You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
912 lines
18 KiB
912 lines
18 KiB
/* |
|
xash3d_mathlib.c - internal mathlib |
|
Copyright (C) 2010 Uncle Mike |
|
|
|
This program is free software: you can redistribute it and/or modify |
|
it under the terms of the GNU General Public License as published by |
|
the Free Software Foundation, either version 3 of the License, or |
|
(at your option) any later version. |
|
|
|
This program is distributed in the hope that it will be useful, |
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
GNU General Public License for more details. |
|
*/ |
|
#include "port.h" |
|
#include "xash3d_types.h" |
|
#include "const.h" |
|
#include "com_model.h" |
|
#include "xash3d_mathlib.h" |
|
#include "eiface.h" |
|
|
|
#define NUM_HULL_ROUNDS ARRAYSIZE( hull_table ) |
|
#define HULL_PRECISION 4 |
|
|
|
vec3_t vec3_origin = { 0, 0, 0 }; |
|
|
|
static word hull_table[] = { 2, 4, 6, 8, 12, 16, 18, 24, 28, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 112, 120, 128, 140, 176 }; |
|
|
|
int boxpnt[6][4] = |
|
{ |
|
{ 0, 4, 6, 2 }, // +X |
|
{ 0, 1, 5, 4 }, // +Y |
|
{ 0, 2, 3, 1 }, // +Z |
|
{ 7, 5, 1, 3 }, // -X |
|
{ 7, 3, 2, 6 }, // -Y |
|
{ 7, 6, 4, 5 }, // -Z |
|
}; |
|
|
|
// pre-quantized table normals from Quake1 |
|
const float m_bytenormals[NUMVERTEXNORMALS][3] = |
|
{ |
|
#include "anorms.h" |
|
}; |
|
|
|
/* |
|
================= |
|
anglemod |
|
================= |
|
*/ |
|
float anglemod( float a ) |
|
{ |
|
a = (360.0f / 65536) * ((int)(a*(65536/360.0f)) & 65535); |
|
return a; |
|
} |
|
|
|
word FloatToHalf( float v ) |
|
{ |
|
unsigned int i = FloatAsUint( v ); |
|
unsigned int e = (i >> 23) & 0x00ff; |
|
unsigned int m = i & 0x007fffff; |
|
unsigned short h; |
|
|
|
if( e <= 127 - 15 ) |
|
h = ((m | 0x00800000) >> (127 - 14 - e)) >> 13; |
|
else h = (i >> 13) & 0x3fff; |
|
|
|
h |= (i >> 16) & 0xc000; |
|
|
|
return h; |
|
} |
|
|
|
float HalfToFloat( word h ) |
|
{ |
|
unsigned int f = (h << 16) & 0x80000000; |
|
unsigned int em = h & 0x7fff; |
|
|
|
if( em > 0x03ff ) |
|
{ |
|
f |= (em << 13) + ((127 - 15) << 23); |
|
} |
|
else |
|
{ |
|
unsigned int m = em & 0x03ff; |
|
|
|
if( m != 0 ) |
|
{ |
|
unsigned int e = (em >> 10) & 0x1f; |
|
|
|
while(( m & 0x0400 ) == 0 ) |
|
{ |
|
m <<= 1; |
|
e--; |
|
} |
|
|
|
m &= 0x3ff; |
|
f |= ((e + (127 - 14)) << 23) | (m << 13); |
|
} |
|
} |
|
|
|
return UintAsFloat( f ); |
|
} |
|
|
|
/* |
|
================= |
|
RoundUpHullSize |
|
|
|
round the hullsize to nearest 'right' value |
|
================= |
|
*/ |
|
void RoundUpHullSize( vec3_t size ) |
|
{ |
|
int i, j; |
|
|
|
for( i = 0; i < 3; i++) |
|
{ |
|
qboolean negative = false; |
|
float result, value; |
|
|
|
value = size[i]; |
|
if( value < 0.0f ) negative = true; |
|
value = Q_ceil( fabs( value )); |
|
result = Q_ceil( size[i] ); |
|
|
|
// lookup hull table to find nearest supposed value |
|
for( j = 0; j < NUM_HULL_ROUNDS; j++ ) |
|
{ |
|
if( value > hull_table[j] ) |
|
continue; // ceil only |
|
|
|
if( negative ) |
|
{ |
|
result = ( value - hull_table[j] ); |
|
if( result <= HULL_PRECISION ) |
|
{ |
|
result = -hull_table[j]; |
|
break; |
|
} |
|
} |
|
else |
|
{ |
|
result = ( value - hull_table[j] ); |
|
if( result <= HULL_PRECISION ) |
|
{ |
|
result = hull_table[j]; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
size[i] = result; |
|
} |
|
} |
|
|
|
/* |
|
================= |
|
SignbitsForPlane |
|
|
|
fast box on planeside test |
|
================= |
|
*/ |
|
int SignbitsForPlane( const vec3_t normal ) |
|
{ |
|
int bits, i; |
|
|
|
for( bits = i = 0; i < 3; i++ ) |
|
if( normal[i] < 0.0f ) bits |= 1<<i; |
|
return bits; |
|
} |
|
|
|
/* |
|
================= |
|
PlaneTypeForNormal |
|
================= |
|
*/ |
|
int PlaneTypeForNormal( const vec3_t normal ) |
|
{ |
|
if( normal[0] == 1.0f ) |
|
return PLANE_X; |
|
if( normal[1] == 1.0f ) |
|
return PLANE_Y; |
|
if( normal[2] == 1.0f ) |
|
return PLANE_Z; |
|
return PLANE_NONAXIAL; |
|
} |
|
|
|
/* |
|
================= |
|
NearestPOW |
|
================= |
|
*/ |
|
int NearestPOW( int value, qboolean roundDown ) |
|
{ |
|
int n = 1; |
|
|
|
if( value <= 0 ) return 1; |
|
while( n < value ) n <<= 1; |
|
|
|
if( roundDown ) |
|
{ |
|
if( n > value ) n >>= 1; |
|
} |
|
return n; |
|
} |
|
|
|
/* |
|
================= |
|
rsqrt |
|
================= |
|
*/ |
|
float rsqrt( float number ) |
|
{ |
|
int i; |
|
float x, y; |
|
|
|
if( number == 0.0f ) |
|
return 0.0f; |
|
|
|
x = number * 0.5f; |
|
i = FloatAsInt( number ); // evil floating point bit level hacking |
|
i = 0x5f3759df - (i >> 1); // what the fuck? |
|
y = IntAsFloat( i ); |
|
y = y * (1.5f - (x * y * y)); // first iteration |
|
|
|
return y; |
|
} |
|
|
|
/* |
|
============== |
|
VectorCompareEpsilon |
|
|
|
============== |
|
*/ |
|
qboolean VectorCompareEpsilon( const vec3_t vec1, const vec3_t vec2, vec_t epsilon ) |
|
{ |
|
vec_t ax, ay, az; |
|
|
|
ax = fabs( vec1[0] - vec2[0] ); |
|
ay = fabs( vec1[1] - vec2[1] ); |
|
az = fabs( vec1[2] - vec2[2] ); |
|
|
|
if(( ax <= epsilon ) && ( ay <= epsilon ) && ( az <= epsilon )) |
|
return true; |
|
return false; |
|
} |
|
|
|
float VectorNormalizeLength2( const vec3_t v, vec3_t out ) |
|
{ |
|
float length, ilength; |
|
|
|
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; |
|
length = sqrt( length ); |
|
|
|
if( length ) |
|
{ |
|
ilength = 1.0f / length; |
|
out[0] = v[0] * ilength; |
|
out[1] = v[1] * ilength; |
|
out[2] = v[2] * ilength; |
|
} |
|
|
|
return length; |
|
} |
|
|
|
void VectorVectors( const vec3_t forward, vec3_t right, vec3_t up ) |
|
{ |
|
float d; |
|
|
|
right[0] = forward[2]; |
|
right[1] = -forward[0]; |
|
right[2] = forward[1]; |
|
|
|
d = DotProduct( forward, right ); |
|
VectorMA( right, -d, forward, right ); |
|
VectorNormalize( right ); |
|
CrossProduct( right, forward, up ); |
|
VectorNormalize( up ); |
|
} |
|
|
|
/* |
|
================= |
|
AngleVectors |
|
|
|
================= |
|
*/ |
|
void GAME_EXPORT AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ) |
|
{ |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
SinCos( DEG2RAD( angles[YAW] ), &sy, &cy ); |
|
SinCos( DEG2RAD( angles[PITCH] ), &sp, &cp ); |
|
SinCos( DEG2RAD( angles[ROLL] ), &sr, &cr ); |
|
|
|
if( forward ) |
|
{ |
|
forward[0] = cp * cy; |
|
forward[1] = cp * sy; |
|
forward[2] = -sp; |
|
} |
|
|
|
if( right ) |
|
{ |
|
right[0] = (-1.0f * sr * sp * cy + -1.0f * cr * -sy ); |
|
right[1] = (-1.0f * sr * sp * sy + -1.0f * cr * cy ); |
|
right[2] = (-1.0f * sr * cp); |
|
} |
|
|
|
if( up ) |
|
{ |
|
up[0] = (cr * sp * cy + -sr * -sy ); |
|
up[1] = (cr * sp * sy + -sr * cy ); |
|
up[2] = (cr * cp); |
|
} |
|
} |
|
|
|
/* |
|
================= |
|
VectorAngles |
|
|
|
================= |
|
*/ |
|
void GAME_EXPORT VectorAngles( const float *forward, float *angles ) |
|
{ |
|
float tmp, yaw, pitch; |
|
|
|
if( !forward || !angles ) |
|
{ |
|
if( angles ) VectorClear( angles ); |
|
return; |
|
} |
|
|
|
if( forward[1] == 0 && forward[0] == 0 ) |
|
{ |
|
// fast case |
|
yaw = 0; |
|
if( forward[2] > 0 ) |
|
pitch = 90.0f; |
|
else pitch = 270.0f; |
|
} |
|
else |
|
{ |
|
yaw = ( atan2( forward[1], forward[0] ) * 180 / M_PI_F ); |
|
if( yaw < 0 ) yaw += 360; |
|
|
|
tmp = sqrt( forward[0] * forward[0] + forward[1] * forward[1] ); |
|
pitch = ( atan2( forward[2], tmp ) * 180 / M_PI_F ); |
|
if( pitch < 0 ) pitch += 360; |
|
} |
|
|
|
VectorSet( angles, pitch, yaw, 0 ); |
|
} |
|
|
|
/* |
|
================= |
|
VectorsAngles |
|
|
|
================= |
|
*/ |
|
void VectorsAngles( const vec3_t forward, const vec3_t right, const vec3_t up, vec3_t angles ) |
|
{ |
|
float pitch, cpitch, yaw, roll; |
|
|
|
pitch = -asin( forward[2] ); |
|
cpitch = cos( pitch ); |
|
|
|
if( fabs( cpitch ) > EQUAL_EPSILON ) // gimball lock? |
|
{ |
|
cpitch = 1.0f / cpitch; |
|
pitch = RAD2DEG( pitch ); |
|
yaw = RAD2DEG( atan2( forward[1] * cpitch, forward[0] * cpitch )); |
|
roll = RAD2DEG( atan2( -right[2] * cpitch, up[2] * cpitch )); |
|
} |
|
else |
|
{ |
|
pitch = forward[2] > 0 ? -90.0f : 90.0f; |
|
yaw = RAD2DEG( atan2( right[0], -right[1] )); |
|
roll = 180.0f; |
|
} |
|
|
|
angles[PITCH] = pitch; |
|
angles[YAW] = yaw; |
|
angles[ROLL] = roll; |
|
} |
|
|
|
// |
|
// bounds operations |
|
// |
|
/* |
|
================= |
|
ClearBounds |
|
================= |
|
*/ |
|
void ClearBounds( vec3_t mins, vec3_t maxs ) |
|
{ |
|
// make bogus range |
|
mins[0] = mins[1] = mins[2] = 999999.0f; |
|
maxs[0] = maxs[1] = maxs[2] = -999999.0f; |
|
} |
|
|
|
/* |
|
================= |
|
AddPointToBounds |
|
================= |
|
*/ |
|
void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) |
|
{ |
|
float val; |
|
int i; |
|
|
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
val = v[i]; |
|
if( val < mins[i] ) mins[i] = val; |
|
if( val > maxs[i] ) maxs[i] = val; |
|
} |
|
} |
|
|
|
/* |
|
================= |
|
ExpandBounds |
|
================= |
|
*/ |
|
void ExpandBounds( vec3_t mins, vec3_t maxs, float offset ) |
|
{ |
|
mins[0] -= offset; |
|
mins[1] -= offset; |
|
mins[2] -= offset; |
|
maxs[0] += offset; |
|
maxs[1] += offset; |
|
maxs[2] += offset; |
|
} |
|
|
|
/* |
|
================= |
|
BoundsIntersect |
|
================= |
|
*/ |
|
qboolean BoundsIntersect( const vec3_t mins1, const vec3_t maxs1, const vec3_t mins2, const vec3_t maxs2 ) |
|
{ |
|
if( mins1[0] > maxs2[0] || mins1[1] > maxs2[1] || mins1[2] > maxs2[2] ) |
|
return false; |
|
if( maxs1[0] < mins2[0] || maxs1[1] < mins2[1] || maxs1[2] < mins2[2] ) |
|
return false; |
|
return true; |
|
} |
|
|
|
/* |
|
================= |
|
BoundsAndSphereIntersect |
|
================= |
|
*/ |
|
qboolean BoundsAndSphereIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t origin, float radius ) |
|
{ |
|
if( mins[0] > origin[0] + radius || mins[1] > origin[1] + radius || mins[2] > origin[2] + radius ) |
|
return false; |
|
if( maxs[0] < origin[0] - radius || maxs[1] < origin[1] - radius || maxs[2] < origin[2] - radius ) |
|
return false; |
|
return true; |
|
} |
|
|
|
/* |
|
================= |
|
SphereIntersect |
|
================= |
|
*/ |
|
qboolean SphereIntersect( const vec3_t vSphereCenter, float fSphereRadiusSquared, const vec3_t vLinePt, const vec3_t vLineDir ) |
|
{ |
|
float a, b, c, insideSqr; |
|
vec3_t p; |
|
|
|
// translate sphere to origin. |
|
VectorSubtract( vLinePt, vSphereCenter, p ); |
|
|
|
a = DotProduct( vLineDir, vLineDir ); |
|
b = 2.0f * DotProduct( p, vLineDir ); |
|
c = DotProduct( p, p ) - fSphereRadiusSquared; |
|
|
|
insideSqr = b * b - 4.0f * a * c; |
|
if( insideSqr <= 0.000001f ) |
|
return false; |
|
return true; |
|
} |
|
|
|
/* |
|
================= |
|
PlaneIntersect |
|
|
|
find point where ray |
|
was intersect with plane |
|
================= |
|
*/ |
|
void PlaneIntersect( const mplane_t *plane, const vec3_t p0, const vec3_t p1, vec3_t out ) |
|
{ |
|
float distToPlane = PlaneDiff( p0, plane ); |
|
float planeDotRay = DotProduct( plane->normal, p1 ); |
|
float sect = -(distToPlane) / planeDotRay; |
|
|
|
VectorMA( p0, sect, p1, out ); |
|
} |
|
|
|
/* |
|
================= |
|
RadiusFromBounds |
|
================= |
|
*/ |
|
float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) |
|
{ |
|
vec3_t corner; |
|
int i; |
|
|
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
corner[i] = fabs( mins[i] ) > fabs( maxs[i] ) ? fabs( mins[i] ) : fabs( maxs[i] ); |
|
} |
|
return VectorLength( corner ); |
|
} |
|
|
|
// |
|
// studio utils |
|
// |
|
/* |
|
==================== |
|
AngleQuaternion |
|
|
|
==================== |
|
*/ |
|
void AngleQuaternion( const vec3_t angles, vec4_t q, qboolean studio ) |
|
{ |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
if( studio ) |
|
{ |
|
SinCos( angles[ROLL] * 0.5f, &sy, &cy ); |
|
SinCos( angles[YAW] * 0.5f, &sp, &cp ); |
|
SinCos( angles[PITCH] * 0.5f, &sr, &cr ); |
|
} |
|
else |
|
{ |
|
SinCos( DEG2RAD( angles[YAW] ) * 0.5f, &sy, &cy ); |
|
SinCos( DEG2RAD( angles[PITCH] ) * 0.5f, &sp, &cp ); |
|
SinCos( DEG2RAD( angles[ROLL] ) * 0.5f, &sr, &cr ); |
|
} |
|
|
|
q[0] = sr * cp * cy - cr * sp * sy; // X |
|
q[1] = cr * sp * cy + sr * cp * sy; // Y |
|
q[2] = cr * cp * sy - sr * sp * cy; // Z |
|
q[3] = cr * cp * cy + sr * sp * sy; // W |
|
} |
|
|
|
/* |
|
==================== |
|
QuaternionAngle |
|
|
|
==================== |
|
*/ |
|
void QuaternionAngle( const vec4_t q, vec3_t angles ) |
|
{ |
|
matrix3x4 mat; |
|
Matrix3x4_FromOriginQuat( mat, q, vec3_origin ); |
|
Matrix3x4_AnglesFromMatrix( mat, angles ); |
|
} |
|
|
|
/* |
|
==================== |
|
QuaternionAlign |
|
|
|
make sure quaternions are within 180 degrees of one another, |
|
if not, reverse q |
|
==================== |
|
*/ |
|
void QuaternionAlign( const vec4_t p, const vec4_t q, vec4_t qt ) |
|
{ |
|
// decide if one of the quaternions is backwards |
|
float a = 0.0f; |
|
float b = 0.0f; |
|
int i; |
|
|
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
a += (p[i] - q[i]) * (p[i] - q[i]); |
|
b += (p[i] + q[i]) * (p[i] + q[i]); |
|
} |
|
|
|
if( a > b ) |
|
{ |
|
for( i = 0; i < 4; i++ ) |
|
qt[i] = -q[i]; |
|
} |
|
else |
|
{ |
|
for( i = 0; i < 4; i++ ) |
|
qt[i] = q[i]; |
|
} |
|
} |
|
|
|
/* |
|
==================== |
|
QuaternionSlerpNoAlign |
|
==================== |
|
*/ |
|
void QuaternionSlerpNoAlign( const vec4_t p, const vec4_t q, float t, vec4_t qt ) |
|
{ |
|
float omega, cosom, sinom, sclp, sclq; |
|
int i; |
|
|
|
// 0.0 returns p, 1.0 return q. |
|
cosom = p[0] * q[0] + p[1] * q[1] + p[2] * q[2] + p[3] * q[3]; |
|
|
|
if(( 1.0f + cosom ) > 0.000001f ) |
|
{ |
|
if(( 1.0f - cosom ) > 0.000001f ) |
|
{ |
|
omega = acos( cosom ); |
|
sinom = sin( omega ); |
|
sclp = sin( (1.0f - t) * omega) / sinom; |
|
sclq = sin( t * omega ) / sinom; |
|
} |
|
else |
|
{ |
|
sclp = 1.0f - t; |
|
sclq = t; |
|
} |
|
|
|
for( i = 0; i < 4; i++ ) |
|
{ |
|
qt[i] = sclp * p[i] + sclq * q[i]; |
|
} |
|
} |
|
else |
|
{ |
|
qt[0] = -q[1]; |
|
qt[1] = q[0]; |
|
qt[2] = -q[3]; |
|
qt[3] = q[2]; |
|
sclp = sin(( 1.0f - t ) * ( 0.5f * M_PI_F )); |
|
sclq = sin( t * ( 0.5f * M_PI_F )); |
|
|
|
for( i = 0; i < 3; i++ ) |
|
{ |
|
qt[i] = sclp * p[i] + sclq * qt[i]; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
==================== |
|
QuaternionSlerp |
|
|
|
Quaternion sphereical linear interpolation |
|
==================== |
|
*/ |
|
void QuaternionSlerp( const vec4_t p, const vec4_t q, float t, vec4_t qt ) |
|
{ |
|
vec4_t q2; |
|
|
|
// 0.0 returns p, 1.0 return q. |
|
// decide if one of the quaternions is backwards |
|
QuaternionAlign( p, q, q2 ); |
|
|
|
QuaternionSlerpNoAlign( p, q2, t, qt ); |
|
} |
|
|
|
/* |
|
================== |
|
BoxOnPlaneSide |
|
|
|
Returns 1, 2, or 1 + 2 |
|
================== |
|
*/ |
|
int BoxOnPlaneSide( const vec3_t emins, const vec3_t emaxs, const mplane_t *p ) |
|
{ |
|
float dist1, dist2; |
|
int sides = 0; |
|
|
|
// general case |
|
switch( p->signbits ) |
|
{ |
|
case 0: |
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
|
break; |
|
case 1: |
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
|
break; |
|
case 2: |
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
|
break; |
|
case 3: |
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
|
break; |
|
case 4: |
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
|
break; |
|
case 5: |
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; |
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; |
|
break; |
|
case 6: |
|
dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
|
dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
|
break; |
|
case 7: |
|
dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; |
|
dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; |
|
break; |
|
default: |
|
// shut up compiler |
|
dist1 = dist2 = 0; |
|
break; |
|
} |
|
|
|
if( dist1 >= p->dist ) |
|
sides = 1; |
|
if( dist2 < p->dist ) |
|
sides |= 2; |
|
|
|
return sides; |
|
} |
|
|
|
/* |
|
==================== |
|
StudioSlerpBones |
|
|
|
==================== |
|
*/ |
|
void R_StudioSlerpBones( int numbones, vec4_t q1[], float pos1[][3], const vec4_t q2[], const float pos2[][3], float s ) |
|
{ |
|
int i; |
|
|
|
s = bound( 0.0f, s, 1.0f ); |
|
|
|
for( i = 0; i < numbones; i++ ) |
|
{ |
|
QuaternionSlerp( q1[i], q2[i], s, q1[i] ); |
|
VectorLerp( pos1[i], s, pos2[i], pos1[i] ); |
|
} |
|
} |
|
|
|
/* |
|
==================== |
|
StudioCalcBoneQuaternion |
|
|
|
==================== |
|
*/ |
|
void R_StudioCalcBoneQuaternion( int frame, float s, const mstudiobone_t *pbone, const mstudioanim_t *panim, const float *adj, vec4_t q ) |
|
{ |
|
vec3_t angles1; |
|
vec3_t angles2; |
|
int j, k; |
|
|
|
for( j = 0; j < 3; j++ ) |
|
{ |
|
if( !panim || panim->offset[j+3] == 0 ) |
|
{ |
|
angles2[j] = angles1[j] = pbone->value[j+3]; // default; |
|
} |
|
else |
|
{ |
|
mstudioanimvalue_t *panimvalue = (mstudioanimvalue_t *)((byte *)panim + panim->offset[j+3]); |
|
|
|
k = frame; |
|
|
|
// debug |
|
if( panimvalue->num.total < panimvalue->num.valid ) |
|
k = 0; |
|
|
|
// find span of values that includes the frame we want |
|
while( panimvalue->num.total <= k ) |
|
{ |
|
k -= panimvalue->num.total; |
|
panimvalue += panimvalue->num.valid + 1; |
|
|
|
// debug |
|
if( panimvalue->num.total < panimvalue->num.valid ) |
|
k = 0; |
|
} |
|
|
|
// bah, missing blend! |
|
if( panimvalue->num.valid > k ) |
|
{ |
|
angles1[j] = panimvalue[k+1].value; |
|
|
|
if( panimvalue->num.valid > k + 1 ) |
|
{ |
|
angles2[j] = panimvalue[k+2].value; |
|
} |
|
else |
|
{ |
|
if( panimvalue->num.total > k + 1 ) |
|
angles2[j] = angles1[j]; |
|
else angles2[j] = panimvalue[panimvalue->num.valid+2].value; |
|
} |
|
} |
|
else |
|
{ |
|
angles1[j] = panimvalue[panimvalue->num.valid].value; |
|
if( panimvalue->num.total > k + 1 ) |
|
angles2[j] = angles1[j]; |
|
else angles2[j] = panimvalue[panimvalue->num.valid+2].value; |
|
} |
|
|
|
angles1[j] = pbone->value[j+3] + angles1[j] * pbone->scale[j+3]; |
|
angles2[j] = pbone->value[j+3] + angles2[j] * pbone->scale[j+3]; |
|
} |
|
|
|
if( pbone->bonecontroller[j+3] != -1 && adj != NULL ) |
|
{ |
|
angles1[j] += adj[pbone->bonecontroller[j+3]]; |
|
angles2[j] += adj[pbone->bonecontroller[j+3]]; |
|
} |
|
} |
|
|
|
if( !VectorCompare( angles1, angles2 )) |
|
{ |
|
vec4_t q1, q2; |
|
|
|
AngleQuaternion( angles1, q1, true ); |
|
AngleQuaternion( angles2, q2, true ); |
|
QuaternionSlerp( q1, q2, s, q ); |
|
} |
|
else |
|
{ |
|
AngleQuaternion( angles1, q, true ); |
|
} |
|
} |
|
|
|
/* |
|
==================== |
|
StudioCalcBonePosition |
|
|
|
==================== |
|
*/ |
|
void R_StudioCalcBonePosition( int frame, float s, const mstudiobone_t *pbone, const mstudioanim_t *panim, const float *adj, vec3_t pos ) |
|
{ |
|
vec3_t origin1; |
|
vec3_t origin2; |
|
int j, k; |
|
|
|
for( j = 0; j < 3; j++ ) |
|
{ |
|
if( !panim || panim->offset[j] == 0 ) |
|
{ |
|
origin2[j] = origin1[j] = pbone->value[j]; // default; |
|
} |
|
else |
|
{ |
|
mstudioanimvalue_t *panimvalue = (mstudioanimvalue_t *)((byte *)panim + panim->offset[j]); |
|
|
|
k = frame; |
|
|
|
// debug |
|
if( panimvalue->num.total < panimvalue->num.valid ) |
|
k = 0; |
|
|
|
// find span of values that includes the frame we want |
|
while( panimvalue->num.total <= k ) |
|
{ |
|
k -= panimvalue->num.total; |
|
panimvalue += panimvalue->num.valid + 1; |
|
|
|
// debug |
|
if( panimvalue->num.total < panimvalue->num.valid ) |
|
k = 0; |
|
} |
|
|
|
// bah, missing blend! |
|
if( panimvalue->num.valid > k ) |
|
{ |
|
origin1[j] = panimvalue[k+1].value; |
|
|
|
if( panimvalue->num.valid > k + 1 ) |
|
{ |
|
origin2[j] = panimvalue[k+2].value; |
|
} |
|
else |
|
{ |
|
if( panimvalue->num.total > k + 1 ) |
|
origin2[j] = origin1[j]; |
|
else origin2[j] = panimvalue[panimvalue->num.valid+2].value; |
|
} |
|
} |
|
else |
|
{ |
|
origin1[j] = panimvalue[panimvalue->num.valid].value; |
|
if( panimvalue->num.total > k + 1 ) |
|
origin2[j] = origin1[j]; |
|
else origin2[j] = panimvalue[panimvalue->num.valid+2].value; |
|
} |
|
|
|
origin1[j] = pbone->value[j] + origin1[j] * pbone->scale[j]; |
|
origin2[j] = pbone->value[j] + origin2[j] * pbone->scale[j]; |
|
} |
|
|
|
if( pbone->bonecontroller[j] != -1 && adj != NULL ) |
|
{ |
|
origin1[j] += adj[pbone->bonecontroller[j]]; |
|
origin2[j] += adj[pbone->bonecontroller[j]]; |
|
} |
|
} |
|
|
|
if( !VectorCompare( origin1, origin2 )) |
|
{ |
|
VectorLerp( origin1, s, origin2, pos ); |
|
} |
|
else |
|
{ |
|
VectorCopy( origin1, pos ); |
|
} |
|
}
|
|
|