing the Discrete Fourier Transform",
|
|
Mathematics of Computation, Volume 32, Number 141, January 1978,
|
|
Pages 175-199
|
|
*/
|
|
|
|
#include "mpg123.h"
|
|
#include <math.h>
|
|
|
|
#define MACRO(v) { \
|
|
float tmpval; \
|
|
tmpval = tmp[(v)] + tmp[17-(v)]; \
|
|
out2[9+(v)] = REAL_MUL(tmpval, w[27+(v)]); \
|
|
out2[8-(v)] = REAL_MUL(tmpval, w[26-(v)]); \
|
|
tmpval = tmp[(v)] - tmp[17-(v)]; \
|
|
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(tmpval, w[8-(v)]); \
|
|
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(tmpval, w[9+(v)]); }
|
|
|
|
#define DCT12_PART1 \
|
|
in5 = in[5*3]; \
|
|
in5 += (in4 = in[4*3]); \
|
|
in4 += (in3 = in[3*3]); \
|
|
in3 += (in2 = in[2*3]); \
|
|
in2 += (in1 = in[1*3]); \
|
|
in1 += (in0 = in[0*3]); \
|
|
\
|
|
in5 += in3; in3 += in1; \
|
|
\
|
|
in2 = REAL_MUL(in2, COS6_1); \
|
|
in3 = REAL_MUL(in3, COS6_1);
|
|
|
|
#define DCT12_PART2 \
|
|
in0 += REAL_MUL(in4, COS6_2); \
|
|
\
|
|
in4 = in0 + in2; \
|
|
in0 -= in2; \
|
|
\
|
|
in1 += REAL_MUL(in5, COS6_2); \
|
|
\
|
|
in5 = REAL_MUL((in1 + in3), tfcos12[0]); \
|
|
in1 = REAL_MUL((in1 - in3), tfcos12[2]); \
|
|
\
|
|
in3 = in4 + in5; \
|
|
in4 -= in5; \
|
|
\
|
|
in2 = in0 + in1; \
|
|
in0 -= in1;
|
|
|
|
// calculation of the inverse MDCT
|
|
// used to be static without 3dnow - does that floatly matter?
|
|
void dct36( float *inbuf, float *o1, float *o2, float *wintab, float *tsbuf )
|
|
{
|
|
float tmp[18];
|
|
|
|
{
|
|
register float *in = inbuf;
|
|
|
|
in[17] += in[16]; in[16] += in[15]; in[15] += in[14];
|
|
in[14] += in[13]; in[13] += in[12]; in[12] += in[11];
|
|
in[11] += in[10]; in[10] += in[9]; in[9] += in[8];
|
|
in[8] += in[7]; in[7] += in[6]; in[6] += in[5];
|
|
in[5] += in[4]; in[4] += in[3]; in[3] += in[2];
|
|
in[2] += in[1]; in[1] += in[0];
|
|
|
|
in[17] += in[15]; in[15] += in[13]; in[13] += in[11]; in[11] += in[9];
|
|
in[9] += in[7]; in[7] += in[5]; in[5] += in[3]; in[3] += in[1];
|
|
|
|
{
|
|
float t3;
|
|
{
|
|
float t0, t1, t2;
|
|
|
|
t0 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4]));
|
|
t1 = REAL_MUL(COS6_2, in[12]);
|
|
|
|
t3 = in[0];
|
|
t2 = t3 - t1 - t1;
|
|
tmp[1] = tmp[7] = t2 - t0;
|
|
tmp[4] = t2 + t0 + t0;
|
|
t3 += t1;
|
|
|
|
t2 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2]));
|
|
tmp[1] -= t2;
|
|
tmp[7] += t2;
|
|
}
|
|
{
|
|
float t0, t1, t2;
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[4] + in[8] ));
|
|
t1 = REAL_MUL(cos9[1], (in[8] - in[16]));
|
|
t2 = REAL_MUL(cos9[2], (in[4] + in[16]));
|
|
|
|
tmp[2] = tmp[6] = t3 - t0 - t2;
|
|
tmp[0] = tmp[8] = t3 + t0 + t1;
|
|
tmp[3] = tmp[5] = t3 - t1 + t2;
|
|
}
|
|
}
|
|
{
|
|
float t1, t2, t3;
|
|
|
|
t1 = REAL_MUL(cos18[0], (in[2] + in[10]));
|
|
t2 = REAL_MUL(cos18[1], (in[10] - in[14]));
|
|
t3 = REAL_MUL(COS6_1, in[6]);
|
|
|
|
{
|
|
float t0 = t1 + t2 + t3;
|
|
tmp[0] += t0;
|
|
tmp[8] -= t0;
|
|
}
|
|
|
|
t2 -= t3;
|
|
t1 -= t3;
|
|
|
|
t3 = REAL_MUL(cos18[2], (in[2] + in[14]));
|
|
|
|
t1 += t3;
|
|
tmp[3] += t1;
|
|
tmp[5] -= t1;
|
|
|
|
t2 -= t3;
|
|
tmp[2] += t2;
|
|
tmp[6] -= t2;
|
|
}
|
|
{
|
|
float t0, t1, t2, t3, t4, t5, t6, t7;
|
|
|
|
t1 = REAL_MUL(COS6_2, in[13]);
|
|
t2 = REAL_MUL(COS6_2, (in[9] + in[17] - in[5]));
|
|
|
|
t3 = in[1] + t1;
|
|
t4 = in[1] - t1 - t1;
|
|
t5 = t4 - t2;
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[5] + in[9]));
|
|
t1 = REAL_MUL(cos9[1], (in[9] - in[17]));
|
|
|
|
tmp[13] = REAL_MUL((t4 + t2 + t2), tfcos36[17-13]);
|
|
t2 = REAL_MUL(cos9[2], (in[5] + in[17]));
|
|
|
|
t6 = t3 - t0 - t2;
|
|
t0 += t3 + t1;
|
|
t3 += t2 - t1;
|
|
|
|
t2 = REAL_MUL(cos18[0], (in[3] + in[11]));
|
|
t4 = REAL_MUL(cos18[1], (in[11] - in[15]));
|
|
t7 = REAL_MUL(COS6_1, in[7]);
|
|
|
|
t1 = t2 + t4 + t7;
|
|
tmp[17] = REAL_MUL((t0 + t1), tfcos36[17-17]);
|
|
tmp[9] = REAL_MUL((t0 - t1), tfcos36[17-9]);
|
|
t1 = REAL_MUL(cos18[2], (in[3] + in[15]));
|
|
t2 += t1 - t7;
|
|
|
|
tmp[14] = REAL_MUL((t3 + t2), tfcos36[17-14]);
|
|
t0 = REAL_MUL(COS6_1, (in[11] + in[15] - in[3]));
|
|
tmp[12] = REAL_MUL((t3 - t2), tfcos36[17-12]);
|
|
|
|
t4 -= t1 + t7;
|
|
|
|
tmp[16] = REAL_MUL((t5 - t0), tfcos36[17-16]);
|
|
tmp[10] = REAL_MUL((t5 + t0), tfcos36[17-10]);
|
|
tmp[15] = REAL_MUL((t6 + t4), tfcos36[17-15]);
|
|
tmp[11] = REAL_MUL((t6 - t4), tfcos36[17-11]);
|
|
}
|
|
|
|
|
|
|
|
{
|
|
register float *out2 = o2;
|
|
register float *w = wintab;
|
|
register float *out1 = o1;
|
|
register float *ts = tsbuf;
|
|
|
|
MACRO(0);
|
|
MACRO(1);
|
|
MACRO(2);
|
|
MACRO(3);
|
|
MACRO(4);
|
|
MACRO(5);
|
|
MACRO(6);
|
|
MACRO(7);
|
|
MACRO(8);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
void dct12( float *in, float *rawout1, float *rawout2, register float *wi, register float *ts )
|
|
{
|
|
{
|
|
float in0,in1,in2,in3,in4,in5;
|
|
register float *out1 = rawout1;
|
|
ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
|
|
ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
|
|
|
|
DCT12_PART1
|
|
|
|
{
|
|
float tmp0,tmp1 = (in0 - in4);
|
|
{
|
|
float tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
tmp0 = tmp1 + tmp2;
|
|
tmp1 -= tmp2;
|
|
}
|
|
ts[(17-1)*SBLIMIT] = out1[17-1] + REAL_MUL(tmp0, wi[11-1]);
|
|
ts[(12+1)*SBLIMIT] = out1[12+1] + REAL_MUL(tmp0, wi[6+1]);
|
|
ts[(6 +1)*SBLIMIT] = out1[6 +1] + REAL_MUL(tmp1, wi[1]);
|
|
ts[(11-1)*SBLIMIT] = out1[11-1] + REAL_MUL(tmp1, wi[5-1]);
|
|
}
|
|
|
|
DCT12_PART2
|
|
|
|
ts[(17-0)*SBLIMIT] = out1[17-0] + REAL_MUL(in2, wi[11-0]);
|
|
ts[(12+0)*SBLIMIT] = out1[12+0] + REAL_MUL(in2, wi[6+0]);
|
|
ts[(12+2)*SBLIMIT] = out1[12+2] + REAL_MUL(in3, wi[6+2]);
|
|
ts[(17-2)*SBLIMIT] = out1[17-2] + REAL_MUL(in3, wi[11-2]);
|
|
|
|
ts[(6 +0)*SBLIMIT] = out1[6+0] + REAL_MUL(in0, wi[0]);
|
|
ts[(11-0)*SBLIMIT] = out1[11-0] + REAL_MUL(in0, wi[5-0]);
|
|
ts[(6 +2)*SBLIMIT] = out1[6+2] + REAL_MUL(in4, wi[2]);
|
|
ts[(11-2)*SBLIMIT] = out1[11-2] + REAL_MUL(in4, wi[5-2]);
|
|
}
|
|
|
|
in++;
|
|
|
|
{
|
|
float in0,in1,in2,in3,in4,in5;
|
|
register float *out2 = rawout2;
|
|
|
|
DCT12_PART1
|
|
|
|
{
|
|
float tmp0,tmp1 = (in0 - in4);
|
|
{
|
|
float tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
tmp0 = tmp1 + tmp2;
|
|
tmp1 -= tmp2;
|
|
}
|
|
out2[5-1] = REAL_MUL(tmp0, wi[11-1]);
|
|
out2[0+1] = REAL_MUL(tmp0, wi[6+1]);
|
|
ts[(12+1)*SBLIMIT] += REAL_MUL(tmp1, wi[1]);
|
|
ts[(17-1)*SBLIMIT] += REAL_MUL(tmp1, wi[5-1]);
|
|
}
|
|
|
|
DCT12_PART2
|
|
|
|
out2[5-0] = REAL_MUL(in2, wi[11-0]);
|
|
out2[0+0] = REAL_MUL(in2, wi[6+0]);
|
|
out2[0+2] = REAL_MUL(in3, wi[6+2]);
|
|
out2[5-2] = REAL_MUL(in3, wi[11-2]);
|
|
|
|
ts[(12+0)*SBLIMIT] += REAL_MUL(in0, wi[0]);
|
|
ts[(17-0)*SBLIMIT] += REAL_MUL(in0, wi[5-0]);
|
|
ts[(12+2)*SBLIMIT] += REAL_MUL(in4, wi[2]);
|
|
ts[(17-2)*SBLIMIT] += REAL_MUL(in4, wi[5-2]);
|
|
}
|
|
|
|
in++;
|
|
|
|
{
|
|
float in0,in1,in2,in3,in4,in5;
|
|
register float *out2 = rawout2;
|
|
out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
|
|
|
|
DCT12_PART1
|
|
|
|
{
|
|
float tmp0,tmp1 = (in0 - in4);
|
|
{
|
|
float tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
tmp0 = tmp1 + tmp2;
|
|
tmp1 -= tmp2;
|
|
}
|
|
out2[11-1] = REAL_MUL(tmp0, wi[11-1]);
|
|
out2[6 +1] = REAL_MUL(tmp0, wi[6+1]);
|
|
out2[0+1] += REAL_MUL(tmp1, wi[1]);
|
|
out2[5-1] += REAL_MUL(tmp1, wi[5-1]);
|
|
}
|
|
|
|
DCT12_PART2
|
|
|
|
out2[11-0] = REAL_MUL(in2, wi[11-0]);
|
|
out2[6 +0] = REAL_MUL(in2, wi[6+0]);
|
|
out2[6 +2] = REAL_MUL(in3, wi[6+2]);
|
|
out2[11-2] = REAL_MUL(in3, wi[11-2]);
|
|
|
|
out2[0+0] += REAL_MUL(in0, wi[0]);
|
|
out2[5-0] += REAL_MUL(in0, wi[5-0]);
|
|
out2[0+2] += REAL_MUL(in4, wi[2]);
|
|
out2[5-2] += REAL_MUL(in4, wi[5-2]);
|
|
}
|
|
}
|