mirror of
https://github.com/YGGverse/hlsdk-portable.git
synced 2025-01-12 16:07:57 +00:00
487 lines
18 KiB
C++
487 lines
18 KiB
C++
//========= Copyright (c) 1996-2002, Valve LLC, All rights reserved. ============
|
|
//
|
|
// Purpose:
|
|
//
|
|
// $NoKeywords: $
|
|
//=============================================================================
|
|
|
|
#include "hud.h"
|
|
#include "cl_util.h"
|
|
#include "const.h"
|
|
#include "com_model.h"
|
|
#include "studio_util.h"
|
|
#include "build.h"
|
|
#if XASH_ARMv8
|
|
#define XASH_SIMD_NEON 1
|
|
#include <arm_neon.h>
|
|
#include "neon_mathfun.h"
|
|
#endif
|
|
|
|
/*
|
|
====================
|
|
AngleMatrix
|
|
|
|
====================
|
|
*/
|
|
#if XASH_SIMD_NEON
|
|
const uint32x4_t AngleMatrix_sign0 = vreinterpretq_f32_u32(vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 0));
|
|
const uint32x4_t AngleMatrix_sign1 = vreinterpretq_f32_u32(vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 1));
|
|
const uint32x4_t AngleMatrix_sign2 = vreinterpretq_f32_u32(vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 2));
|
|
#endif
|
|
void AngleMatrix( const float *angles, float (*matrix)[4] )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4x3_t out_reg;
|
|
float32x4_t angles_reg = {};
|
|
memcpy(&angles_reg, angles, sizeof(float) * 3);
|
|
|
|
float32x4x2_t sp_sy_sr_0_cp_cy_cr_1;
|
|
sincos_ps(vmulq_n_f32(angles_reg, (M_PI * 2 / 360)), &sp_sy_sr_0_cp_cy_cr_1.val[0], &sp_sy_sr_0_cp_cy_cr_1.val[1]);
|
|
|
|
float32x4x2_t sp_sr_cp_cr_sy_0_cy_1 = vuzpq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_sy_sr_0_cp_cy_cr_1.val[1]);
|
|
float32x4x2_t sp_cp_sy_cy_sr_cr_0_1 = vzipq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_sy_sr_0_cp_cy_cr_1.val[1]);
|
|
|
|
float32x4_t _0_sr_cr_0 = vextq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_cp_sy_cy_sr_cr_0_1.val[1], 3);
|
|
float32x4_t cp_cr_sr_0 = vcombine_f32(vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[0]), vget_high_f32(sp_sy_sr_0_cp_cy_cr_1.val[0]));
|
|
float32x4_t cy_sy_sy_0 = vcombine_f32(vrev64_f32(vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[0])), vget_low_f32(sp_sr_cp_cr_sy_0_cy_1.val[1]));
|
|
float32x4_t sy_cy_cy_1 = vcombine_f32(vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[0]), vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[1]));
|
|
|
|
float32x4_t _0_srsp_crsp_0 = vmulq_laneq_f32(_0_sr_cr_0, sp_sy_sr_0_cp_cy_cr_1.val[0], 0); // *sp
|
|
out_reg.val[0] = vmulq_laneq_f32(_0_srsp_crsp_0, sp_sy_sr_0_cp_cy_cr_1.val[1], 1); // *cy
|
|
out_reg.val[1] = vmulq_laneq_f32(_0_srsp_crsp_0, sp_sy_sr_0_cp_cy_cr_1.val[0], 1); // *sy
|
|
|
|
cy_sy_sy_0 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(cy_sy_sy_0), AngleMatrix_sign1));
|
|
sy_cy_cy_1 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(sy_cy_cy_1), AngleMatrix_sign2));
|
|
out_reg.val[0] = vfmaq_f32(out_reg.val[0], cp_cr_sr_0, cy_sy_sy_0);
|
|
out_reg.val[1] = vfmaq_f32(out_reg.val[1], cp_cr_sr_0, sy_cy_cy_1);
|
|
|
|
float32x4_t cp_cr_0_1 = vcombine_f32(vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[0]), vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[1]));
|
|
float32x4_t _1_cp_cr_0 = vextq_f32(cp_cr_0_1, cp_cr_0_1, 3);
|
|
out_reg.val[2] = vmulq_f32(sp_sr_cp_cr_sy_0_cy_1.val[0], _1_cp_cr_0);
|
|
out_reg.val[2] = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(out_reg.val[2]), AngleMatrix_sign0));
|
|
|
|
memcpy(matrix, &out_reg, sizeof(float) * 3 * 4);
|
|
/*
|
|
matrix[0][0] = cp*cy;
|
|
matrix[0][1] = sr*sp*cy-cr*sy;
|
|
matrix[0][2] = cr*sp*cy+sr*sy;
|
|
matrix[0][3] = 0.0;
|
|
matrix[1][0] = cp*sy;
|
|
matrix[1][1] = sr*sp*sy+cr*cy;
|
|
matrix[1][2] = cr*sp*sy-sr*cy;
|
|
matrix[1][3] = 0.0;
|
|
matrix[2][0] = -sp*1;
|
|
matrix[2][1] = sr*cp;
|
|
matrix[2][2] = cp*cr;
|
|
matrix[2][3] = cr*0;
|
|
*/
|
|
#else
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * ( M_PI_F * 2.0f / 360.0f );
|
|
sy = sin( angle );
|
|
cy = cos( angle );
|
|
angle = angles[PITCH] * ( M_PI_F * 2.0f / 360.0f );
|
|
sp = sin( angle );
|
|
cp = cos( angle );
|
|
angle = angles[ROLL] * ( M_PI_F * 2.0f / 360.0f );
|
|
sr = sin( angle );
|
|
cr = cos( angle );
|
|
|
|
// matrix = (YAW * PITCH) * ROLL
|
|
matrix[0][0] = cp * cy;
|
|
matrix[1][0] = cp * sy;
|
|
matrix[2][0] = -sp;
|
|
matrix[0][1] = sr * sp * cy + cr * -sy;
|
|
matrix[1][1] = sr * sp * sy + cr * cy;
|
|
matrix[2][1] = sr * cp;
|
|
matrix[0][2] = (cr * sp * cy + -sr * -sy);
|
|
matrix[1][2] = (cr * sp * sy + -sr* cy);
|
|
matrix[2][2] = cr * cp;
|
|
matrix[0][3] = 0.0f;
|
|
matrix[1][3] = 0.0f;
|
|
matrix[2][3] = 0.0f;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
====================
|
|
VectorCompare
|
|
|
|
====================
|
|
*/
|
|
int VectorCompare( const float *v1, const float *v2 )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
// is this really works?
|
|
float32x4_t v1_reg = {}, v2_reg = {};
|
|
memcpy(&v1_reg, v1, sizeof(float) * 3);
|
|
memcpy(&v2_reg, v2, sizeof(float) * 3);
|
|
return !vaddvq_u32(vceqq_f32(v1_reg, v2_reg));
|
|
#else
|
|
int i;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
if( v1[i] != v2[i] )
|
|
return 0;
|
|
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
====================
|
|
CrossProduct
|
|
|
|
====================
|
|
*/
|
|
void CrossProduct( const float *v1, const float *v2, float *cross )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4_t v1_reg = {}, v2_reg = {};
|
|
memcpy(&v1_reg, v1, sizeof(float) * 3);
|
|
memcpy(&v2_reg, v2, sizeof(float) * 3);
|
|
|
|
float32x4_t yzxy_a = vextq_f32(vextq_f32(v1_reg, v1_reg, 3), v1_reg, 2); // [aj, ak, ai, aj]
|
|
float32x4_t yzxy_b = vextq_f32(vextq_f32(v2_reg, v2_reg, 3), v2_reg, 2); // [bj, bk, bi, bj]
|
|
float32x4_t zxyy_a = vextq_f32(yzxy_a, yzxy_a, 1); // [ak, ai, aj, aj]
|
|
float32x4_t zxyy_b = vextq_f32(yzxy_b, yzxy_b, 1); // [bk, ai, bj, bj]
|
|
float32x4_t cross_reg = vfmsq_f32(vmulq_f32(yzxy_a, zxyy_b), zxyy_a, yzxy_b); // [ajbk-akbj, akbi-aibk, aibj-ajbi, 0]
|
|
|
|
memcpy(cross, &cross_reg, sizeof(float) * 3);
|
|
#else
|
|
cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
|
|
cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
|
|
cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
====================
|
|
VectorTransform
|
|
|
|
====================
|
|
*/
|
|
void VectorTransform( const float *in1, float in2[3][4], float *out )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4_t in1_reg = {};
|
|
memcpy(&in1_reg, &in1, sizeof(float) * 3);
|
|
|
|
float32x4x4_t in_t;
|
|
memcpy(&in_t, &in2, sizeof(float) * 3 * 4);
|
|
//memset(&in_t.val[3], 0, sizeof(in_t.val[3]));
|
|
in_t = vld4q_f32((const float*)&in_t);
|
|
|
|
float32x4_t out_reg = in_t.val[3];
|
|
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[0], in1_reg, 0);
|
|
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[1], in1_reg, 1);
|
|
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[2], in1_reg, 2);
|
|
|
|
memcpy(out, &out_reg, sizeof(float) * 3);
|
|
#else
|
|
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
|
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
|
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
================
|
|
ConcatTransforms
|
|
|
|
================
|
|
*/
|
|
void ConcatTransforms( float in1[3][4], float in2[3][4], float out[3][4] )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4x3_t in1_reg, in2_reg;
|
|
memcpy(&in1_reg, in1, sizeof(float) * 3 * 4);
|
|
memcpy(&in2_reg, in2, sizeof(float) * 3 * 4);
|
|
float32x4x3_t out_reg = {};
|
|
|
|
out_reg.val[0] = vcopyq_laneq_f32(out_reg.val[0], 3, in1_reg.val[0], 3); // out[0][3] = in[0][3]
|
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[0], in1_reg.val[0], 0); // out[0][n] += in2[0][n] * in1[0][0]
|
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[1], in1_reg.val[0], 1); // out[0][n] += in2[1][n] * in1[0][1]
|
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[2], in1_reg.val[0], 2); // out[0][n] += in2[2][n] * in1[0][2]
|
|
|
|
out_reg.val[1] = vcopyq_laneq_f32(out_reg.val[1], 3, in1_reg.val[1], 3);
|
|
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[0], in1_reg.val[1], 0);
|
|
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[1], in1_reg.val[1], 1);
|
|
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[2], in1_reg.val[1], 2);
|
|
|
|
out_reg.val[2] = vcopyq_laneq_f32(out_reg.val[2], 3, in1_reg.val[2], 3);
|
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[0], in1_reg.val[2], 0);
|
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[1], in1_reg.val[2], 1);
|
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[2], in1_reg.val[2], 2);
|
|
|
|
memcpy(&out, &out_reg, sizeof(out));
|
|
#else
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] +
|
|
in1[0][2] * in2[2][3] + in1[0][3];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] +
|
|
in1[1][2] * in2[2][3] + in1[1][3];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
|
|
in1[2][2] * in2[2][3] + in1[2][3];
|
|
#endif
|
|
}
|
|
|
|
// angles index are not the same as ROLL, PITCH, YAW
|
|
|
|
/*
|
|
====================
|
|
AngleQuaternion
|
|
|
|
====================
|
|
*/
|
|
#if XASH_SIMD_NEON
|
|
const float32x4_t AngleQuaternion_sign2 = vzipq_f32(vdupq_n_u32(0x80000000), vdupq_n_u32(0x00000000)).val[0]; // { 0x80000000, 0x00000000, 0x80000000, 0x00000000 };
|
|
#endif
|
|
void AngleQuaternion( float *angles, vec4_t quaternion )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4_t angles_reg = {};
|
|
memcpy(&angles_reg, angles, sizeof(float) * 3);
|
|
float32x4x2_t sr_sp_sy_0_cr_cp_cy_1;
|
|
sincos_ps(vmulq_n_f32(angles_reg, 0.5), &sr_sp_sy_0_cr_cp_cy_1.val[0], &sr_sp_sy_0_cr_cp_cy_1.val[1]);
|
|
|
|
float32x4x2_t sr_sy_cr_cy_sp_0_cp_1 = vuzpq_f32(sr_sp_sy_0_cr_cp_cy_1.val[0], sr_sp_sy_0_cr_cp_cy_1.val[1]);
|
|
float32x4_t cp_cp_cp_cp = vdupq_laneq_f32(sr_sp_sy_0_cr_cp_cy_1.val[1], 1);
|
|
float32x4_t sp_sp_sp_sp = vdupq_laneq_f32(sr_sp_sy_0_cr_cp_cy_1.val[0], 1);
|
|
|
|
float32x4_t sr_sy_cr_cy = sr_sy_cr_cy_sp_0_cp_1.val[0];
|
|
float32x4_t sy_cr_cy_sr = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 1);
|
|
float32x4_t cr_cy_sr_sy = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 2);
|
|
float32x4_t cy_sr_sy_cr = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 3);
|
|
float32x4_t sp_sp_sp_sp_signed = veorq_u32(sp_sp_sp_sp, AngleQuaternion_sign2);
|
|
|
|
float32x4_t left = vmulq_f32(vmulq_f32(sr_sy_cr_cy, cp_cp_cp_cp), cy_sr_sy_cr);
|
|
|
|
float32x4_t out_reg = vfmaq_f32(left, vmulq_f32(cr_cy_sr_sy, sp_sp_sp_sp_signed), sy_cr_cy_sr);
|
|
memcpy(quaternion, &out_reg, sizeof(float) * 4);
|
|
//quaternion[0] = sr * cp * cy - cr * sp * sy; // X
|
|
//quaternion[1] = sy * cp * sr + cy * sp * cr; // Y
|
|
//quaternion[2] = cr * cp * sy - sr * sp * cy; // Z
|
|
//quaternion[3] = cy * cp * cr + sy * sp * sr; // W
|
|
#else
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
// FIXME: rescale the inputs to 1/2 angle
|
|
angle = angles[2] * 0.5f;
|
|
sy = sin( angle );
|
|
cy = cos( angle );
|
|
angle = angles[1] * 0.5f;
|
|
sp = sin( angle );
|
|
cp = cos( angle );
|
|
angle = angles[0] * 0.5f;
|
|
sr = sin( angle );
|
|
cr = cos( angle );
|
|
|
|
quaternion[0] = sr * cp * cy - cr * sp * sy; // X
|
|
quaternion[1] = cr * sp * cy + sr * cp * sy; // Y
|
|
quaternion[2] = cr * cp * sy - sr * sp * cy; // Z
|
|
quaternion[3] = cr * cp * cy + sr * sp * sy; // W
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
====================
|
|
QuaternionSlerp
|
|
|
|
====================
|
|
*/
|
|
void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4_t p_reg = {}, q_reg = {};
|
|
memcpy(&p_reg, p, sizeof(float) * 4);
|
|
memcpy(&q_reg, q, sizeof(float) * 4);
|
|
|
|
// q = (cos(a/2), xsin(a/2), ysin(a/2), zsin(a/2))
|
|
// cos(a-b) = cosacosb+sinasinb
|
|
const uint32x4_t signmask = vdupq_n_u32(0x80000000);
|
|
const float32x4_t one_minus_epsilon = vdupq_n_f32(1.0f - 0.00001f);
|
|
|
|
float32x4_t vcosom = vdupq_n_f32(DotProduct(p, q));
|
|
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(vcosom), signmask);
|
|
q_reg = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(p_reg), sign));
|
|
vcosom = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(vcosom), sign));
|
|
|
|
float x[4] = {(1.0f - t), t, 1, 0}; // cosom -> 1, sinom -> 0, sinx ~ x
|
|
float32x4_t x_reg;
|
|
memcpy(&x_reg, x, sizeof(float) * 4);
|
|
|
|
// if ((1.0 - cosom) > 0.000001) x = sin(x * omega)
|
|
uint32x4_t cosom_less_then_one = vcltq_f32(vcosom, one_minus_epsilon);
|
|
float32x4_t vomega = acos_ps(vcosom);
|
|
x_reg = vbslq_f32(cosom_less_then_one, x_reg, sin_ps(vmulq_f32(x_reg, vomega)));
|
|
|
|
// qt = (x[0] * p + x[1] * q) / x[2];
|
|
float32x4_t qt_reg = vmulq_laneq_f32(p_reg, x_reg, 0);
|
|
qt_reg = vfmaq_laneq_f32(qt_reg, q_reg, x_reg, 1);
|
|
qt_reg = vdivq_f32(qt_reg, vdupq_laneq_f32(x_reg, 2)); // vdivq_laneq_f32 ?
|
|
|
|
memcpy(qt, &qt_reg, sizeof(float) * 4);
|
|
#else
|
|
int i;
|
|
float omega, cosom, sinom, sclp, sclq;
|
|
|
|
// decide if one of the quaternions is backwards
|
|
float a = 0;
|
|
float b = 0;
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
{
|
|
a += ( p[i] - q[i] ) * ( p[i] - q[i] );
|
|
b += ( p[i] + q[i] ) * ( p[i] + q[i] );
|
|
}
|
|
if(a > b)
|
|
{
|
|
for( i = 0; i < 4; i++ )
|
|
{
|
|
q[i] = -q[i];
|
|
}
|
|
}
|
|
|
|
cosom = p[0] * q[0] + p[1] * q[1] + p[2] * q[2] + p[3] * q[3];
|
|
|
|
if( ( 1.0f + cosom ) > 0.000001f )
|
|
{
|
|
if( ( 1.0f - cosom ) > 0.000001f )
|
|
{
|
|
omega = acos( cosom );
|
|
sinom = sin( omega );
|
|
sclp = sin( ( 1.0f - t ) * omega ) / sinom;
|
|
sclq = sin( t * omega ) / sinom;
|
|
}
|
|
else
|
|
{
|
|
sclp = 1.0f - t;
|
|
sclq = t;
|
|
}
|
|
for( i = 0; i < 4; i++ )
|
|
{
|
|
qt[i] = sclp * p[i] + sclq * q[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
qt[0] = -q[1];
|
|
qt[1] = q[0];
|
|
qt[2] = -q[3];
|
|
qt[3] = q[2];
|
|
sclp = sin( ( 1.0f - t ) * ( 0.5f * M_PI_F ) );
|
|
sclq = sin( t * ( 0.5f * M_PI_F ) );
|
|
for( i = 0; i < 3; i++ )
|
|
{
|
|
qt[i] = sclp * p[i] + sclq * qt[i];
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
====================
|
|
QuaternionMatrix
|
|
|
|
====================
|
|
*/
|
|
#if XASH_SIMD_NEON
|
|
const uint32x4_t QuaternionMatrix_sign1 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0x00000000), 0); // { 0x80000000, 0x00000000, 0x00000000, 0x00000000 };
|
|
const uint32x4_t QuaternionMatrix_sign2 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0x00000000), 1); // { 0x00000000, 0x80000000, 0x00000000, 0x00000000 };
|
|
const uint32x4_t QuaternionMatrix_sign3 = vsetq_lane_u32(0x00000000, vdupq_n_u32(0x80000000), 2); // { 0x80000000, 0x80000000, 0x00000000, 0x80000000 };
|
|
const float32x4_t matrix3x4_identity_0 = vsetq_lane_f32(1, vdupq_n_f32(0), 0); // { 1, 0, 0, 0 }
|
|
const float32x4_t matrix3x4_identity_1 = vsetq_lane_f32(1, vdupq_n_f32(0), 1); // { 0, 1, 0, 0 }
|
|
const float32x4_t matrix3x4_identity_2 = vsetq_lane_f32(1, vdupq_n_f32(0), 2); // { 0, 0, 1, 0 }
|
|
#endif
|
|
|
|
void QuaternionMatrix( vec4_t quaternion, float (*matrix)[4] )
|
|
{
|
|
#if XASH_SIMD_NEON
|
|
float32x4_t quaternion_reg;
|
|
memcpy(&quaternion_reg, quaternion, sizeof(float) * 4);
|
|
|
|
float32x4_t q1032 = vrev64q_f32(quaternion_reg);
|
|
float32x4_t q1032_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q1032), QuaternionMatrix_sign1));
|
|
float32x4_t q2301 = vextq_f32(quaternion_reg, quaternion_reg, 2);
|
|
float32x4_t q2301_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q2301), QuaternionMatrix_sign3));
|
|
float32x4_t q3210 = vrev64q_f32(q2301);
|
|
float32x4_t q3210_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q3210), QuaternionMatrix_sign2));
|
|
|
|
float32x4x3_t out_reg;
|
|
|
|
out_reg.val[0] = vmulq_laneq_f32(q2301_signed, quaternion_reg, 2);
|
|
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], q1032_signed, quaternion_reg, 1);
|
|
out_reg.val[0] = vfmaq_n_f32(matrix3x4_identity_0, out_reg.val[0], 2.0f);
|
|
|
|
out_reg.val[1] = vmulq_laneq_f32(q3210_signed, quaternion_reg, 2);
|
|
out_reg.val[1] = vfmsq_laneq_f32(out_reg.val[1], q1032_signed, quaternion_reg, 0);
|
|
out_reg.val[1] = vfmaq_n_f32(matrix3x4_identity_1, out_reg.val[1], 2.0f);
|
|
|
|
out_reg.val[2] = vmulq_laneq_f32(q3210_signed, quaternion_reg, 1);
|
|
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], q2301_signed, quaternion_reg, 0);
|
|
out_reg.val[2] = vfmsq_n_f32(matrix3x4_identity_2, out_reg.val[2], 2.0f);
|
|
|
|
memcpy(matrix, &out_reg, sizeof(float) * 3 * 4);
|
|
/*
|
|
matrix[0][0] = 1.0 + 2.0 * ( quaternion[1] * -quaternion[1] + -quaternion[2] * quaternion[2] );
|
|
matrix[0][1] = 0.0 + 2.0 * ( quaternion[1] * quaternion[0] + -quaternion[3] * quaternion[2] );
|
|
matrix[0][2] = 0.0 + 2.0 * ( quaternion[1] * quaternion[3] + quaternion[0] * quaternion[2] );
|
|
matrix[0][3] = 0.0 + 2.0 * ( quaternion[1] * quaternion[2] + -quaternion[1] * quaternion[2] );
|
|
|
|
matrix[1][0] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[1] + quaternion[3] * quaternion[2] );
|
|
matrix[1][1] = 1.0 + 2.0 * ( -quaternion[0] * quaternion[0] + -quaternion[2] * quaternion[2] );
|
|
matrix[1][2] = 0.0 + 2.0 * ( -quaternion[0] * quaternion[3] + quaternion[1] * quaternion[2] );
|
|
matrix[1][3] = 0.0 + 2.0 * ( -quaternion[0] * quaternion[2] + quaternion[0] * quaternion[2] );
|
|
|
|
matrix[2][0] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[2] + -quaternion[3] * quaternion[1] );
|
|
matrix[2][1] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[3] + quaternion[2] * quaternion[1] );
|
|
matrix[2][2] = 1.0 + 2.0 * ( -quaternion[0] * quaternion[0] + -quaternion[1] * quaternion[1] );
|
|
matrix[2][3] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[1] + -quaternion[0] * quaternion[1] );
|
|
*/
|
|
#else
|
|
matrix[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2];
|
|
matrix[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2];
|
|
matrix[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1];
|
|
|
|
matrix[0][1] = 2.0f * quaternion[0] * quaternion[1] - 2.0f * quaternion[3] * quaternion[2];
|
|
matrix[1][1] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[2] * quaternion[2];
|
|
matrix[2][1] = 2.0f * quaternion[1] * quaternion[2] + 2.0f * quaternion[3] * quaternion[0];
|
|
|
|
matrix[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1];
|
|
matrix[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0];
|
|
matrix[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1];
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
====================
|
|
MatrixCopy
|
|
|
|
====================
|
|
*/
|
|
void MatrixCopy( float in[3][4], float out[3][4] )
|
|
{
|
|
memcpy( out, in, sizeof( float ) * 3 * 4 );
|
|
}
|