Portable Half-Life SDK. GoldSource and Xash3D. Crossplatform.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1756 lines
44 KiB

#include "bot_common.h"
// Determine actual path positions bot will move between along the path
bool CCSBot::ComputePathPositions()
{
if (m_pathLength == 0)
return false;
// start in first area's center
m_path[0].pos = *m_path[0].area->GetCenter();
m_path[0].ladder = NULL;
m_path[0].how = NUM_TRAVERSE_TYPES;
for (int i = 1; i < m_pathLength; ++i)
{
const ConnectInfo *from = &m_path[i - 1];
ConnectInfo *to = &m_path[ i ];
// walk along the floor to the next area
if (to->how <= GO_WEST)
{
to->ladder = NULL;
// compute next point, keeping path as straight as possible
from->area->ComputeClosestPointInPortal(to->area, (NavDirType)to->how, &from->pos, &to->pos);
// move goal position into the goal area a bit
// how far to "step into" an area - must be less than min area size
const float stepInDist = 5.0f;
AddDirectionVector(&to->pos, (NavDirType)to->how, stepInDist);
// we need to walk out of "from" area, so keep Z where we can reach it
to->pos.z = from->area->GetZ(&to->pos);
// if this is a "jump down" connection, we must insert an additional point on the path
if (to->area->IsConnected(from->area, NUM_DIRECTIONS) == false)
{
// this is a "jump down" link
// compute direction of path just prior to "jump down"
Vector2D dir;
DirectionToVector2D((NavDirType)to->how, &dir);
// shift top of "jump down" out a bit to "get over the ledge"
const float pushDist = 25.0f; // 75.0f;
to->pos.x += pushDist * dir.x;
to->pos.y += pushDist * dir.y;
// insert a duplicate node to represent the bottom of the fall
if (m_pathLength < MAX_PATH_LENGTH - 1)
{
// copy nodes down
for (int j = m_pathLength; j > i; --j)
m_path[j] = m_path[j - 1];
// path is one node longer
++m_pathLength;
// move index ahead into the new node we just duplicated
++i;
m_path[i].pos.x = to->pos.x + pushDist * dir.x;
m_path[i].pos.y = to->pos.y + pushDist * dir.y;
// put this one at the bottom of the fall
m_path[i].pos.z = to->area->GetZ(&m_path[i].pos);
}
}
}
else if (to->how == GO_LADDER_UP) // to get to next area, must go up a ladder
{
// find our ladder
const NavLadderList *list = from->area->GetLadderList (LADDER_UP);
int it;
for (it = list->Head (); it != list->InvalidIndex (); it = list->Next (it))
{
CNavLadder *ladder = (*list)[it];
// can't use "behind" area when ascending...
if (ladder->m_topForwardArea == to->area || ladder->m_topLeftArea == to->area || ladder->m_topRightArea == to->area)
{
to->ladder = ladder;
to->pos = ladder->m_bottom;
AddDirectionVector (&to->pos, ladder->m_dir, 2.0f * HalfHumanWidth);
break;
}
}
if (it == list->InvalidIndex ())
{
//PrintIfWatched( "ERROR: Can't find ladder in path\n" );
return false;
}
}
else if (to->how == GO_LADDER_DOWN) // to get to next area, must go down a ladder
{
// find our ladder
const NavLadderList *list = from->area->GetLadderList (LADDER_DOWN);
int it;
for (it = list->Head (); it != list->InvalidIndex (); it = list->Next (it))
{
CNavLadder *ladder = (*list)[it];
if (ladder->m_bottomArea == to->area)
{
to->ladder = ladder;
to->pos = ladder->m_top;
AddDirectionVector (&to->pos, OppositeDirection (ladder->m_dir), 2.0f * HalfHumanWidth);
break;
}
}
if (it == list->InvalidIndex ())
{
//PrintIfWatched( "ERROR: Can't find ladder in path\n" );
return false;
}
}
}
return true;
}
// If next step of path uses a ladder, prepare to traverse it
void CCSBot::SetupLadderMovement()
{
if (m_pathIndex < 1 || m_pathLength == 0)
return;
const ConnectInfo *to = &m_path[ m_pathIndex ];
if (to->ladder != NULL)
{
m_spotEncounter = NULL;
m_areaEnteredTimestamp = gpGlobals->time;
m_pathLadder = to->ladder;
m_pathLadderTimestamp = gpGlobals->time;
// to get to next area, we must traverse a ladder
if (to->how == GO_LADDER_UP)
{
m_pathLadderState = APPROACH_ASCENDING_LADDER;
m_pathLadderFaceIn = true;
PrintIfWatched("APPROACH_ASCENDING_LADDER\n");
m_goalPosition = m_pathLadder->m_bottom;
AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth * 2.0f);
m_lookAheadAngle = DirectionToAngle(OppositeDirection(m_pathLadder->m_dir));
}
else
{
// try to mount ladder "face out" first
m_goalPosition = m_pathLadder->m_top;
AddDirectionVector(&m_goalPosition, OppositeDirection(m_pathLadder->m_dir), HalfHumanWidth * 2.0f);
TraceResult result;
Vector from = m_pathLadder->m_top;
Vector to = m_goalPosition;
UTIL_TraceLine(from, to, ignore_monsters, ENT(m_pathLadder->m_entity->pev), &result);
if (result.flFraction == 1.0f)
{
PrintIfWatched("APPROACH_DESCENDING_LADDER (face out)\n");
m_pathLadderState = APPROACH_DESCENDING_LADDER;
m_pathLadderFaceIn = false;
m_lookAheadAngle = DirectionToAngle(m_pathLadder->m_dir);
}
else
{
PrintIfWatched("APPROACH_DESCENDING_LADDER (face in)\n");
m_pathLadderState = APPROACH_DESCENDING_LADDER;
m_pathLadderFaceIn = true;
m_lookAheadAngle = DirectionToAngle(OppositeDirection(m_pathLadder->m_dir));
m_goalPosition = m_pathLadder->m_top;
AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
}
}
}
}
// TODO: What about ladders whose top AND bottom are messed up?
void CCSBot::ComputeLadderEndpoint(bool isAscending)
{
TraceResult result;
Vector from, to;
if (isAscending)
{
// find actual top in case m_pathLadder penetrates the ceiling
// trace from our chest height at m_pathLadder base
from = m_pathLadder->m_bottom;
from.z = pev->origin.z;
to = m_pathLadder->m_top;
}
else
{
// find actual bottom in case m_pathLadder penetrates the floor
// trace from our chest height at m_pathLadder top
from = m_pathLadder->m_top;
from.z = pev->origin.z;
to = m_pathLadder->m_bottom;
}
UTIL_TraceLine(from, to, ignore_monsters, ENT(m_pathLadder->m_entity->pev), &result);
if (result.flFraction == 1.0f)
m_pathLadderEnd = to.z;
else
m_pathLadderEnd = from.z + result.flFraction * (to.z - from.z);
}
// Navigate our current ladder. Return true if we are doing ladder navigation.
// TODO: Need Push() and Pop() for run/walk context to keep ladder speed contained.
bool CCSBot::UpdateLadderMovement()
{
if (m_pathLadder == NULL)
return false;
bool giveUp = false;
// check for timeout
const float ladderTimeoutDuration = 10.0f;
if (gpGlobals->time - m_pathLadderTimestamp > ladderTimeoutDuration)
{
PrintIfWatched("Ladder timeout!\n");
giveUp = true;
}
else if (m_pathLadderState == APPROACH_ASCENDING_LADDER
|| m_pathLadderState == APPROACH_DESCENDING_LADDER
|| m_pathLadderState == ASCEND_LADDER
|| m_pathLadderState == DESCEND_LADDER
|| m_pathLadderState == DISMOUNT_ASCENDING_LADDER
|| m_pathLadderState == MOVE_TO_DESTINATION)
{
if (m_isStuck)
{
PrintIfWatched("Giving up ladder - stuck\n");
giveUp = true;
}
}
if (giveUp)
{
// jump off ladder and give up
Jump(MUST_JUMP);
Wiggle();
ResetStuckMonitor();
DestroyPath();
Run();
return false;
}
ResetStuckMonitor();
// check if somehow we totally missed the ladder
switch (m_pathLadderState)
{
case MOUNT_ASCENDING_LADDER:
case MOUNT_DESCENDING_LADDER:
case ASCEND_LADDER:
case DESCEND_LADDER:
{
const float farAway = 200.0f;
Vector2D d = (m_pathLadder->m_top - pev->origin).Make2D();
if (d.IsLengthGreaterThan(farAway))
{
PrintIfWatched("Missed ladder\n");
Jump(MUST_JUMP);
DestroyPath();
Run();
return false;
}
break;
}
}
m_areaEnteredTimestamp = gpGlobals->time;
const float tolerance = 10.0f;
const float closeToGoal = 25.0f;
switch (m_pathLadderState)
{
case APPROACH_ASCENDING_LADDER:
{
bool approached = false;
Vector2D d(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);
if (d.x * m_pathLadder->m_dirVector.x + d.y * m_pathLadder->m_dirVector.y < 0.0f)
{
Vector2D perp(-m_pathLadder->m_dirVector.y, m_pathLadder->m_dirVector.x);
if (abs(int64(d.x * perp.x + d.y * perp.y)) < tolerance && d.Length() < closeToGoal)
approached = true;
}
// small radius will just slow them down a little for more accuracy in hitting their spot
const float walkRange = 50.0f;
if (d.IsLengthLessThan(walkRange))
{
Walk();
StandUp();
}
// TODO: Check that we are on the ladder we think we are
if (IsOnLadder())
{
m_pathLadderState = ASCEND_LADDER;
PrintIfWatched("ASCEND_LADDER\n");
// find actual top in case m_pathLadder penetrates the ceiling
ComputeLadderEndpoint(true);
}
else if (approached)
{
// face the m_pathLadder
m_pathLadderState = FACE_ASCENDING_LADDER;
PrintIfWatched("FACE_ASCENDING_LADDER\n");
}
else
{
// move toward ladder mount point
MoveTowardsPosition(&m_goalPosition);
}
break;
}
case APPROACH_DESCENDING_LADDER:
{
// fall check
if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight)
{
PrintIfWatched("Fell from ladder.\n");
m_pathLadderState = MOVE_TO_DESTINATION;
m_path[ m_pathIndex ].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);
AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
PrintIfWatched("MOVE_TO_DESTINATION\n");
}
else
{
bool approached = false;
Vector2D d(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);
if (d.x * m_pathLadder->m_dirVector.x + d.y * m_pathLadder->m_dirVector.y > 0.0f)
{
Vector2D perp(-m_pathLadder->m_dirVector.y, m_pathLadder->m_dirVector.x);
if (abs(int64(d.x * perp.x + d.y * perp.y)) < tolerance && d.Length() < closeToGoal)
approached = true;
}
// if approaching ladder from the side or "ahead", walk
if (m_pathLadder->m_topBehindArea != m_lastKnownArea)
{
const float walkRange = 150.0f;
if (!IsCrouching() && d.IsLengthLessThan(walkRange))
Walk();
}
// TODO: Check that we are on the ladder we think we are
if (IsOnLadder())
{
// we slipped onto the ladder - climb it
m_pathLadderState = DESCEND_LADDER;
Run();
PrintIfWatched("DESCEND_LADDER\n");
// find actual bottom in case m_pathLadder penetrates the floor
ComputeLadderEndpoint(false);
}
else if (approached)
{
// face the ladder
m_pathLadderState = FACE_DESCENDING_LADDER;
PrintIfWatched("FACE_DESCENDING_LADDER\n");
}
else
{
// move toward ladder mount point
MoveTowardsPosition(&m_goalPosition);
}
}
break;
}
case FACE_ASCENDING_LADDER:
{
// find yaw to directly aim at ladder
Vector to = m_pathLadder->m_bottom - pev->origin;
Vector idealAngle = UTIL_VecToAngles(to);
const float angleTolerance = 5.0f;
if (AnglesAreEqual(pev->v_angle.y, idealAngle.y, angleTolerance))
{
// move toward ladder until we become "on" it
Run();
ResetStuckMonitor();
m_pathLadderState = MOUNT_ASCENDING_LADDER;
PrintIfWatched("MOUNT_ASCENDING_LADDER\n");
}
break;
}
case FACE_DESCENDING_LADDER:
{
// find yaw to directly aim at ladder
Vector to = m_pathLadder->m_top - pev->origin;
Vector idealAngle = UTIL_VecToAngles(to);
const float angleTolerance = 5.0f;
if (AnglesAreEqual(pev->v_angle.y, idealAngle.y, angleTolerance))
{
// move toward ladder until we become "on" it
m_pathLadderState = MOUNT_DESCENDING_LADDER;
ResetStuckMonitor();
PrintIfWatched("MOUNT_DESCENDING_LADDER\n");
}
break;
}
case MOUNT_ASCENDING_LADDER:
{
if (IsOnLadder())
{
m_pathLadderState = ASCEND_LADDER;
PrintIfWatched("ASCEND_LADDER\n");
// find actual top in case m_pathLadder penetrates the ceiling
ComputeLadderEndpoint(true);
}
MoveForward();
break;
}
case MOUNT_DESCENDING_LADDER:
{
// fall check
if (GetFeetZ() <= m_pathLadder->m_bottom.z + HalfHumanHeight)
{
PrintIfWatched("Fell from ladder.\n");
m_pathLadderState = MOVE_TO_DESTINATION;
m_path[ m_pathIndex ].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);
AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
PrintIfWatched("MOVE_TO_DESTINATION\n");
}
else
{
if (IsOnLadder())
{
m_pathLadderState = DESCEND_LADDER;
PrintIfWatched("DESCEND_LADDER\n");
// find actual bottom in case m_pathLadder penetrates the floor
ComputeLadderEndpoint(false);
}
// move toward ladder mount point
MoveForward();
}
break;
}
case ASCEND_LADDER:
{
// run, so we can make our dismount jump to the side, if necessary
Run();
// if our destination area requires us to crouch, do it
if (m_path[ m_pathIndex ].area->GetAttributes() & NAV_CROUCH)
Crouch();
// did we reach the top?
if (GetFeetZ() >= m_pathLadderEnd)
{
// we reached the top - dismount
m_pathLadderState = DISMOUNT_ASCENDING_LADDER;
PrintIfWatched("DISMOUNT_ASCENDING_LADDER\n");
if (m_path[ m_pathIndex ].area == m_pathLadder->m_topForwardArea)
m_pathLadderDismountDir = FORWARD;
else if (m_path[ m_pathIndex ].area == m_pathLadder->m_topLeftArea)
m_pathLadderDismountDir = LEFT;
else if (m_path[ m_pathIndex ].area == m_pathLadder->m_topRightArea)
m_pathLadderDismountDir = RIGHT;
m_pathLadderDismountTimestamp = gpGlobals->time;
}
else if (!IsOnLadder())
{
// we fall off the ladder, repath
DestroyPath();
return false;
}
// move up ladder
MoveForward();
break;
}
case DESCEND_LADDER:
{
Run();
float destHeight = m_pathLadderEnd + HalfHumanHeight;
if (!IsOnLadder() || GetFeetZ() <= destHeight)
{
// we reached the bottom, or we fell off - dismount
m_pathLadderState = MOVE_TO_DESTINATION;
m_path[ m_pathIndex ].area->GetClosestPointOnArea(&m_pathLadder->m_bottom, &m_goalPosition);
AddDirectionVector(&m_goalPosition, m_pathLadder->m_dir, HalfHumanWidth);
PrintIfWatched("MOVE_TO_DESTINATION\n");
}
// Move down ladder
MoveForward();
break;
}
case DISMOUNT_ASCENDING_LADDER:
{
if (gpGlobals->time - m_pathLadderDismountTimestamp >= 0.4f)
{
m_pathLadderState = MOVE_TO_DESTINATION;
m_path[ m_pathIndex ].area->GetClosestPointOnArea(&pev->origin, &m_goalPosition);
PrintIfWatched("MOVE_TO_DESTINATION\n");
}
// We should already be facing the dismount point
if (m_pathLadderFaceIn)
{
switch (m_pathLadderDismountDir)
{
case LEFT: StrafeLeft(); break;
case RIGHT: StrafeRight(); break;
case FORWARD: MoveForward(); break;
}
}
else
{
switch (m_pathLadderDismountDir)
{
case LEFT: StrafeRight(); break;
case RIGHT: StrafeLeft(); break;
case FORWARD: MoveBackward(); break;
}
}
break;
}
case MOVE_TO_DESTINATION:
{
if (m_path[ m_pathIndex ].area->Contains(&pev->origin))
{
// successfully traversed ladder and reached destination area
// exit ladder state machine
PrintIfWatched("Ladder traversed.\n");
m_pathLadder = NULL;
// incrememnt path index to next step beyond this ladder
SetPathIndex(m_pathIndex + 1);
return false;
}
MoveTowardsPosition(&m_goalPosition);
break;
}
}
return true;
}
// Compute closest point on path to given point
// NOTE: This does not do line-of-sight tests, so closest point may be thru the floor, etc
bool CCSBot::FindClosestPointOnPath(const Vector *worldPos, int startIndex, int endIndex, Vector *close) const
{
if (!HasPath() || close == NULL)
return false;
Vector along, toWorldPos;
Vector pos;
const Vector *from, *to;
float length;
float closeLength;
float closeDistSq = 9999999999.9f;
float distSq;
for (int i = startIndex; i <= endIndex; ++i)
{
from = &m_path[i - 1].pos;
to = &m_path[i].pos;
// compute ray along this path segment
along = *to - *from;
// make it a unit vector along the path
length = along.NormalizeInPlace();
// compute vector from start of segment to our point
toWorldPos = *worldPos - *from;
// find distance of closest point on ray
closeLength = DotProduct(toWorldPos, along);
// constrain point to be on path segment
if (closeLength <= 0.0f)
pos = *from;
else if (closeLength >= length)
pos = *to;
else
pos = *from + closeLength * along;
distSq = (pos - *worldPos).LengthSquared();
// keep the closest point so far
if (distSq < closeDistSq)
{
closeDistSq = distSq;
*close = pos;
}
}
return true;
}
// Return the closest point to our current position on our current path
// If "local" is true, only check the portion of the path surrounding m_pathIndex.
int CCSBot::FindOurPositionOnPath(Vector *close, bool local) const
{
if (!HasPath())
return -1;
Vector along, toFeet;
Vector feet = Vector(pev->origin.x, pev->origin.y, GetFeetZ());
Vector eyes = feet + Vector(0, 0, HalfHumanHeight); // in case we're crouching
Vector pos;
const Vector *from, *to;
float length;
float closeLength;
float closeDistSq = 9999999999.9;
int closeIndex = -1;
float distSq;
int start, end;
if (local)
{
start = m_pathIndex - 3;
if (start < 1)
start = 1;
end = m_pathIndex + 3;
if (end > m_pathLength)
end = m_pathLength;
}
else
{
start = 1;
end = m_pathLength;
}
for (int i = start; i < end; ++i)
{
from = &m_path[i - 1].pos;
to = &m_path[i].pos;
// compute ray along this path segment
along = *to - *from;
// make it a unit vector along the path
length = along.NormalizeInPlace();
// compute vector from start of segment to our point
toFeet = feet - *from;
// find distance of closest point on ray
closeLength = DotProduct(toFeet, along);
// constrain point to be on path segment
if (closeLength <= 0.0f)
pos = *from;
else if (closeLength >= length)
pos = *to;
else
pos = *from + closeLength * along;
distSq = (pos - feet).LengthSquared();
// keep the closest point so far
if (distSq < closeDistSq)
{
// don't use points we cant see
Vector probe = pos + Vector(0, 0, HalfHumanHeight);
if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_EVERYTHING))
continue;
// don't use points we cant reach
if (!IsStraightLinePathWalkable(&pos))
continue;
closeDistSq = distSq;
if (close)
*close = pos;
closeIndex = i - 1;
}
}
return closeIndex;
}
// Test for un-jumpable height change, or unrecoverable fall
bool CCSBot::IsStraightLinePathWalkable(const Vector *goal) const
{
// this is causing hang-up problems when crawling thru ducts/windows that drop off into rooms (they fail the "falling" check)
return true;
const float inc = GenerationStepSize;
Vector feet = pev->origin;
Vector dir = *goal - feet;
float length = dir.NormalizeInPlace();
float lastGround;
//if (!GetSimpleGroundHeight(&pev->origin, &lastGround))
// return false;
lastGround = feet.z;
float along = 0.0f;
Vector pos;
float ground;
bool done = false;
while (!done)
{
along += inc;
if (along > length)
{
along = length;
done = true;
}
// compute step along path
pos = feet + along * dir;
pos.z += HalfHumanHeight;
if (!GetSimpleGroundHeight(&pos, &ground))
return false;
// check for falling
if (ground - lastGround < -StepHeight)
return false;
// check for unreachable jump
// use slightly shorter jump limit, to allow for some fudge room
if (ground - lastGround > JumpHeight)
return false;
lastGround = ground;
}
return true;
}
// Compute a point a fixed distance ahead along our path.
// Returns path index just after point.
int CCSBot::FindPathPoint(float aheadRange, Vector *point, int *prevIndex)
{
// find path index just past aheadRange
int afterIndex;
// finds the closest point on local area of path, and returns the path index just prior to it
Vector close;
int startIndex = FindOurPositionOnPath(&close, true);
if (prevIndex)
*prevIndex = startIndex;
if (startIndex <= 0)
{
// went off the end of the path
// or next point in path is unwalkable (ie: jump-down)
// keep same point
return m_pathIndex;
}
// if we are crouching, just follow the path exactly
if (IsCrouching())
{
// we want to move to the immediately next point along the path from where we are now
int index = startIndex + 1;
if (index >= m_pathLength)
index = m_pathLength - 1;
*point = m_path[ index ].pos;
// if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
const float closeEpsilon = 20.0f; // 10.0f
while ((*point - close).Make2D().IsLengthLessThan(closeEpsilon))
{
++index;
if (index >= m_pathLength)
{
index = m_pathLength - 1;
break;
}
*point = m_path[ index ].pos;
}
return index;
}
// make sure we use a node a minimum distance ahead of us, to avoid wiggling
while (startIndex < m_pathLength - 1)
{
Vector pos = m_path[ startIndex + 1 ].pos;
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc
const float closeEpsilon = 20.0f;
if ((pos - close).Make2D().IsLengthLessThan(closeEpsilon))
{
++startIndex;
}
else
{
break;
}
}
// if we hit a ladder, stop, or jump area, must stop (dont use ladder behind us)
if (startIndex > m_pathIndex && startIndex < m_pathLength
&& (m_path[ startIndex ].ladder != NULL || (m_path[ startIndex ].area->GetAttributes() & NAV_JUMP)))
{
*point = m_path[ startIndex ].pos;
return startIndex;
}
// we need the point just *ahead* of us
++startIndex;
if (startIndex >= m_pathLength)
startIndex = m_pathLength - 1;
// if we hit a ladder, stop, or jump area, must stop
if (startIndex < m_pathLength && (m_path[ startIndex ].ladder != NULL || (m_path[ startIndex ].area->GetAttributes() & NAV_JUMP)))
{
*point = m_path[ startIndex ].pos;
return startIndex;
}
// note direction of path segment we are standing on
Vector initDir = m_path[ startIndex ].pos - m_path[ startIndex - 1 ].pos;
initDir.NormalizeInPlace();
Vector feet = Vector(pev->origin.x, pev->origin.y, GetFeetZ());
Vector eyes = feet + Vector(0, 0, HalfHumanHeight);
float rangeSoFar = 0;
// this flag is true if our ahead point is visible
bool visible = true;
Vector prevDir = initDir;
// step along the path until we pass aheadRange
bool isCorner = false;
int i;
for (i = startIndex; i < m_pathLength; ++i)
{
Vector pos = m_path[i].pos;
Vector to = pos - m_path[i - 1].pos;
Vector dir = to;
dir.NormalizeInPlace();
// don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc)
if (DotProduct(dir, initDir) < 0.0f) // -0.25f
{
--i;
break;
}
// if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc
if (DotProduct(dir, prevDir) < 0.5f)
{
isCorner = true;
--i;
break;
}
prevDir = dir;
// don't use points we cant see
Vector probe = pos + Vector(0, 0, HalfHumanHeight);
if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES))
{
// presumably, the previous point is visible, so we will interpolate
visible = false;
break;
}
// if we encounter a ladder or jump area, we must stop
if (i < m_pathLength && (m_path[ i ].ladder != NULL || (m_path[ i ].area->GetAttributes() & NAV_JUMP)))
break;
// Check straight-line path from our current position to this position
// Test for un-jumpable height change, or unrecoverable fall
if (!IsStraightLinePathWalkable(&pos))
{
--i;
break;
}
Vector along = (i == startIndex) ? (pos - feet) : (pos - m_path[i - 1].pos);
rangeSoFar += along.Length2D();
// stop if we have gone farther than aheadRange
if (rangeSoFar >= aheadRange)
break;
}
if (i < startIndex)
afterIndex = startIndex;
else if (i < m_pathLength)
afterIndex = i;
else
afterIndex = m_pathLength - 1;
// compute point on the path at aheadRange
if (afterIndex == 0)
{
*point = m_path[0].pos;
}
else
{
// interpolate point along path segment
const Vector *afterPoint = &m_path[ afterIndex ].pos;
const Vector *beforePoint = &m_path[ afterIndex - 1 ].pos;
Vector to = *afterPoint - *beforePoint;
float length = to.Length2D();
float t = 1.0f - ((rangeSoFar - aheadRange) / length);
if (t < 0.0f)
t = 0.0f;
else if (t > 1.0f)
t = 1.0f;
*point = *beforePoint + t * to;
// if afterPoint wasn't visible, slide point backwards towards beforePoint until it is
if (!visible)
{
const float sightStepSize = 25.0f;
float dt = sightStepSize / length;
Vector probe = *point + Vector(0, 0, HalfHumanHeight);
while (t > 0.0f && !IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES))
{
t -= dt;
*point = *beforePoint + t * to;
}
if (t <= 0.0f)
*point = *beforePoint;
}
}
// if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle
if (!isCorner)
{
const float epsilon = 50.0f;
Vector2D toPoint;
toPoint.x = point->x - pev->origin.x;
toPoint.y = point->y - pev->origin.y;
if (DotProduct(toPoint, initDir.Make2D()) < 0.0f || toPoint.IsLengthLessThan(epsilon))
{
int i;
for (i = startIndex; i < m_pathLength; ++i)
{
toPoint.x = m_path[i].pos.x - pev->origin.x;
toPoint.y = m_path[i].pos.y - pev->origin.y;
if (m_path[i].ladder != NULL || (m_path[i].area->GetAttributes() & NAV_JUMP) || toPoint.IsLengthGreaterThan(epsilon))
{
*point = m_path[i].pos;
startIndex = i;
break;
}
}
if (i == m_pathLength)
{
*point = GetPathEndpoint();
startIndex = m_pathLength - 1;
}
}
}
// m_pathIndex should always be the next point on the path, even if we're not moving directly towards it
return startIndex;
}
// Set the current index along the path
void CCSBot::SetPathIndex(int newIndex)
{
m_pathIndex = Q_min(newIndex, m_pathLength - 1);
m_areaEnteredTimestamp = gpGlobals->time;
if (m_path[ m_pathIndex ].ladder)
{
SetupLadderMovement();
}
else
{
// get our "encounter spots" for this leg of the path
if (m_pathIndex < m_pathLength && m_pathIndex >= 2)
m_spotEncounter = m_path[ m_pathIndex - 1 ].area->GetSpotEncounter(m_path[ m_pathIndex - 2 ].area, m_path[ m_pathIndex ].area);
else
m_spotEncounter = NULL;
m_pathLadder = NULL;
}
}
// Return true if nearing a jump in the path
bool CCSBot::IsNearJump() const
{
if (m_pathIndex == 0 || m_pathIndex >= m_pathLength)
return false;
for (int i = m_pathIndex - 1; i < m_pathIndex; ++i)
{
if (m_path[ i ].area->GetAttributes() & NAV_JUMP)
{
float dz = m_path[ i + 1 ].pos.z - m_path[ i ].pos.z;
if (dz > 0.0f)
return true;
}
}
return false;
}
// Return approximately how much damage will will take from the given fall height
float CCSBot::GetApproximateFallDamage(float height) const
{
// empirically discovered height values
const float slope = 0.2178f;
const float intercept = 26.0f;
float damage = slope * height - intercept;
if (damage < 0.0f)
return 0.0f;
return damage;
}
// Return true if a friend is between us and the given position
bool CCSBot::IsFriendInTheWay(const Vector *goalPos) const
{
// do this check less often to ease CPU burden
if (!m_avoidFriendTimer.IsElapsed())
{
return m_isFriendInTheWay;
}
const float avoidFriendInterval = 0.5f;
m_avoidFriendTimer.Start(avoidFriendInterval);
// compute ray along intended path
Vector moveDir = *goalPos - pev->origin;
// make it a unit vector
float length = moveDir.NormalizeInPlace();
m_isFriendInTheWay = false;
// check if any friends are overlapping this linear path
for (int i = 1; i <= gpGlobals->maxClients; ++i)
{
CBasePlayer *player = static_cast<CBasePlayer *>(UTIL_PlayerByIndex(i));
if (player == NULL)
continue;
if (FNullEnt(player->pev))
continue;
if (!player->IsAlive())
continue;
// if (player->m_iTeam != m_iTeam)
// continue;
if (player == this)
continue;
// compute vector from us to our friend
Vector toFriend = player->pev->origin - pev->origin;
// check if friend is in our "personal space"
const float personalSpace = 100.0f;
if (toFriend.IsLengthGreaterThan(personalSpace))
continue;
// find distance of friend along our movement path
float friendDistAlong = DotProduct(toFriend, moveDir);
// if friend is behind us, ignore him
if (friendDistAlong <= 0.0f)
continue;
// constrain point to be on path segment
Vector pos;
if (friendDistAlong >= length)
pos = *goalPos;
else
pos = pev->origin + friendDistAlong * moveDir;
// check if friend overlaps our intended line of movement
const float friendRadius = 30.0f;
if ((pos - player->pev->origin).IsLengthLessThan(friendRadius))
{
// friend is in our personal space and overlaps our intended line of movement
m_isFriendInTheWay = true;
break;
}
}
return m_isFriendInTheWay;
}
// Do reflex avoidance movements if our "feelers" are touched
void CCSBot::FeelerReflexAdjustment(Vector *goalPosition)
{
// if we are in a "precise" area, do not do feeler adjustments
if (m_lastKnownArea != NULL && (m_lastKnownArea->GetAttributes() & NAV_PRECISE))
return;
Vector dir(BotCOS(m_forwardAngle), BotSIN(m_forwardAngle), 0.0f);
Vector lat(-dir.y, dir.x, 0.0f);
const float feelerOffset = (IsCrouching()) ? 15.0f : 20.0f;
const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747)
const float feelerLengthWalk = 30.0f;
const float feelerHeight = StepHeight + 0.1f; // if obstacle is lower than StepHeight, we'll walk right over it
float feelerLength = (IsRunning()) ? feelerLengthRun : feelerLengthWalk;
feelerLength = (IsCrouching()) ? 20.0f : feelerLength;
// Feelers must follow floor slope
float ground;
Vector normal;
//m_eyePos = EyePosition();
m_eyePos.x = pev->origin.x + pev->view_ofs.x;
m_eyePos.y = pev->origin.y + pev->view_ofs.y;
m_eyePos.z = pev->origin.z + pev->view_ofs.z;
if (GetSimpleGroundHeightWithFloor(&m_eyePos, &ground, &normal) == false)
return;
// get forward vector along floor
dir = CrossProduct(lat, normal);
// correct the sideways vector
lat = CrossProduct(dir, normal);
Vector feet = Vector(pev->origin.x, pev->origin.y, GetFeetZ());
feet.z += feelerHeight;
Vector from = feet + feelerOffset * lat;
Vector to = from + feelerLength * dir;
bool leftClear = IsWalkableTraceLineClear(from, to, WALK_THRU_EVERYTHING);
// avoid ledges, too
// use 'from' so it doesn't interfere with legitimate gap jumping (its at our feet)
// TODO: Rethink this - it causes lots of wiggling when bots jump down from vents, etc
/*
float ground;
if (GetSimpleGroundHeightWithFloor(&from, &ground))
{
if (GetFeetZ() - ground > JumpHeight)
leftClear = false;
}
*/
if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
{
if (leftClear)
UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0);
else
UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0);
}
from = feet - feelerOffset * lat;
to = from + feelerLength * dir;
bool rightClear = IsWalkableTraceLineClear(from, to, WALK_THRU_EVERYTHING);
/*
// avoid ledges, too
if (GetSimpleGroundHeightWithFloor(&from, &ground))
{
if (GetFeetZ() - ground > JumpHeight)
rightClear = false;
}
*/
if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
{
if (rightClear)
UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0);
else
UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0);
}
const float avoidRange = (IsCrouching()) ? 150.0f : 300.0f; // 50.0f : 300.0f
if (!rightClear)
{
if (leftClear)
{
// right hit, left clear - veer left
*goalPosition = *goalPosition + avoidRange * lat;
}
}
else if (!leftClear)
{
// right clear, left hit - veer right
*goalPosition = *goalPosition - avoidRange * lat;
}
}
// Move along the path. Return false if end of path reached.
CCSBot::PathResult CCSBot::UpdatePathMovement(bool allowSpeedChange)
{
if (m_pathLength == 0)
return PATH_FAILURE;
if (cv_bot_walk.value != 0.0f)
Walk();
// If we are navigating a ladder, it overrides all other path movement until complete
if (UpdateLadderMovement())
return PROGRESSING;
// ladder failure can destroy the path
if (m_pathLength == 0)
return PATH_FAILURE;
// we are not supposed to be on a ladder - if we are, jump off
if (IsOnLadder())
Jump(MUST_JUMP);
assert(m_pathIndex < m_pathLength);
// Check if reached the end of the path
bool nearEndOfPath = false;
if (m_pathIndex >= m_pathLength - 1)
{
Vector toEnd(pev->origin.x, pev->origin.y, GetFeetZ());
Vector d = GetPathEndpoint() - toEnd; // can't use 2D because path end may be below us (jump down)
const float walkRange = 200.0f;
// walk as we get close to the goal position to ensure we hit it
if (d.IsLengthLessThan(walkRange))
{
// don't walk if crouching - too slow
if (allowSpeedChange && !IsCrouching())
Walk();
// note if we are near the end of the path
const float nearEndRange = 50.0f;
if (d.IsLengthLessThan(nearEndRange))
nearEndOfPath = true;
const float closeEpsilon = 20.0f;
if (d.IsLengthLessThan(closeEpsilon))
{
// reached goal position - path complete
DestroyPath();
// TODO: We should push and pop walk state here, in case we want to continue walking after reaching goal
if (allowSpeedChange)
Run();
return END_OF_PATH;
}
}
}
// To keep us moving smoothly, we will move towards
// a point farther ahead of us down our path.
int prevIndex = 0; // closest index on path just prior to where we are now
const float aheadRange = 300.0f;
int newIndex = FindPathPoint(aheadRange, &m_goalPosition, &prevIndex);
// BOTPORT: Why is prevIndex sometimes -1?
if (prevIndex < 0)
prevIndex = 0;
// if goal position is near to us, we must be about to go around a corner - so look ahead!
const float nearCornerRange = 100.0f;
if (m_pathIndex < m_pathLength - 1 && (m_goalPosition - pev->origin).IsLengthLessThan(nearCornerRange))
{
ClearLookAt();
InhibitLookAround(0.5f);
}
// if we moved to a new node on the path, setup movement
if (newIndex > m_pathIndex)
{
SetPathIndex(newIndex);
}
// Crouching
if (!IsUsingLadder())
{
// if we are approaching a crouch area, crouch
// if there are no crouch areas coming up, stand
const float crouchRange = 50.0f;
bool didCrouch = false;
for (int i = prevIndex; i < m_pathLength; ++i)
{
const CNavArea *to = m_path[i].area;
// if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump
// unless we are already higher than the jump area - we must've jumped already but not moved into next area
if ((to->GetAttributes() & NAV_JUMP)/* && to->GetCenter()->z > GetFeetZ()*/)
break;
Vector close;
to->GetClosestPointOnArea(&pev->origin, &close);
if ((close - pev->origin).Make2D().IsLengthGreaterThan(crouchRange))
break;
if (to->GetAttributes() & NAV_CROUCH)
{
Crouch();
didCrouch = true;
break;
}
}
if (!didCrouch && !IsJumping())
{
// no crouch areas coming up
StandUp();
}
// end crouching logic
}
// compute our forward facing angle
m_forwardAngle = UTIL_VecToYaw(m_goalPosition - pev->origin);
// Look farther down the path to "lead" our view around corners
Vector toGoal;
if (m_pathIndex == 0)
{
toGoal = m_path[1].pos;
}
else if (m_pathIndex < m_pathLength)
{
toGoal = m_path[ m_pathIndex ].pos - pev->origin;
// actually aim our view farther down the path
const float lookAheadRange = 500.0f;
if (!m_path[ m_pathIndex ].ladder && !IsNearJump() && toGoal.Make2D().IsLengthLessThan(lookAheadRange))
{
float along = toGoal.Length2D();
int i;
for (i = m_pathIndex + 1; i < m_pathLength; ++i)
{
Vector delta = m_path[i].pos - m_path[i - 1].pos;
float segmentLength = delta.Length2D();
if (along + segmentLength >= lookAheadRange)
{
// interpolate between points to keep look ahead point at fixed distance
float t = (lookAheadRange - along) / (segmentLength + along);
Vector target;
if (t <= 0.0f)
target = m_path[i - 1].pos;
else if (t >= 1.0f)
target = m_path[i].pos;
else
target = m_path[i - 1].pos + t * delta;
toGoal = target - pev->origin;
break;
}
// if we are coming up to a ladder or a jump, look at it
if (m_path[i].ladder || (m_path[i].area->GetAttributes() & NAV_JUMP))
{
toGoal = m_path[i].pos - pev->origin;
break;
}
along += segmentLength;
}
if (i == m_pathLength)
toGoal = GetPathEndpoint() - pev->origin;
}
}
else
{
toGoal = GetPathEndpoint() - pev->origin;
}
m_lookAheadAngle = UTIL_VecToYaw(toGoal);
// initialize "adjusted" goal to current goal
Vector adjustedGoal = m_goalPosition;
// Use short "feelers" to veer away from close-range obstacles
// Feelers come from our ankles, just above StepHeight, so we avoid short walls, too
// Don't use feelers if very near the end of the path, or about to jump
// TODO: Consider having feelers at several heights to deal with overhangs, etc.
if (!nearEndOfPath && !IsNearJump() && !IsJumping())
{
FeelerReflexAdjustment(&adjustedGoal);
}
// draw debug visualization
if ((cv_bot_traceview.value == 1.0f && IsLocalPlayerWatchingMe()) || cv_bot_traceview.value == 10.0f)
{
DrawPath();
const Vector *pos = &m_path[ m_pathIndex ].pos;
UTIL_DrawBeamPoints(*pos, *pos + Vector(0, 0, 50), 1, 255, 255, 0);
UTIL_DrawBeamPoints(adjustedGoal, adjustedGoal + Vector(0, 0, 50), 1, 255, 0, 255);
UTIL_DrawBeamPoints(pev->origin, adjustedGoal + Vector(0, 0, 50), 1, 255, 0, 255);
}
// dont use adjustedGoal, as it can vary wildly from the feeler adjustment
if (!IsAttacking() && IsFriendInTheWay(&m_goalPosition))
{
if (!m_isWaitingBehindFriend)
{
m_isWaitingBehindFriend = true;
const float politeDuration = 5.0f - 3.0f * GetProfile()->GetAggression();
m_politeTimer.Start(politeDuration);
}
else if (m_politeTimer.IsElapsed())
{
// we have run out of patience
m_isWaitingBehindFriend = false;
ResetStuckMonitor();
// repath to avoid clump of friends in the way
DestroyPath();
}
}
else if (m_isWaitingBehindFriend)
{
// we're done waiting for our friend to move
m_isWaitingBehindFriend = false;
ResetStuckMonitor();
}
// Move along our path if there are no friends blocking our way,
// or we have run out of patience
if (!m_isWaitingBehindFriend || m_politeTimer.IsElapsed())
{
// Move along path
MoveTowardsPosition(&adjustedGoal);
// Stuck check
if (m_isStuck && !IsJumping())
{
Wiggle();
}
}
// if our goal is high above us, we must have fallen
bool didFall = false;
if (m_goalPosition.z - GetFeetZ() > JumpCrouchHeight)
{
const float closeRange = 75.0f;
Vector2D to(pev->origin.x - m_goalPosition.x, pev->origin.y - m_goalPosition.y);
if (to.IsLengthLessThan(closeRange))
{
// we can't reach the goal position
// check if we can reach the next node, in case this was a "jump down" situation
if (m_pathIndex < m_pathLength - 1)
{
if (m_path[ m_pathIndex + 1 ].pos.z - GetFeetZ() > JumpCrouchHeight)
{
// the next node is too high, too - we really did fall of the path
didFall = true;
}
}
else
{
// fell trying to get to the last node in the path
didFall = true;
}
}
}
// This timeout check is needed if the bot somehow slips way off
// of its path and cannot progress, but also moves around
// enough that it never becomes "stuck"
const float giveUpDuration = 5.0f; // 4.0f
if (didFall || gpGlobals->time - m_areaEnteredTimestamp > giveUpDuration)
{
if (didFall)
{
PrintIfWatched("I fell off!\n");
}
// if we havent made any progress in a long time, give up
if (m_pathIndex < m_pathLength - 1)
{
PrintIfWatched("Giving up trying to get to area #%d\n", m_path[ m_pathIndex ].area->GetID());
}
else
{
PrintIfWatched("Giving up trying to get to end of path\n");
}
Run();
StandUp();
DestroyPath();
return PATH_FAILURE;
}
return PROGRESSING;
}
// Build trivial path to goal, assuming we are already in the same area
void CCSBot::BuildTrivialPath(const Vector *goal)
{
m_pathIndex = 1;
m_pathLength = 2;
m_path[0].area = m_lastKnownArea;
m_path[0].pos = pev->origin;
m_path[0].pos.z = m_lastKnownArea->GetZ(&pev->origin);
m_path[0].ladder = NULL;
m_path[0].how = NUM_TRAVERSE_TYPES;
m_path[1].area = m_lastKnownArea;
m_path[1].pos = *goal;
m_path[1].pos.z = m_lastKnownArea->GetZ(goal);
m_path[1].ladder = NULL;
m_path[1].how = NUM_TRAVERSE_TYPES;
m_areaEnteredTimestamp = gpGlobals->time;
m_spotEncounter = NULL;
m_pathLadder = NULL;
m_goalPosition = *goal;
}
// Compute shortest path to goal position via A* algorithm
// If 'goalArea' is NULL, path will get as close as it can.
bool CCSBot::ComputePath(CNavArea *goalArea, const Vector *goal, RouteType route)
{
// Throttle re-pathing
if (!m_repathTimer.IsElapsed())
return false;
// randomize to distribute CPU load
m_repathTimer.Start(RANDOM_FLOAT(0.4f, 0.6f));
DestroyPath();
CNavArea *startArea = m_lastKnownArea;
if (startArea == NULL)
return false;
// note final specific position
Vector pathEndPosition;
if (goal == NULL && goalArea == NULL)
return false;
if (goal == NULL)
pathEndPosition = *goalArea->GetCenter();
else
pathEndPosition = *goal;
// make sure path end position is on the ground
if (goalArea)
pathEndPosition.z = goalArea->GetZ(&pathEndPosition);
else
GetGroundHeight(&pathEndPosition, &pathEndPosition.z);
// if we are already in the goal area, build trivial path
if (startArea == goalArea)
{
BuildTrivialPath(&pathEndPosition);
return true;
}
// Compute shortest path to goal
CNavArea *closestArea = NULL;
PathCost pathCost(this, route);
bool pathToGoalExists = NavAreaBuildPath(startArea, goalArea, goal, pathCost, &closestArea);
CNavArea *effectiveGoalArea = (pathToGoalExists) ? goalArea : closestArea;
// Build path by following parent links
// get count
int count = 0;
CNavArea *area;
for (area = effectiveGoalArea; area != NULL; area = area->GetParent())
{
++count;
}
// save room for endpoint
if (count > MAX_PATH_LENGTH - 1)
count = MAX_PATH_LENGTH - 1;
if (count == 0)
return false;
if (count == 1)
{
BuildTrivialPath(&pathEndPosition);
return true;
}
// build path
m_pathLength = count;
for (area = effectiveGoalArea; count && area != NULL; area = area->GetParent())
{
--count;
m_path[ count ].area = area;
m_path[ count ].how = area->GetParentHow();
}
// compute path positions
if (ComputePathPositions() == false)
{
PrintIfWatched("Error building path\n");
DestroyPath();
return false;
}
if (goal == NULL)
{
switch (m_path[m_pathLength - 1].how)
{
case GO_NORTH:
case GO_SOUTH:
pathEndPosition.x = m_path[m_pathLength - 1].pos.x;
pathEndPosition.y = effectiveGoalArea->GetCenter()->y;
break;
case GO_EAST:
case GO_WEST:
pathEndPosition.x = effectiveGoalArea->GetCenter()->x;
pathEndPosition.y = m_path[m_pathLength - 1].pos.y;
break;
}
GetGroundHeight(&pathEndPosition, &pathEndPosition.z);
}
// append path end position
m_path[ m_pathLength ].area = effectiveGoalArea;
m_path[ m_pathLength ].pos = pathEndPosition;
m_path[ m_pathLength ].ladder = NULL;
m_path[ m_pathLength ].how = NUM_TRAVERSE_TYPES;
++m_pathLength;
// do movement setup
m_pathIndex = 1;
m_areaEnteredTimestamp = gpGlobals->time;
m_spotEncounter = NULL;
m_goalPosition = m_path[1].pos;
if (m_path[1].ladder != NULL)
SetupLadderMovement();
else
m_pathLadder = NULL;
return true;
}
// Return estimated distance left to travel along path
float CCSBot::GetPathDistanceRemaining() const
{
if (!HasPath())
return -1.0f;
int idx = (m_pathIndex < m_pathLength) ? m_pathIndex : m_pathLength - 1;
float dist = 0.0f;
const Vector *prevCenter = m_path[m_pathIndex].area->GetCenter();
for (int i = idx + 1; i < m_pathLength; ++i)
{
dist += (*m_path[i].area->GetCenter() - *prevCenter).Length();
prevCenter = m_path[i].area->GetCenter();
}
return dist;
}
// Draw a portion of our current path for debugging.
void CCSBot::DrawPath()
{
if (!HasPath())
return;
for (int i = 1; i < m_pathLength; ++i)
{
UTIL_DrawBeamPoints(m_path[i - 1].pos, m_path[i].pos, 2, 255, 75, 0);
}
Vector close;
if (FindOurPositionOnPath(&close, true) >= 0)
{
UTIL_DrawBeamPoints(close + Vector(0, 0, 25), close, 1, 0, 255, 0);
UTIL_DrawBeamPoints(close + Vector(25, 0, 0), close + Vector(-25, 0, 0), 1, 0, 255, 0);
UTIL_DrawBeamPoints(close + Vector(0, 25, 0), close + Vector(0, -25, 0), 1, 0, 255, 0);
}
}