mirror of
https://github.com/YGGverse/hlsdk-portable.git
synced 2025-01-27 15:14:21 +00:00
357 lines
11 KiB
C
357 lines
11 KiB
C
/* NEON implementation of sin, cos, exp and log
|
|
|
|
Inspired by Intel Approximate Math library, and based on the
|
|
corresponding algorithms of the cephes math library
|
|
*/
|
|
|
|
/* Copyright (C) 2011 Julien Pommier
|
|
|
|
This software is provided 'as-is', without any express or implied
|
|
warranty. In no event will the authors be held liable for any damages
|
|
arising from the use of this software.
|
|
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it
|
|
freely, subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not
|
|
claim that you wrote the original software. If you use this software
|
|
in a product, an acknowledgment in the product documentation would be
|
|
appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be
|
|
misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
|
|
(this is the zlib license)
|
|
*/
|
|
|
|
#include <arm_neon.h>
|
|
|
|
typedef float32x4_t v4sf; // vector of 4 float
|
|
typedef uint32x4_t v4su; // vector of 4 uint32
|
|
typedef int32x4_t v4si; // vector of 4 uint32
|
|
|
|
#define s4f_x(s4f) vgetq_lane_f32(s4f, 0)
|
|
#define s4f_y(s4f) vgetq_lane_f32(s4f, 1)
|
|
#define s4f_z(s4f) vgetq_lane_f32(s4f, 2)
|
|
#define s4f_w(s4f) vgetq_lane_f32(s4f, 3)
|
|
|
|
#define c_inv_mant_mask ~0x7f800000u
|
|
#define c_cephes_SQRTHF 0.707106781186547524
|
|
#define c_cephes_log_p0 7.0376836292E-2
|
|
#define c_cephes_log_p1 - 1.1514610310E-1
|
|
#define c_cephes_log_p2 1.1676998740E-1
|
|
#define c_cephes_log_p3 - 1.2420140846E-1
|
|
#define c_cephes_log_p4 + 1.4249322787E-1
|
|
#define c_cephes_log_p5 - 1.6668057665E-1
|
|
#define c_cephes_log_p6 + 2.0000714765E-1
|
|
#define c_cephes_log_p7 - 2.4999993993E-1
|
|
#define c_cephes_log_p8 + 3.3333331174E-1
|
|
#define c_cephes_log_q1 -2.12194440e-4
|
|
#define c_cephes_log_q2 0.693359375
|
|
|
|
/* natural logarithm computed for 4 simultaneous float
|
|
return NaN for x <= 0
|
|
*/
|
|
inline v4sf log_ps(v4sf x) {
|
|
v4sf one = vdupq_n_f32(1);
|
|
|
|
x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
|
|
v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
|
|
|
|
v4si ux = vreinterpretq_s32_f32(x);
|
|
|
|
v4si emm0 = vshrq_n_s32(ux, 23);
|
|
|
|
/* keep only the fractional part */
|
|
ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
|
|
ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
|
|
x = vreinterpretq_f32_s32(ux);
|
|
|
|
emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
|
|
v4sf e = vcvtq_f32_s32(emm0);
|
|
|
|
e = vaddq_f32(e, one);
|
|
|
|
/* part2:
|
|
if( x < SQRTHF ) {
|
|
e -= 1;
|
|
x = x + x - 1.0;
|
|
} else { x = x - 1.0; }
|
|
*/
|
|
v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
|
|
v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
|
|
x = vsubq_f32(x, one);
|
|
e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
|
|
x = vaddq_f32(x, tmp);
|
|
|
|
v4sf z = vmulq_f32(x,x);
|
|
|
|
v4sf y = vdupq_n_f32(c_cephes_log_p0);
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
|
|
y = vmulq_f32(y, x);
|
|
|
|
y = vmulq_f32(y, z);
|
|
|
|
|
|
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
|
|
y = vaddq_f32(y, tmp);
|
|
|
|
|
|
tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
|
|
y = vsubq_f32(y, tmp);
|
|
|
|
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
|
|
x = vaddq_f32(x, y);
|
|
x = vaddq_f32(x, tmp);
|
|
x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
|
|
return x;
|
|
}
|
|
|
|
#define c_exp_hi 88.3762626647949f
|
|
#define c_exp_lo -88.3762626647949f
|
|
|
|
#define c_cephes_LOG2EF 1.44269504088896341
|
|
#define c_cephes_exp_C1 0.693359375
|
|
#define c_cephes_exp_C2 -2.12194440e-4
|
|
|
|
#define c_cephes_exp_p0 1.9875691500E-4
|
|
#define c_cephes_exp_p1 1.3981999507E-3
|
|
#define c_cephes_exp_p2 8.3334519073E-3
|
|
#define c_cephes_exp_p3 4.1665795894E-2
|
|
#define c_cephes_exp_p4 1.6666665459E-1
|
|
#define c_cephes_exp_p5 5.0000001201E-1
|
|
|
|
/* exp() computed for 4 float at once */
|
|
inline v4sf exp_ps(v4sf x) {
|
|
v4sf tmp, fx;
|
|
|
|
v4sf one = vdupq_n_f32(1);
|
|
x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
|
|
x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
|
|
|
|
/* express exp(x) as exp(g + n*log(2)) */
|
|
fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
|
|
|
|
/* perform a floorf */
|
|
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
|
|
|
|
/* if greater, substract 1 */
|
|
v4su mask = vcgtq_f32(tmp, fx);
|
|
mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
|
|
|
|
|
|
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
|
|
|
|
tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
|
|
v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
|
|
x = vsubq_f32(x, tmp);
|
|
x = vsubq_f32(x, z);
|
|
|
|
static const float cephes_exp_p[6] = { c_cephes_exp_p0, c_cephes_exp_p1, c_cephes_exp_p2, c_cephes_exp_p3, c_cephes_exp_p4, c_cephes_exp_p5 };
|
|
v4sf y = vld1q_dup_f32(cephes_exp_p+0);
|
|
v4sf c1 = vld1q_dup_f32(cephes_exp_p+1);
|
|
v4sf c2 = vld1q_dup_f32(cephes_exp_p+2);
|
|
v4sf c3 = vld1q_dup_f32(cephes_exp_p+3);
|
|
v4sf c4 = vld1q_dup_f32(cephes_exp_p+4);
|
|
v4sf c5 = vld1q_dup_f32(cephes_exp_p+5);
|
|
|
|
y = vmulq_f32(y, x);
|
|
z = vmulq_f32(x,x);
|
|
y = vaddq_f32(y, c1);
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, c2);
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, c3);
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, c4);
|
|
y = vmulq_f32(y, x);
|
|
y = vaddq_f32(y, c5);
|
|
|
|
y = vmulq_f32(y, z);
|
|
y = vaddq_f32(y, x);
|
|
y = vaddq_f32(y, one);
|
|
|
|
/* build 2^n */
|
|
int32x4_t mm;
|
|
mm = vcvtq_s32_f32(fx);
|
|
mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
|
|
mm = vshlq_n_s32(mm, 23);
|
|
v4sf pow2n = vreinterpretq_f32_s32(mm);
|
|
|
|
y = vmulq_f32(y, pow2n);
|
|
return y;
|
|
}
|
|
|
|
#define c_minus_cephes_DP1 -0.78515625
|
|
#define c_minus_cephes_DP2 -2.4187564849853515625e-4
|
|
#define c_minus_cephes_DP3 -3.77489497744594108e-8
|
|
#define c_sincof_p0 -1.9515295891E-4
|
|
#define c_sincof_p1 8.3321608736E-3
|
|
#define c_sincof_p2 -1.6666654611E-1
|
|
#define c_coscof_p0 2.443315711809948E-005
|
|
#define c_coscof_p1 -1.388731625493765E-003
|
|
#define c_coscof_p2 4.166664568298827E-002
|
|
#define c_cephes_FOPI 1.27323954473516 // 4 / M_PI
|
|
|
|
/* evaluation of 4 sines & cosines at once.
|
|
|
|
The code is the exact rewriting of the cephes sinf function.
|
|
Precision is excellent as long as x < 8192 (I did not bother to
|
|
take into account the special handling they have for greater values
|
|
-- it does not return garbage for arguments over 8192, though, but
|
|
the extra precision is missing).
|
|
|
|
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
|
surprising but correct result.
|
|
|
|
Note also that when you compute sin(x), cos(x) is available at
|
|
almost no extra price so both sin_ps and cos_ps make use of
|
|
sincos_ps..
|
|
*/
|
|
inline void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos) { // any x
|
|
v4sf y;
|
|
|
|
v4su emm2;
|
|
|
|
v4su sign_mask_sin, sign_mask_cos;
|
|
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
|
|
x = vabsq_f32(x);
|
|
|
|
/* scale by 4/Pi */
|
|
y = vmulq_n_f32(x, c_cephes_FOPI);
|
|
|
|
/* store the integer part of y in mm0 */
|
|
emm2 = vcvtq_u32_f32(y);
|
|
/* j=(j+1) & (~1) (see the cephes sources) */
|
|
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
|
|
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
|
|
y = vcvtq_f32_u32(emm2);
|
|
|
|
/* get the polynom selection mask
|
|
there is one polynom for 0 <= x <= Pi/4
|
|
and another one for Pi/4<x<=Pi/2
|
|
|
|
Both branches will be computed.
|
|
*/
|
|
v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
|
|
|
|
/* The magic pass: "Extended precision modular arithmetic"
|
|
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
|
x = vfmaq_n_f32(x, y, c_minus_cephes_DP1);
|
|
x = vfmaq_n_f32(x, y, c_minus_cephes_DP2);
|
|
x = vfmaq_n_f32(x, y, c_minus_cephes_DP3);
|
|
|
|
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
|
|
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
|
|
|
|
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
|
and the second polynom (Pi/4 <= x <= 0) in y2 */
|
|
v4sf z = vmulq_f32(x,x);
|
|
v4sf y1, y2;
|
|
|
|
y1 = vfmaq_n_f32(vdupq_n_f32(c_coscof_p1), z, c_coscof_p0);
|
|
y2 = vfmaq_n_f32(vdupq_n_f32(c_sincof_p1), z, c_sincof_p0);
|
|
y1 = vfmaq_f32(vdupq_n_f32(c_coscof_p2), y1, z);
|
|
y2 = vfmaq_f32(vdupq_n_f32(c_sincof_p2), y2, z);
|
|
y1 = vmulq_f32(y1, z);
|
|
y2 = vmulq_f32(y2, z);
|
|
y1 = vmulq_f32(y1, z);
|
|
y1 = vfmsq_n_f32(y1, z, 0.5f);
|
|
y2 = vfmaq_f32(x, y2, x);
|
|
y1 = vaddq_f32(y1, vdupq_n_f32(1));
|
|
|
|
/* select the correct result from the two polynoms */
|
|
v4sf ys = vbslq_f32(poly_mask, y1, y2);
|
|
v4sf yc = vbslq_f32(poly_mask, y2, y1);
|
|
*ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
|
|
*ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
|
|
}
|
|
|
|
inline v4sf sin_ps(v4sf x) {
|
|
v4sf ysin, ycos;
|
|
sincos_ps(x, &ysin, &ycos);
|
|
return ysin;
|
|
}
|
|
|
|
inline v4sf cos_ps(v4sf x) {
|
|
v4sf ysin, ycos;
|
|
sincos_ps(x, &ysin, &ycos);
|
|
return ycos;
|
|
}
|
|
|
|
static const float asinf_lut[7] = {
|
|
1.5707961728,
|
|
-0.2145852647,
|
|
0.0887556286,
|
|
-0.0488025043,
|
|
0.0268999482,
|
|
-0.0111462294,
|
|
0.0022959648
|
|
};
|
|
|
|
inline void asincos_ps(float32x4_t x, float32x4_t* yasin, float32x4_t* yacos)
|
|
{
|
|
float32x4_t one = vdupq_n_f32(1);
|
|
float32x4_t negone = vdupq_n_f32(-1);
|
|
float32x4_t lut[7];
|
|
float32x4_t xv[5];
|
|
float32x4_t sat = vdupq_n_f32(0.9999999f);
|
|
float32x4_t m_pi_2 = vdupq_n_f32(1.570796326);
|
|
for (int i = 0; i <= 6; i++)
|
|
lut[i] = vdupq_n_f32(asinf_lut[i]);
|
|
|
|
uint32x4_t sign_mask_asin = vcltq_f32(x, vdupq_n_f32(0));
|
|
x = vabsq_f32(x);
|
|
uint32x4_t saturate = vcgeq_f32(x, one);
|
|
x = vbslq_f32(saturate, sat, x);
|
|
float32x4_t y = vsubq_f32(one, x);
|
|
y = vsqrtq_f32(y);
|
|
|
|
xv[0] = vmulq_f32(x, x);
|
|
for (int i = 1; i < 5; i++)
|
|
xv[i] = vmulq_f32(xv[i - 1], x);
|
|
|
|
float32x4_t a0 = vaddq_f32(lut[0], vmulq_f32(lut[1], x));
|
|
float32x4_t a1 = vaddq_f32(vmulq_f32(lut[2], xv[0]), vmulq_f32(lut[3], xv[1]));
|
|
float32x4_t a2 = vaddq_f32(vmulq_f32(lut[4], xv[2]), vmulq_f32(lut[5], xv[3]));
|
|
float32x4_t a3 = vmulq_f32(lut[6], xv[4]);
|
|
float32x4_t phx = vaddq_f32(vaddq_f32(a0, vaddq_f32(a1, a2)), a3);
|
|
|
|
float32x4_t arcsinx = vmulq_f32(y, phx);
|
|
arcsinx = vsubq_f32(m_pi_2, arcsinx);
|
|
float32x4_t arcnsinx = vmulq_f32(negone, arcsinx);
|
|
arcsinx = vbslq_f32(sign_mask_asin, arcnsinx, arcsinx);
|
|
*yasin = arcsinx;
|
|
*yacos = vsubq_f32(m_pi_2, arcsinx);
|
|
}
|
|
|
|
inline float32x4_t asin_ps(float32x4_t x)
|
|
{
|
|
float32x4_t yasin, yacos;
|
|
asincos_ps(x, &yasin, &yacos);
|
|
return yasin;
|
|
}
|
|
|
|
inline float32x4_t acos_ps(float32x4_t x)
|
|
{
|
|
float32x4_t yasin, yacos;
|
|
asincos_ps(x, &yasin, &yacos);
|
|
return yacos;
|
|
}
|