You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
422 lines
7.6 KiB
422 lines
7.6 KiB
/*** |
|
* |
|
* Copyright (c) 1996-2002, Valve LLC. All rights reserved. |
|
* |
|
* This product contains software technology licensed from Id |
|
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc. |
|
* All Rights Reserved. |
|
* |
|
* Use, distribution, and modification of this source code and/or resulting |
|
* object code is restricted to non-commercial enhancements to products from |
|
* Valve LLC. All other use, distribution, or modification is prohibited |
|
* without written permission from Valve LLC. |
|
* |
|
****/ |
|
// pm_math.c -- math primitives |
|
|
|
#include "mathlib.h" |
|
#include "const.h" |
|
#include <math.h> |
|
|
|
// up / down |
|
#define PITCH 0 |
|
// left / right |
|
#define YAW 1 |
|
// fall over |
|
#define ROLL 2 |
|
|
|
#pragma warning(disable : 4244) |
|
|
|
vec3_t vec3_origin = {0,0,0}; |
|
int nanmask = 255<<23; |
|
|
|
float anglemod(float a) |
|
{ |
|
a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); |
|
return a; |
|
} |
|
|
|
void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) |
|
{ |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
angle = angles[YAW] * (M_PI*2 / 360); |
|
sy = sin(angle); |
|
cy = cos(angle); |
|
angle = angles[PITCH] * (M_PI*2 / 360); |
|
sp = sin(angle); |
|
cp = cos(angle); |
|
angle = angles[ROLL] * (M_PI*2 / 360); |
|
sr = sin(angle); |
|
cr = cos(angle); |
|
|
|
if (forward) |
|
{ |
|
forward[0] = cp*cy; |
|
forward[1] = cp*sy; |
|
forward[2] = -sp; |
|
} |
|
if (right) |
|
{ |
|
right[0] = (-1*sr*sp*cy+-1*cr*-sy); |
|
right[1] = (-1*sr*sp*sy+-1*cr*cy); |
|
right[2] = -1*sr*cp; |
|
} |
|
if (up) |
|
{ |
|
up[0] = (cr*sp*cy+-sr*-sy); |
|
up[1] = (cr*sp*sy+-sr*cy); |
|
up[2] = cr*cp; |
|
} |
|
} |
|
|
|
void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) |
|
{ |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
angle = angles[YAW] * (M_PI*2 / 360); |
|
sy = sin(angle); |
|
cy = cos(angle); |
|
angle = angles[PITCH] * (M_PI*2 / 360); |
|
sp = sin(angle); |
|
cp = cos(angle); |
|
angle = angles[ROLL] * (M_PI*2 / 360); |
|
sr = sin(angle); |
|
cr = cos(angle); |
|
|
|
if (forward) |
|
{ |
|
forward[0] = cp*cy; |
|
forward[1] = (sr*sp*cy+cr*-sy); |
|
forward[2] = (cr*sp*cy+-sr*-sy); |
|
} |
|
if (right) |
|
{ |
|
right[0] = cp*sy; |
|
right[1] = (sr*sp*sy+cr*cy); |
|
right[2] = (cr*sp*sy+-sr*cy); |
|
} |
|
if (up) |
|
{ |
|
up[0] = -sp; |
|
up[1] = sr*cp; |
|
up[2] = cr*cp; |
|
} |
|
} |
|
|
|
|
|
void AngleMatrix (const vec3_t angles, float (*matrix)[4] ) |
|
{ |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
angle = angles[YAW] * (M_PI*2 / 360); |
|
sy = sin(angle); |
|
cy = cos(angle); |
|
angle = angles[PITCH] * (M_PI*2 / 360); |
|
sp = sin(angle); |
|
cp = cos(angle); |
|
angle = angles[ROLL] * (M_PI*2 / 360); |
|
sr = sin(angle); |
|
cr = cos(angle); |
|
|
|
// matrix = (YAW * PITCH) * ROLL |
|
matrix[0][0] = cp*cy; |
|
matrix[1][0] = cp*sy; |
|
matrix[2][0] = -sp; |
|
matrix[0][1] = sr*sp*cy+cr*-sy; |
|
matrix[1][1] = sr*sp*sy+cr*cy; |
|
matrix[2][1] = sr*cp; |
|
matrix[0][2] = (cr*sp*cy+-sr*-sy); |
|
matrix[1][2] = (cr*sp*sy+-sr*cy); |
|
matrix[2][2] = cr*cp; |
|
matrix[0][3] = 0.0; |
|
matrix[1][3] = 0.0; |
|
matrix[2][3] = 0.0; |
|
} |
|
|
|
void AngleIMatrix (const vec3_t angles, float matrix[3][4] ) |
|
{ |
|
float angle; |
|
float sr, sp, sy, cr, cp, cy; |
|
|
|
angle = angles[YAW] * (M_PI*2 / 360); |
|
sy = sin(angle); |
|
cy = cos(angle); |
|
angle = angles[PITCH] * (M_PI*2 / 360); |
|
sp = sin(angle); |
|
cp = cos(angle); |
|
angle = angles[ROLL] * (M_PI*2 / 360); |
|
sr = sin(angle); |
|
cr = cos(angle); |
|
|
|
// matrix = (YAW * PITCH) * ROLL |
|
matrix[0][0] = cp*cy; |
|
matrix[0][1] = cp*sy; |
|
matrix[0][2] = -sp; |
|
matrix[1][0] = sr*sp*cy+cr*-sy; |
|
matrix[1][1] = sr*sp*sy+cr*cy; |
|
matrix[1][2] = sr*cp; |
|
matrix[2][0] = (cr*sp*cy+-sr*-sy); |
|
matrix[2][1] = (cr*sp*sy+-sr*cy); |
|
matrix[2][2] = cr*cp; |
|
matrix[0][3] = 0.0; |
|
matrix[1][3] = 0.0; |
|
matrix[2][3] = 0.0; |
|
} |
|
|
|
void NormalizeAngles( float *angles ) |
|
{ |
|
int i; |
|
// Normalize angles |
|
for ( i = 0; i < 3; i++ ) |
|
{ |
|
if ( angles[i] > 180.0 ) |
|
{ |
|
angles[i] -= 360.0; |
|
} |
|
else if ( angles[i] < -180.0 ) |
|
{ |
|
angles[i] += 360.0; |
|
} |
|
} |
|
} |
|
|
|
/* |
|
=================== |
|
InterpolateAngles |
|
|
|
Interpolate Euler angles. |
|
FIXME: Use Quaternions to avoid discontinuities |
|
Frac is 0.0 to 1.0 ( i.e., should probably be clamped, but doesn't have to be ) |
|
=================== |
|
*/ |
|
void InterpolateAngles( float *start, float *end, float *output, float frac ) |
|
{ |
|
int i; |
|
float ang1, ang2; |
|
float d; |
|
|
|
NormalizeAngles( start ); |
|
NormalizeAngles( end ); |
|
|
|
for ( i = 0 ; i < 3 ; i++ ) |
|
{ |
|
ang1 = start[i]; |
|
ang2 = end[i]; |
|
|
|
d = ang2 - ang1; |
|
if ( d > 180 ) |
|
{ |
|
d -= 360; |
|
} |
|
else if ( d < -180 ) |
|
{ |
|
d += 360; |
|
} |
|
|
|
output[i] = ang1 + d * frac; |
|
} |
|
|
|
NormalizeAngles( output ); |
|
} |
|
|
|
|
|
/* |
|
=================== |
|
AngleBetweenVectors |
|
|
|
=================== |
|
*/ |
|
float AngleBetweenVectors( const vec3_t v1, const vec3_t v2 ) |
|
{ |
|
float angle; |
|
float l1 = Length( v1 ); |
|
float l2 = Length( v2 ); |
|
|
|
if ( !l1 || !l2 ) |
|
return 0.0f; |
|
|
|
angle = acos( DotProduct( v1, v2 ) ) / (l1*l2); |
|
angle = ( angle * 180.0f ) / M_PI; |
|
|
|
return angle; |
|
} |
|
|
|
|
|
void VectorTransform (const vec3_t in1, float in2[3][4], vec3_t out) |
|
{ |
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3]; |
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3]; |
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3]; |
|
} |
|
|
|
|
|
int VectorCompare (const vec3_t v1, const vec3_t v2) |
|
{ |
|
int i; |
|
|
|
for (i=0 ; i<3 ; i++) |
|
if (v1[i] != v2[i]) |
|
return 0; |
|
|
|
return 1; |
|
} |
|
|
|
void VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) |
|
{ |
|
vecc[0] = veca[0] + scale*vecb[0]; |
|
vecc[1] = veca[1] + scale*vecb[1]; |
|
vecc[2] = veca[2] + scale*vecb[2]; |
|
} |
|
|
|
|
|
vec_t _DotProduct (vec3_t v1, vec3_t v2) |
|
{ |
|
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; |
|
} |
|
|
|
void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out) |
|
{ |
|
out[0] = veca[0]-vecb[0]; |
|
out[1] = veca[1]-vecb[1]; |
|
out[2] = veca[2]-vecb[2]; |
|
} |
|
|
|
void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out) |
|
{ |
|
out[0] = veca[0]+vecb[0]; |
|
out[1] = veca[1]+vecb[1]; |
|
out[2] = veca[2]+vecb[2]; |
|
} |
|
|
|
void _VectorCopy (vec3_t in, vec3_t out) |
|
{ |
|
out[0] = in[0]; |
|
out[1] = in[1]; |
|
out[2] = in[2]; |
|
} |
|
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross) |
|
{ |
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; |
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; |
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; |
|
} |
|
|
|
double sqrt(double x); |
|
|
|
float Length(const vec3_t v) |
|
{ |
|
int i; |
|
float length = 0.0f; |
|
|
|
for (i=0 ; i< 3 ; i++) |
|
length += v[i]*v[i]; |
|
length = sqrt (length); // FIXME |
|
|
|
return length; |
|
} |
|
|
|
float Distance(const vec3_t v1, const vec3_t v2) |
|
{ |
|
vec3_t d; |
|
VectorSubtract(v2,v1,d); |
|
return Length(d); |
|
} |
|
|
|
float VectorNormalize (vec3_t v) |
|
{ |
|
float length, ilength; |
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; |
|
length = sqrt (length); // FIXME |
|
|
|
if (length) |
|
{ |
|
ilength = 1/length; |
|
v[0] *= ilength; |
|
v[1] *= ilength; |
|
v[2] *= ilength; |
|
} |
|
|
|
return length; |
|
|
|
} |
|
|
|
void VectorInverse (vec3_t v) |
|
{ |
|
v[0] = -v[0]; |
|
v[1] = -v[1]; |
|
v[2] = -v[2]; |
|
} |
|
|
|
void VectorScale (const vec3_t in, vec_t scale, vec3_t out) |
|
{ |
|
out[0] = in[0]*scale; |
|
out[1] = in[1]*scale; |
|
out[2] = in[2]*scale; |
|
} |
|
|
|
|
|
int Q_log2(int val) |
|
{ |
|
int answer=0; |
|
while (val>>=1) |
|
answer++; |
|
return answer; |
|
} |
|
|
|
void VectorMatrix( vec3_t forward, vec3_t right, vec3_t up) |
|
{ |
|
vec3_t tmp; |
|
|
|
if (forward[0] == 0 && forward[1] == 0) |
|
{ |
|
right[0] = 1; |
|
right[1] = 0; |
|
right[2] = 0; |
|
up[0] = -forward[2]; |
|
up[1] = 0; |
|
up[2] = 0; |
|
return; |
|
} |
|
|
|
tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0; |
|
CrossProduct( forward, tmp, right ); |
|
VectorNormalize( right ); |
|
CrossProduct( right, forward, up ); |
|
VectorNormalize( up ); |
|
} |
|
|
|
|
|
void VectorAngles( const vec3_t forward, vec3_t angles ) |
|
{ |
|
float tmp, yaw, pitch; |
|
|
|
if (forward[1] == 0 && forward[0] == 0) |
|
{ |
|
yaw = 0; |
|
if (forward[2] > 0) |
|
pitch = 90; |
|
else |
|
pitch = 270; |
|
} |
|
else |
|
{ |
|
yaw = (atan2(forward[1], forward[0]) * 180 / M_PI); |
|
if (yaw < 0) |
|
yaw += 360; |
|
|
|
tmp = sqrt (forward[0]*forward[0] + forward[1]*forward[1]); |
|
pitch = (atan2(forward[2], tmp) * 180 / M_PI); |
|
if (pitch < 0) |
|
pitch += 360; |
|
} |
|
|
|
angles[0] = pitch; |
|
angles[1] = yaw; |
|
angles[2] = 0; |
|
}
|
|
|