#include "r_local.h" #include "../ref_gl/gl_export.h" struct swblit_s { uint stride; uint bpp; uint rmask, gmask, bmask; void *(*pLockBuffer)( void ); void (*pUnlockBuffer)( void ); void *(*pCreateBuffer)( int width, int height, uint *stride, uint *bpp, uint *r, uint *g, uint *b ); } swblit; /* ======================== DebugCallback For ARB_debug_output ======================== */ static void APIENTRY GL_DebugOutput( GLuint source, GLuint type, GLuint id, GLuint severity, GLint length, const GLcharARB *message, GLvoid *userParam ) { switch( type ) { case GL_DEBUG_TYPE_ERROR_ARB: gEngfuncs.Con_Printf( S_OPENGL_ERROR "%s\n", message ); break; case GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB: gEngfuncs.Con_Printf( S_OPENGL_WARN "%s\n", message ); break; case GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB: gEngfuncs.Con_Printf( S_OPENGL_WARN "%s\n", message ); break; case GL_DEBUG_TYPE_PORTABILITY_ARB: gEngfuncs.Con_Reportf( S_OPENGL_WARN "%s\n", message ); break; case GL_DEBUG_TYPE_PERFORMANCE_ARB: gEngfuncs.Con_Printf( S_OPENGL_NOTE "%s\n", message ); break; case GL_DEBUG_TYPE_OTHER_ARB: default: gEngfuncs.Con_Printf( S_OPENGL_NOTE "%s\n", message ); break; } } static unsigned short *glbuf; static int tex; #define LOAD(x) p##x = gEngfuncs.GL_GetProcAddress(#x) void GAME_EXPORT GL_SetupAttributes( int safegl ) { gEngfuncs.Con_Reportf( "Creating an extended GL context for debug...\n" ); gEngfuncs.GL_SetAttribute( REF_GL_CONTEXT_FLAGS, REF_GL_CONTEXT_DEBUG_FLAG ); // untill we have any blitter in ref api, setup GL gEngfuncs.GL_SetAttribute( REF_GL_CONTEXT_PROFILE_MASK, REF_GL_CONTEXT_PROFILE_COMPATIBILITY ); gEngfuncs.GL_SetAttribute( REF_GL_DOUBLEBUFFER, 1 ); gEngfuncs.GL_SetAttribute( REF_GL_RED_SIZE, 5 ); gEngfuncs.GL_SetAttribute( REF_GL_GREEN_SIZE, 6 ); gEngfuncs.GL_SetAttribute( REF_GL_BLUE_SIZE, 5 ); } void GAME_EXPORT GL_InitExtensions( void ) { } void GAME_EXPORT GL_ClearExtensions( void ) { } static void *R_Lock_GL1( void ) { return glbuf; } static void R_Unlock_GL1( void ) { pglViewport( 0, 0, gpGlobals->width, gpGlobals->height ); pglMatrixMode( GL_PROJECTION ); pglLoadIdentity(); pglOrtho( 0, gpGlobals->width, gpGlobals->height, 0, -99999, 99999 ); pglMatrixMode( GL_MODELVIEW ); pglLoadIdentity(); pglEnable( GL_TEXTURE_2D ); pglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); pglTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); pglTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, vid.width, vid.height, 0, GL_RGB, GL_UNSIGNED_SHORT_5_6_5, glbuf ); //gEngfuncs.Con_Printf("%d\n",pglGetError()); pglBegin( GL_QUADS ); pglTexCoord2f( 0, 0 ); pglVertex2f( 0, 0 ); pglTexCoord2f( 1, 0 ); pglVertex2f( vid.width, 0 ); pglTexCoord2f( 1, 1 ); pglVertex2f( vid.width, vid.height ); pglTexCoord2f( 0, 1 ); pglVertex2f( 0, vid.height ); pglEnd(); pglDisable( GL_TEXTURE_2D ); gEngfuncs.GL_SwapBuffers(); } static void *R_CreateBuffer_GL1( int width, int height, uint *stride, uint *bpp, uint *r, uint *g, uint *b ) { LOAD(glBegin); LOAD(glEnd); LOAD(glTexCoord2f); LOAD(glVertex2f); LOAD(glEnable); LOAD(glDisable); LOAD(glTexImage2D); LOAD(glOrtho); LOAD(glMatrixMode); LOAD(glLoadIdentity); LOAD(glViewport); LOAD(glBindTexture); LOAD(glDebugMessageCallbackARB); LOAD(glDebugMessageControlARB); LOAD(glGetError); LOAD(glGenTextures); LOAD(glTexParameteri); #ifdef GLDEBUG if( gpGlobals->developer ) { gEngfuncs.Con_Reportf( "Installing GL_DebugOutput...\n"); pglDebugMessageCallbackARB( GL_DebugOutput, NULL ); // force everything to happen in the main thread instead of in a separate driver thread pglEnable( GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB ); } // enable all the low priority messages pglDebugMessageControlARB( GL_DONT_CARE, GL_DONT_CARE, GL_DEBUG_SEVERITY_LOW_ARB, 0, NULL, true ); #endif if( glbuf ) Mem_Free(glbuf); glbuf = Mem_Malloc( r_temppool, width*height*2 ); *stride = width; *bpp = 2; *r = MASK(5) << 6 + 5; *g = MASK(6) << 5; *b = MASK(5); return glbuf; } static int FIRST_BIT( uint mask ) { uint i; for( i = 0; !(BIT(i) & mask); i++ ); return i; } static int COUNT_BITS( uint mask ) { uint i; for( i = 0; mask; mask = mask >> 1 ) i += mask & 1; return i; } void R_BuildScreenMap( void ) { int i; uint rshift = FIRST_BIT(swblit.rmask), gshift = FIRST_BIT(swblit.gmask), bshift = FIRST_BIT(swblit.bmask); uint rbits = COUNT_BITS(swblit.rmask), gbits = COUNT_BITS(swblit.gmask), bbits = COUNT_BITS(swblit.bmask); uint rmult = BIT(rbits), gmult = BIT(gbits), bmult = BIT(bbits); uint rdiv = MASK(5), gdiv = MASK(6), bdiv = MASK(5); gEngfuncs.Con_Printf("Blit table: %d %d %d %d %d %d\n", rmult, gmult, bmult, rdiv, gdiv, bdiv ); #ifdef SEPARATE_BLIT for( i = 0; i < 256; i++ ) { unsigned int r,g,b; // 332 to 565 r = ((i >> (8 - 3) )<< 2 ) & MASK(5); g = ((i >> (8 - 3 - 3)) << 3) & MASK(6); b = ((i >> (8 - 3 - 3 - 2)) << 3) & MASK(5); vid.screen_major[i] = r << (6 + 5) | (g << 5) | b; // restore minor GBRGBRGB r = MOVE_BIT(i, 5, 1) | MOVE_BIT(i, 2, 0); g = MOVE_BIT(i, 7, 2) | MOVE_BIT(i, 4, 1) | MOVE_BIT(i, 1, 0); b = MOVE_BIT(i, 6, 2) | MOVE_BIT(i, 3, 1) | MOVE_BIT(i, 0, 0); vid.screen_minor[i] = r << (6 + 5) | (g << 5) | b; } #else for( i = 0; i < 256; i++ ) { unsigned int r,g,b , major, j; // 332 to 565 r = ((i >> (8 - 3) )<< 2 ) & MASK(5); g = ((i >> (8 - 3 - 3)) << 3) & MASK(6); b = ((i >> (8 - 3 - 3 - 2)) << 3) & MASK(5); //major = r << (6 + 5) | (g << 5) | b; major = (r * rmult / rdiv) << rshift | (g * gmult / gdiv) << gshift | (b * bmult / bdiv) << bshift; for( j = 0; j < 256; j++ ) { uint minor; // restore minor GBRGBRGB r = MOVE_BIT(j, 5, 1) | MOVE_BIT(j, 2, 0); g = MOVE_BIT(j, 7, 2) | MOVE_BIT(j, 4, 1) | MOVE_BIT(j, 1, 0); b = MOVE_BIT(j, 6, 2) | MOVE_BIT(j, 3, 1) | MOVE_BIT(j, 0, 0); //vid.screen[(i<<8)|j] = r << (6 + 5) | (g << 5) | b | major; minor = (r * rmult / rdiv) << rshift | (g * gmult / gdiv) << gshift | (b * bmult / bdiv) << bshift; if( swblit.bpp == 2 ) vid.screen[(i<<8)|j] = major | minor; else vid.screen32[(i<<8)|j] = major | minor; } } #endif } #define FOR_EACH_COLOR(x) for( r##x = 0; r##x < BIT(3); r##x++ ) for( g##x = 0; g##x < BIT(3); g##x++ ) for( b##x = 0; b##x < BIT(2); b##x++ ) void R_BuildBlendMaps( void ) { unsigned int r1, g1, b1; unsigned int r2, g2, b2; unsigned int i, j; FOR_EACH_COLOR(1)FOR_EACH_COLOR(2) { unsigned int r, g, b; unsigned short index1 = r1 << (2 + 3) | g1 << 2 | b1; unsigned short index2 = (r2 << (2 + 3) | g2 << 2 | b2) << 8; unsigned int a; r = r1 + r2; g = g1 + g2; b = b1 + b2; if( r > MASK(3) ) r = MASK(3); if( g > MASK(3) ) g = MASK(3); if( b > MASK(2) ) b = MASK(2); ASSERT(!vid.addmap[index2|index1]); vid.addmap[index2|index1] = r << (2 + 3) | g << 2 | b; r = r1 * r2 / MASK(3); g = g1 * g2 / MASK(3); b = b1 * b2 / MASK(2); vid.modmap[index2|index1] = r << (2 + 3) | g << 2 | b; #if 0 for( a = 0; a < 8; a++ ) { r = r1 * (7 - a) / 7 + r2 * a / 7; g = g1 * (7 - a) / 7 + g2 * a / 7; b = b1 * (7 - a) / 7 + b2 * a / 7; //if( b == 1 ) b = 0; vid.alphamap[a << 16|index2|index1] = r << (2 + 3) | g << 2 | b; } #endif } for( i = 0; i < 8192; i++ ) { unsigned int r, g, b; uint color = i << 3; uint m = color >> 8; uint j = color & 0xff; unsigned short index1 = i; r1 = ((m >> (8 - 3) )<< 2 ) & MASK(5); g1 = ((m >> (8 - 3 - 3)) << 3) & MASK(6); b1 = ((m >> (8 - 3 - 3 - 2)) << 3) & MASK(5); r1 |= MOVE_BIT(j, 5, 1) | MOVE_BIT(j, 2, 0); g1 |= MOVE_BIT(j, 7, 2) | MOVE_BIT(j, 4, 1) | MOVE_BIT(j, 1, 0); b1 |= MOVE_BIT(j, 6, 2) | MOVE_BIT(j, 3, 1) | MOVE_BIT(j, 0, 0); for( j = 0; j < 32; j++) { unsigned int index2 = j << 13; unsigned int major, minor; r = r1 * j / 32; g = g1 * j / 32; b = b1 * j / 32; major = (((r >> 2) & MASK(3)) << 5) |( (( (g >> 3) & MASK(3)) << 2 ) )| (((b >> 3) & MASK(2))); // save minor GBRGBRGB minor = MOVE_BIT(r,1,5) | MOVE_BIT(r,0,2) | MOVE_BIT(g,2,7) | MOVE_BIT(g,1,4) | MOVE_BIT(g,0,1) | MOVE_BIT(b,2,6)| MOVE_BIT(b,1,3)|MOVE_BIT(b,0,0); vid.colormap[index2|index1] = major << 8 | (minor & 0xFF); } } #if 1 for( i = 0; i < 1024; i++ ) { unsigned int r, g, b; uint color = i << 6 | BIT(5) | BIT(4) | BIT(3); uint m = color >> 8; uint j = color & 0xff; unsigned short index1 = i; r1 = ((m >> (8 - 3) )<< 2 ) & MASK(5); g1 = ((m >> (8 - 3 - 3)) << 3) & MASK(6); b1 = ((m >> (8 - 3 - 3 - 2)) << 3) & MASK(5); r1 |= MOVE_BIT(j, 5, 1) | MOVE_BIT(j, 2, 0); g1 |= MOVE_BIT(j, 7, 2) | MOVE_BIT(j, 4, 1) | MOVE_BIT(j, 1, 0); b1 |= MOVE_BIT(j, 6, 2) | MOVE_BIT(j, 3, 1) | MOVE_BIT(j, 0, 0); FOR_EACH_COLOR(2) { unsigned int index2 = (r2 << (2 + 3) | g2 << 2 | b2) << 10; unsigned int k; for( k = 0; k < 3; k++ ) { unsigned int major, minor; unsigned int a = k + 2; r = r1 * (7 - a) / 7 + (r2 << 2 | BIT(2)) * a / 7; g = g1 * (7 - a) / 7 + (g2 << 3 | MASK(2)) * a / 7; b = b1 * (7 - a) / 7 + (b2 << 3 | MASK(2)) * a / 7; if( r > MASK(5) ) r = MASK(5); if( g > MASK(6) ) g = MASK(6); if( b > MASK(5) ) b = MASK(5); ASSERT( b < 32 ); major = (((r >> 2) & MASK(3)) << 5) |( (( (g >> 3) & MASK(3)) << 2 ) )| (((b >> 3) & MASK(2))); // save minor GBRGBRGB minor = MOVE_BIT(r,1,5) | MOVE_BIT(r,0,2) | MOVE_BIT(g,2,7) | MOVE_BIT(g,1,4) | MOVE_BIT(g,0,1) | MOVE_BIT(b,2,6)| MOVE_BIT(b,1,3)|MOVE_BIT(b,0,0); minor = minor & ~0x3f; vid.alphamap[k << 18|index2|index1] = major << 8 | (minor & 0xFF); } } } #endif } void R_AllocScreen( void ); void R_InitBlit( qboolean glblit ) { R_BuildBlendMaps(); if( glblit ) { swblit.pLockBuffer = R_Lock_GL1; swblit.pUnlockBuffer = R_Unlock_GL1; swblit.pCreateBuffer = R_CreateBuffer_GL1; } else { swblit.pLockBuffer = gEngfuncs.SW_LockBuffer; swblit.pUnlockBuffer = gEngfuncs.SW_UnlockBuffer; swblit.pCreateBuffer = gEngfuncs.SW_CreateBuffer; } R_AllocScreen(); } void R_AllocScreen( void ) { if( gpGlobals->width < 320 ) gpGlobals->width = 320; if( gpGlobals->height < 200 ) gpGlobals->height = 200; R_InitCaches(); swblit.pCreateBuffer( gpGlobals->width, gpGlobals->height, &swblit.stride, &swblit.bpp, &swblit.rmask, &swblit.gmask, &swblit.bmask); R_BuildScreenMap(); vid.width = gpGlobals->width; vid.height = gpGlobals->height; vid.rowbytes = gpGlobals->width; // rowpixels if( d_pzbuffer ) Mem_Free( d_pzbuffer ); d_pzbuffer = Mem_Calloc( r_temppool, vid.width*vid.height*2 + 64 ); if( vid.buffer ) Mem_Free( vid.buffer ); vid.buffer = Mem_Malloc( r_temppool, vid.width * vid.height*sizeof( pixel_t ) ); } void R_BlitScreen( void ) { //memset( vid.buffer, 10, vid.width * vid.height ); int u, v; void *buffer = swblit.pLockBuffer(); if( !buffer || gpGlobals->width != vid.width || gpGlobals->height != vid.height ) { R_AllocScreen(); return; } //byte *buf = vid.buffer; //#pragma omp parallel for schedule(static) if( swblit.bpp == 2 ) { unsigned short *pbuf = buffer; for( v = 0; v < vid.height;v++) { uint start = vid.rowbytes * v; uint dstart = swblit.stride * v; for( u = 0; u < vid.width; u++ ) { unsigned int s = vid.screen[vid.buffer[start + u]]; pbuf[dstart + u] = s; } } } else if( swblit.bpp == 4 ) { unsigned int *pbuf = buffer; for( v = 0; v < vid.height;v++) { uint start = vid.rowbytes * v; uint dstart = swblit.stride * v; for( u = 0; u < vid.width; u++ ) { unsigned int s = vid.screen32[vid.buffer[start + u]]; pbuf[dstart + u] = s; } } } else if( swblit.bpp == 3 ) { byte *pbuf = buffer; for( v = 0; v < vid.height;v++) { uint start = vid.rowbytes * v; uint dstart = swblit.stride * v; for( u = 0; u < vid.width; u++ ) { unsigned int s = vid.screen32[vid.buffer[start + u]]; pbuf[(dstart+u)*3] = s; s = s >> 8; pbuf[(dstart+u)*3+1] = s; s = s >> 8; pbuf[(dstart+u)*3+2] = s; } } } swblit.pUnlockBuffer(); }