2018-04-17 03:57:04 +03:00
|
|
|
/*
|
|
|
|
This is an optimized DCT from Jeff Tsay's maplay 1.2+ package.
|
|
|
|
Saved one multiplication by doing the 'twiddle factor' stuff
|
|
|
|
together with the window mul. (MH)
|
|
|
|
|
|
|
|
This uses Byeong Gi Lee's Fast Cosine Transform algorithm, but the
|
|
|
|
9 point IDCT needs to be reduced further. Unfortunately, I don't
|
|
|
|
know how to do that, because 9 is not an even number. - Jeff.
|
|
|
|
|
|
|
|
Original Message:
|
|
|
|
|
|
|
|
9 Point Inverse Discrete Cosine Transform
|
|
|
|
|
|
|
|
This piece of code is Copyright 1997 Mikko Tommila and is freely usable
|
|
|
|
by anybody. The algorithm itself is of course in the public domain.
|
|
|
|
|
|
|
|
Again derived heuristically from the 9-point WFTA.
|
|
|
|
|
|
|
|
The algorithm is optimized (?) for speed, not for small rounding errors or
|
|
|
|
good readability.
|
|
|
|
|
|
|
|
36 additions, 11 multiplications
|
|
|
|
|
|
|
|
Again this is very likely sub-optimal.
|
|
|
|
|
|
|
|
The code is optimized to use a minimum number of temporary variables,
|
|
|
|
so it should compile quite well even on 8-register Intel x86 processors.
|
|
|
|
This makes the code quite obfuscated and very difficult to understand.
|
|
|
|
|
|
|
|
References:
|
|
|
|
[1] S. Winograd: "On Computing the Discrete Fourier Transform",
|
|
|
|
Mathematics of Computation, Volume 32, Number 141, January 1978,
|
|
|
|
Pages 175-199
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "mpg123.h"
|
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#define MACRO(v) { \
|
|
|
|
float tmpval; \
|
|
|
|
tmpval = tmp[(v)] + tmp[17-(v)]; \
|
|
|
|
out2[9+(v)] = REAL_MUL(tmpval, w[27+(v)]); \
|
|
|
|
out2[8-(v)] = REAL_MUL(tmpval, w[26-(v)]); \
|
|
|
|
tmpval = tmp[(v)] - tmp[17-(v)]; \
|
|
|
|
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + REAL_MUL(tmpval, w[8-(v)]); \
|
|
|
|
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + REAL_MUL(tmpval, w[9+(v)]); }
|
|
|
|
|
|
|
|
#define DCT12_PART1 \
|
|
|
|
in5 = in[5*3]; \
|
|
|
|
in5 += (in4 = in[4*3]); \
|
|
|
|
in4 += (in3 = in[3*3]); \
|
|
|
|
in3 += (in2 = in[2*3]); \
|
|
|
|
in2 += (in1 = in[1*3]); \
|
|
|
|
in1 += (in0 = in[0*3]); \
|
|
|
|
\
|
|
|
|
in5 += in3; in3 += in1; \
|
|
|
|
\
|
|
|
|
in2 = REAL_MUL(in2, COS6_1); \
|
|
|
|
in3 = REAL_MUL(in3, COS6_1);
|
|
|
|
|
|
|
|
#define DCT12_PART2 \
|
|
|
|
in0 += REAL_MUL(in4, COS6_2); \
|
|
|
|
\
|
|
|
|
in4 = in0 + in2; \
|
|
|
|
in0 -= in2; \
|
|
|
|
\
|
|
|
|
in1 += REAL_MUL(in5, COS6_2); \
|
|
|
|
\
|
|
|
|
in5 = REAL_MUL((in1 + in3), tfcos12[0]); \
|
|
|
|
in1 = REAL_MUL((in1 - in3), tfcos12[2]); \
|
|
|
|
\
|
|
|
|
in3 = in4 + in5; \
|
|
|
|
in4 -= in5; \
|
|
|
|
\
|
|
|
|
in2 = in0 + in1; \
|
|
|
|
in0 -= in1;
|
|
|
|
|
|
|
|
// calculation of the inverse MDCT
|
|
|
|
// used to be static without 3dnow - does that floatly matter?
|
|
|
|
void dct36( float *inbuf, float *o1, float *o2, float *wintab, float *tsbuf )
|
|
|
|
{
|
|
|
|
float tmp[18];
|
|
|
|
|
|
|
|
{
|
|
|
|
register float *in = inbuf;
|
|
|
|
|
|
|
|
in[17] += in[16]; in[16] += in[15]; in[15] += in[14];
|
|
|
|
in[14] += in[13]; in[13] += in[12]; in[12] += in[11];
|
|
|
|
in[11] += in[10]; in[10] += in[9]; in[9] += in[8];
|
|
|
|
in[8] += in[7]; in[7] += in[6]; in[6] += in[5];
|
|
|
|
in[5] += in[4]; in[4] += in[3]; in[3] += in[2];
|
|
|
|
in[2] += in[1]; in[1] += in[0];
|
|
|
|
|
|
|
|
in[17] += in[15]; in[15] += in[13]; in[13] += in[11]; in[11] += in[9];
|
|
|
|
in[9] += in[7]; in[7] += in[5]; in[5] += in[3]; in[3] += in[1];
|
|
|
|
|
|
|
|
{
|
|
|
|
float t3;
|
|
|
|
{
|
|
|
|
float t0, t1, t2;
|
|
|
|
|
|
|
|
t0 = REAL_MUL(COS6_2, (in[8] + in[16] - in[4]));
|
|
|
|
t1 = REAL_MUL(COS6_2, in[12]);
|
|
|
|
|
|
|
|
t3 = in[0];
|
|
|
|
t2 = t3 - t1 - t1;
|
|
|
|
tmp[1] = tmp[7] = t2 - t0;
|
|
|
|
tmp[4] = t2 + t0 + t0;
|
|
|
|
t3 += t1;
|
|
|
|
|
|
|
|
t2 = REAL_MUL(COS6_1, (in[10] + in[14] - in[2]));
|
|
|
|
tmp[1] -= t2;
|
|
|
|
tmp[7] += t2;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
float t0, t1, t2;
|
|
|
|
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[4] + in[8] ));
|
|
|
|
t1 = REAL_MUL(cos9[1], (in[8] - in[16]));
|
|
|
|
t2 = REAL_MUL(cos9[2], (in[4] + in[16]));
|
|
|
|
|
|
|
|
tmp[2] = tmp[6] = t3 - t0 - t2;
|
|
|
|
tmp[0] = tmp[8] = t3 + t0 + t1;
|
|
|
|
tmp[3] = tmp[5] = t3 - t1 + t2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
float t1, t2, t3;
|
|
|
|
|
|
|
|
t1 = REAL_MUL(cos18[0], (in[2] + in[10]));
|
|
|
|
t2 = REAL_MUL(cos18[1], (in[10] - in[14]));
|
|
|
|
t3 = REAL_MUL(COS6_1, in[6]);
|
|
|
|
|
|
|
|
{
|
|
|
|
float t0 = t1 + t2 + t3;
|
|
|
|
tmp[0] += t0;
|
|
|
|
tmp[8] -= t0;
|
|
|
|
}
|
|
|
|
|
|
|
|
t2 -= t3;
|
|
|
|
t1 -= t3;
|
|
|
|
|
|
|
|
t3 = REAL_MUL(cos18[2], (in[2] + in[14]));
|
|
|
|
|
|
|
|
t1 += t3;
|
|
|
|
tmp[3] += t1;
|
|
|
|
tmp[5] -= t1;
|
|
|
|
|
|
|
|
t2 -= t3;
|
|
|
|
tmp[2] += t2;
|
|
|
|
tmp[6] -= t2;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
float t0, t1, t2, t3, t4, t5, t6, t7;
|
|
|
|
|
|
|
|
t1 = REAL_MUL(COS6_2, in[13]);
|
|
|
|
t2 = REAL_MUL(COS6_2, (in[9] + in[17] - in[5]));
|
|
|
|
|
|
|
|
t3 = in[1] + t1;
|
|
|
|
t4 = in[1] - t1 - t1;
|
|
|
|
t5 = t4 - t2;
|
|
|
|
|
|
|
|
t0 = REAL_MUL(cos9[0], (in[5] + in[9]));
|
|
|
|
t1 = REAL_MUL(cos9[1], (in[9] - in[17]));
|
|
|
|
|
|
|
|
tmp[13] = REAL_MUL((t4 + t2 + t2), tfcos36[17-13]);
|
|
|
|
t2 = REAL_MUL(cos9[2], (in[5] + in[17]));
|
|
|
|
|
|
|
|
t6 = t3 - t0 - t2;
|
|
|
|
t0 += t3 + t1;
|
|
|
|
t3 += t2 - t1;
|
|
|
|
|
|
|
|
t2 = REAL_MUL(cos18[0], (in[3] + in[11]));
|
|
|
|
t4 = REAL_MUL(cos18[1], (in[11] - in[15]));
|
|
|
|
t7 = REAL_MUL(COS6_1, in[7]);
|
|
|
|
|
|
|
|
t1 = t2 + t4 + t7;
|
|
|
|
tmp[17] = REAL_MUL((t0 + t1), tfcos36[17-17]);
|
|
|
|
tmp[9] = REAL_MUL((t0 - t1), tfcos36[17-9]);
|
|
|
|
t1 = REAL_MUL(cos18[2], (in[3] + in[15]));
|
|
|
|
t2 += t1 - t7;
|
|
|
|
|
|
|
|
tmp[14] = REAL_MUL((t3 + t2), tfcos36[17-14]);
|
|
|
|
t0 = REAL_MUL(COS6_1, (in[11] + in[15] - in[3]));
|
|
|
|
tmp[12] = REAL_MUL((t3 - t2), tfcos36[17-12]);
|
|
|
|
|
|
|
|
t4 -= t1 + t7;
|
|
|
|
|
|
|
|
tmp[16] = REAL_MUL((t5 - t0), tfcos36[17-16]);
|
|
|
|
tmp[10] = REAL_MUL((t5 + t0), tfcos36[17-10]);
|
|
|
|
tmp[15] = REAL_MUL((t6 + t4), tfcos36[17-15]);
|
|
|
|
tmp[11] = REAL_MUL((t6 - t4), tfcos36[17-11]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
register float *out2 = o2;
|
|
|
|
register float *w = wintab;
|
|
|
|
register float *out1 = o1;
|
|
|
|
register float *ts = tsbuf;
|
|
|
|
|
|
|
|
MACRO(0);
|
|
|
|
MACRO(1);
|
|
|
|
MACRO(2);
|
|
|
|
MACRO(3);
|
|
|
|
MACRO(4);
|
|
|
|
MACRO(5);
|
|
|
|
MACRO(6);
|
|
|
|
MACRO(7);
|
|
|
|
MACRO(8);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void dct12( float *in, float *rawout1, float *rawout2, register float *wi, register float *ts )
|
|
|
|
{
|
|
|
|
{
|
|
|
|
float in0,in1,in2,in3,in4,in5;
|
|
|
|
register float *out1 = rawout1;
|
|
|
|
ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
|
|
|
|
ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
|
|
|
|
|
|
|
|
DCT12_PART1
|
|
|
|
|
|
|
|
{
|
|
|
|
float tmp0,tmp1 = (in0 - in4);
|
|
|
|
{
|
|
|
|
float tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
|
|
tmp0 = tmp1 + tmp2;
|
|
|
|
tmp1 -= tmp2;
|
|
|
|
}
|
|
|
|
ts[(17-1)*SBLIMIT] = out1[17-1] + REAL_MUL(tmp0, wi[11-1]);
|
|
|
|
ts[(12+1)*SBLIMIT] = out1[12+1] + REAL_MUL(tmp0, wi[6+1]);
|
|
|
|
ts[(6 +1)*SBLIMIT] = out1[6 +1] + REAL_MUL(tmp1, wi[1]);
|
|
|
|
ts[(11-1)*SBLIMIT] = out1[11-1] + REAL_MUL(tmp1, wi[5-1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
DCT12_PART2
|
|
|
|
|
|
|
|
ts[(17-0)*SBLIMIT] = out1[17-0] + REAL_MUL(in2, wi[11-0]);
|
|
|
|
ts[(12+0)*SBLIMIT] = out1[12+0] + REAL_MUL(in2, wi[6+0]);
|
|
|
|
ts[(12+2)*SBLIMIT] = out1[12+2] + REAL_MUL(in3, wi[6+2]);
|
|
|
|
ts[(17-2)*SBLIMIT] = out1[17-2] + REAL_MUL(in3, wi[11-2]);
|
|
|
|
|
|
|
|
ts[(6 +0)*SBLIMIT] = out1[6+0] + REAL_MUL(in0, wi[0]);
|
|
|
|
ts[(11-0)*SBLIMIT] = out1[11-0] + REAL_MUL(in0, wi[5-0]);
|
|
|
|
ts[(6 +2)*SBLIMIT] = out1[6+2] + REAL_MUL(in4, wi[2]);
|
|
|
|
ts[(11-2)*SBLIMIT] = out1[11-2] + REAL_MUL(in4, wi[5-2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
in++;
|
|
|
|
|
|
|
|
{
|
|
|
|
float in0,in1,in2,in3,in4,in5;
|
|
|
|
register float *out2 = rawout2;
|
|
|
|
|
|
|
|
DCT12_PART1
|
|
|
|
|
|
|
|
{
|
|
|
|
float tmp0,tmp1 = (in0 - in4);
|
|
|
|
{
|
|
|
|
float tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
|
|
tmp0 = tmp1 + tmp2;
|
|
|
|
tmp1 -= tmp2;
|
|
|
|
}
|
|
|
|
out2[5-1] = REAL_MUL(tmp0, wi[11-1]);
|
|
|
|
out2[0+1] = REAL_MUL(tmp0, wi[6+1]);
|
|
|
|
ts[(12+1)*SBLIMIT] += REAL_MUL(tmp1, wi[1]);
|
|
|
|
ts[(17-1)*SBLIMIT] += REAL_MUL(tmp1, wi[5-1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
DCT12_PART2
|
|
|
|
|
|
|
|
out2[5-0] = REAL_MUL(in2, wi[11-0]);
|
|
|
|
out2[0+0] = REAL_MUL(in2, wi[6+0]);
|
|
|
|
out2[0+2] = REAL_MUL(in3, wi[6+2]);
|
|
|
|
out2[5-2] = REAL_MUL(in3, wi[11-2]);
|
|
|
|
|
|
|
|
ts[(12+0)*SBLIMIT] += REAL_MUL(in0, wi[0]);
|
|
|
|
ts[(17-0)*SBLIMIT] += REAL_MUL(in0, wi[5-0]);
|
|
|
|
ts[(12+2)*SBLIMIT] += REAL_MUL(in4, wi[2]);
|
|
|
|
ts[(17-2)*SBLIMIT] += REAL_MUL(in4, wi[5-2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
in++;
|
|
|
|
|
|
|
|
{
|
|
|
|
float in0,in1,in2,in3,in4,in5;
|
|
|
|
register float *out2 = rawout2;
|
|
|
|
out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
|
|
|
|
|
|
|
|
DCT12_PART1
|
|
|
|
|
|
|
|
{
|
|
|
|
float tmp0,tmp1 = (in0 - in4);
|
|
|
|
{
|
|
|
|
float tmp2 = REAL_MUL((in1 - in5), tfcos12[1]);
|
|
|
|
tmp0 = tmp1 + tmp2;
|
|
|
|
tmp1 -= tmp2;
|
|
|
|
}
|
|
|
|
out2[11-1] = REAL_MUL(tmp0, wi[11-1]);
|
|
|
|
out2[6 +1] = REAL_MUL(tmp0, wi[6+1]);
|
|
|
|
out2[0+1] += REAL_MUL(tmp1, wi[1]);
|
|
|
|
out2[5-1] += REAL_MUL(tmp1, wi[5-1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
DCT12_PART2
|
|
|
|
|
|
|
|
out2[11-0] = REAL_MUL(in2, wi[11-0]);
|
|
|
|
out2[6 +0] = REAL_MUL(in2, wi[6+0]);
|
|
|
|
out2[6 +2] = REAL_MUL(in3, wi[6+2]);
|
|
|
|
out2[11-2] = REAL_MUL(in3, wi[11-2]);
|
|
|
|
|
|
|
|
out2[0+0] += REAL_MUL(in0, wi[0]);
|
|
|
|
out2[5-0] += REAL_MUL(in0, wi[5-0]);
|
|
|
|
out2[0+2] += REAL_MUL(in4, wi[2]);
|
|
|
|
out2[5-2] += REAL_MUL(in4, wi[5-2]);
|
|
|
|
}
|
2019-10-27 22:26:57 +03:00
|
|
|
}
|