mirror of
https://github.com/YGGverse/hlsdk-portable.git
synced 2025-01-24 21:54:30 +00:00
409 lines
7.9 KiB
C
409 lines
7.9 KiB
C
/***
|
|
*
|
|
* Copyright (c) 1996-2002, Valve LLC. All rights reserved.
|
|
*
|
|
* This product contains software technology licensed from Id
|
|
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Use, distribution, and modification of this source code and/or resulting
|
|
* object code is restricted to non-commercial enhancements to products from
|
|
* Valve LLC. All other use, distribution, or modification is prohibited
|
|
* without written permission from Valve LLC.
|
|
*
|
|
****/
|
|
// pm_math.c -- math primitives
|
|
|
|
#include "mathlib.h"
|
|
#include "const.h"
|
|
#include <math.h>
|
|
|
|
// up / down
|
|
#define PITCH 0
|
|
// left / right
|
|
#define YAW 1
|
|
// fall over
|
|
#define ROLL 2
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable : 4244)
|
|
#endif
|
|
|
|
vec3_t vec3_origin = { 0,0,0 };
|
|
int nanmask = 255 << 23;
|
|
|
|
float anglemod( float a )
|
|
{
|
|
a = ( 360.0 / 65536 ) * ( (int)( a * ( 65536 / 360.0 ) ) & 65535 );
|
|
return a;
|
|
}
|
|
|
|
void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * ( M_PI * 2 / 360 );
|
|
sy = sin( angle );
|
|
cy = cos( angle );
|
|
angle = angles[PITCH] * ( M_PI*2 / 360 );
|
|
sp = sin( angle );
|
|
cp = cos( angle );
|
|
angle = angles[ROLL] * ( M_PI*2 / 360 );
|
|
sr = sin( angle );
|
|
cr = cos( angle );
|
|
|
|
if( forward )
|
|
{
|
|
forward[0] = cp * cy;
|
|
forward[1] = cp * sy;
|
|
forward[2] = -sp;
|
|
}
|
|
if( right )
|
|
{
|
|
right[0] = ( -1 * sr * sp * cy + -1 * cr * -sy );
|
|
right[1] = ( -1 * sr * sp * sy + -1 * cr * cy );
|
|
right[2] = -1 * sr * cp;
|
|
}
|
|
if( up )
|
|
{
|
|
up[0] = ( cr * sp * cy + -sr * -sy );
|
|
up[1] = ( cr * sp * sy + -sr * cy );
|
|
up[2] = cr * cp;
|
|
}
|
|
}
|
|
|
|
void AngleVectorsTranspose( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * ( M_PI * 2 / 360 );
|
|
sy = sin( angle );
|
|
cy = cos( angle );
|
|
angle = angles[PITCH] * ( M_PI * 2 / 360 );
|
|
sp = sin( angle );
|
|
cp = cos( angle );
|
|
angle = angles[ROLL] * ( M_PI * 2 / 360 );
|
|
sr = sin( angle );
|
|
cr = cos( angle );
|
|
|
|
if( forward )
|
|
{
|
|
forward[0] = cp * cy;
|
|
forward[1] = ( sr * sp * cy + cr * -sy );
|
|
forward[2] = ( cr * sp * cy + -sr * -sy );
|
|
}
|
|
if( right )
|
|
{
|
|
right[0] = cp * sy;
|
|
right[1] = ( sr * sp * sy + cr * cy );
|
|
right[2] = ( cr * sp * sy + -sr * cy );
|
|
}
|
|
if( up )
|
|
{
|
|
up[0] = -sp;
|
|
up[1] = sr * cp;
|
|
up[2] = cr * cp;
|
|
}
|
|
}
|
|
|
|
void AngleMatrix( const vec3_t angles, float (*matrix)[4] )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * ( M_PI * 2 / 360 );
|
|
sy = sin( angle );
|
|
cy = cos( angle );
|
|
angle = angles[PITCH] * ( M_PI * 2 / 360 );
|
|
sp = sin( angle );
|
|
cp = cos( angle );
|
|
angle = angles[ROLL] * ( M_PI * 2 / 360 );
|
|
sr = sin( angle );
|
|
cr = cos( angle );
|
|
|
|
// matrix = ( YAW * PITCH ) * ROLL
|
|
matrix[0][0] = cp * cy;
|
|
matrix[1][0] = cp * sy;
|
|
matrix[2][0] = -sp;
|
|
matrix[0][1] = sr * sp * cy + cr * -sy;
|
|
matrix[1][1] = sr * sp * sy + cr * cy;
|
|
matrix[2][1] = sr * cp;
|
|
matrix[0][2] = ( cr * sp * cy + -sr * -sy );
|
|
matrix[1][2] = ( cr * sp * sy + -sr * cy );
|
|
matrix[2][2] = cr * cp;
|
|
matrix[0][3] = 0.0;
|
|
matrix[1][3] = 0.0;
|
|
matrix[2][3] = 0.0;
|
|
}
|
|
|
|
void AngleIMatrix( const vec3_t angles, float matrix[3][4] )
|
|
{
|
|
float angle;
|
|
float sr, sp, sy, cr, cp, cy;
|
|
|
|
angle = angles[YAW] * ( M_PI * 2 / 360 );
|
|
sy = sin( angle );
|
|
cy = cos( angle );
|
|
angle = angles[PITCH] * ( M_PI * 2 / 360 );
|
|
sp = sin( angle );
|
|
cp = cos( angle );
|
|
angle = angles[ROLL] * ( M_PI * 2 / 360 );
|
|
sr = sin( angle );
|
|
cr = cos( angle );
|
|
|
|
// matrix = ( YAW * PITCH ) * ROLL
|
|
matrix[0][0] = cp * cy;
|
|
matrix[0][1] = cp * sy;
|
|
matrix[0][2] = -sp;
|
|
matrix[1][0] = sr * sp * cy + cr * -sy;
|
|
matrix[1][1] = sr * sp * sy + cr * cy;
|
|
matrix[1][2] = sr * cp;
|
|
matrix[2][0] = ( cr * sp * cy + -sr * -sy );
|
|
matrix[2][1] = ( cr * sp * sy + -sr * cy );
|
|
matrix[2][2] = cr * cp;
|
|
matrix[0][3] = 0.0;
|
|
matrix[1][3] = 0.0;
|
|
matrix[2][3] = 0.0;
|
|
}
|
|
|
|
void NormalizeAngles( float *angles )
|
|
{
|
|
int i;
|
|
// Normalize angles
|
|
for( i = 0; i < 3; i++ )
|
|
{
|
|
if( angles[i] > 180.0 )
|
|
{
|
|
angles[i] -= 360.0;
|
|
}
|
|
else if( angles[i] < -180.0 )
|
|
{
|
|
angles[i] += 360.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
===================
|
|
InterpolateAngles
|
|
|
|
Interpolate Euler angles.
|
|
FIXME: Use Quaternions to avoid discontinuities
|
|
Frac is 0.0 to 1.0 ( i.e., should probably be clamped, but doesn't have to be )
|
|
===================
|
|
*/
|
|
void InterpolateAngles( float *start, float *end, float *output, float frac )
|
|
{
|
|
int i;
|
|
float ang1, ang2;
|
|
float d;
|
|
|
|
NormalizeAngles( start );
|
|
NormalizeAngles( end );
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
{
|
|
ang1 = start[i];
|
|
ang2 = end[i];
|
|
|
|
d = ang2 - ang1;
|
|
if( d > 180 )
|
|
{
|
|
d -= 360;
|
|
}
|
|
else if( d < -180 )
|
|
{
|
|
d += 360;
|
|
}
|
|
|
|
output[i] = ang1 + d * frac;
|
|
}
|
|
|
|
NormalizeAngles( output );
|
|
}
|
|
|
|
/*
|
|
===================
|
|
AngleBetweenVectors
|
|
|
|
===================
|
|
*/
|
|
float AngleBetweenVectors( const vec3_t v1, const vec3_t v2 )
|
|
{
|
|
float angle;
|
|
float l1 = Length( v1 );
|
|
float l2 = Length( v2 );
|
|
|
|
if( !l1 || !l2 )
|
|
return 0.0f;
|
|
|
|
angle = acos( DotProduct( v1, v2 ) / ( l1 * l2 ) );
|
|
angle = ( angle * 180.0f ) / M_PI;
|
|
|
|
return angle;
|
|
}
|
|
|
|
void VectorTransform( const vec3_t in1, float in2[3][4], vec3_t out )
|
|
{
|
|
out[0] = DotProduct( in1, in2[0] ) + in2[0][3];
|
|
out[1] = DotProduct( in1, in2[1] ) + in2[1][3];
|
|
out[2] = DotProduct( in1, in2[2] ) + in2[2][3];
|
|
}
|
|
|
|
int VectorCompare( const vec3_t v1, const vec3_t v2 )
|
|
{
|
|
int i;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
if( v1[i] != v2[i] )
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
void VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc )
|
|
{
|
|
vecc[0] = veca[0] + scale * vecb[0];
|
|
vecc[1] = veca[1] + scale * vecb[1];
|
|
vecc[2] = veca[2] + scale * vecb[2];
|
|
}
|
|
|
|
vec_t _DotProduct( vec3_t v1, vec3_t v2 )
|
|
{
|
|
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
|
}
|
|
|
|
void _VectorSubtract( vec3_t veca, vec3_t vecb, vec3_t out )
|
|
{
|
|
out[0] = veca[0] - vecb[0];
|
|
out[1] = veca[1] - vecb[1];
|
|
out[2] = veca[2] - vecb[2];
|
|
}
|
|
|
|
void _VectorAdd( vec3_t veca, vec3_t vecb, vec3_t out )
|
|
{
|
|
out[0] = veca[0] + vecb[0];
|
|
out[1] = veca[1] + vecb[1];
|
|
out[2] = veca[2] + vecb[2];
|
|
}
|
|
|
|
void _VectorCopy( vec3_t in, vec3_t out )
|
|
{
|
|
out[0] = in[0];
|
|
out[1] = in[1];
|
|
out[2] = in[2];
|
|
}
|
|
|
|
void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross )
|
|
{
|
|
cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
|
|
cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
|
|
cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
|
|
}
|
|
|
|
double sqrt( double x );
|
|
|
|
float Length( const vec3_t v )
|
|
{
|
|
int i;
|
|
float length = 0.0f;
|
|
|
|
for( i = 0; i < 3; i++ )
|
|
length += v[i] * v[i];
|
|
length = sqrt( length ); // FIXME
|
|
|
|
return length;
|
|
}
|
|
|
|
float Distance( const vec3_t v1, const vec3_t v2 )
|
|
{
|
|
vec3_t d;
|
|
VectorSubtract( v2, v1, d );
|
|
return Length( d );
|
|
}
|
|
|
|
float VectorNormalize( vec3_t v )
|
|
{
|
|
float length, ilength;
|
|
|
|
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
|
length = sqrt( length ); // FIXME
|
|
|
|
if( length )
|
|
{
|
|
ilength = 1 / length;
|
|
v[0] *= ilength;
|
|
v[1] *= ilength;
|
|
v[2] *= ilength;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
void VectorInverse( vec3_t v )
|
|
{
|
|
v[0] = -v[0];
|
|
v[1] = -v[1];
|
|
v[2] = -v[2];
|
|
}
|
|
|
|
void VectorScale( const vec3_t in, vec_t scale, vec3_t out )
|
|
{
|
|
out[0] = in[0] * scale;
|
|
out[1] = in[1] * scale;
|
|
out[2] = in[2] * scale;
|
|
}
|
|
|
|
void VectorMatrix( vec3_t forward, vec3_t right, vec3_t up )
|
|
{
|
|
vec3_t tmp;
|
|
|
|
if( forward[0] == 0 && forward[1] == 0 )
|
|
{
|
|
right[0] = 1;
|
|
right[1] = 0;
|
|
right[2] = 0;
|
|
up[0] = -forward[2];
|
|
up[1] = 0;
|
|
up[2] = 0;
|
|
return;
|
|
}
|
|
|
|
tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0;
|
|
CrossProduct( forward, tmp, right );
|
|
VectorNormalize( right );
|
|
CrossProduct( right, forward, up );
|
|
VectorNormalize( up );
|
|
}
|
|
|
|
void VectorAngles( const vec3_t forward, vec3_t angles )
|
|
{
|
|
float tmp, yaw, pitch;
|
|
|
|
if( forward[1] == 0 && forward[0] == 0 )
|
|
{
|
|
yaw = 0;
|
|
if( forward[2] > 0 )
|
|
pitch = 90;
|
|
else
|
|
pitch = 270;
|
|
}
|
|
else
|
|
{
|
|
yaw = ( atan2( forward[1], forward[0] ) * 180 / M_PI );
|
|
if( yaw < 0 )
|
|
yaw += 360;
|
|
|
|
tmp = sqrt( forward[0] * forward[0] + forward[1] * forward[1] );
|
|
pitch = ( atan2( forward[2], tmp ) * 180 / M_PI );
|
|
if( pitch < 0 )
|
|
pitch += 360;
|
|
}
|
|
|
|
angles[0] = pitch;
|
|
angles[1] = yaw;
|
|
angles[2] = 0;
|
|
}
|