You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
399 lines
7.6 KiB
399 lines
7.6 KiB
/* |
|
* |
|
* This program is free software; you can redistribute it and/or modify it |
|
* under the terms of the GNU General Public License as published by the |
|
* Free Software Foundation; either version 2 of the License, or (at |
|
* your option) any later version. |
|
* |
|
* This program is distributed in the hope that it will be useful, but |
|
* WITHOUT ANY WARRANTY; without even the implied warranty of |
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
|
* General Public License for more details. |
|
* |
|
* You should have received a copy of the GNU General Public License |
|
* along with this program; if not, write to the Free Software Foundation, |
|
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
|
* |
|
* In addition, as a special exception, the author gives permission to |
|
* link the code of this program with the Half-Life Game Engine ("HL |
|
* Engine") and Modified Game Libraries ("MODs") developed by Valve, |
|
* L.L.C ("Valve"). You must obey the GNU General Public License in all |
|
* respects for all of the code used other than the HL Engine and MODs |
|
* from Valve. If you modify this file, you may extend this exception |
|
* to your version of the file, but you are not obligated to do so. If |
|
* you do not wish to do so, delete this exception statement from your |
|
* version. |
|
* |
|
*/ |
|
|
|
#ifndef VECTOR_H |
|
#define VECTOR_H |
|
#ifdef _WIN32 |
|
#pragma once |
|
#endif |
|
|
|
class Vector2D |
|
{ |
|
public: |
|
vec_t x, y; |
|
Vector2D() : x(0.0), y(0.0) {} |
|
Vector2D(float X, float Y) : x(0.0), y(0.0) |
|
{ |
|
x = X; |
|
y = Y; |
|
} |
|
Vector2D operator+(const Vector2D &v) const |
|
{ |
|
return Vector2D(x + v.x, y + v.y); |
|
} |
|
Vector2D operator-(const Vector2D &v) const |
|
{ |
|
return Vector2D(x - v.x, y - v.y); |
|
} |
|
Vector2D operator*(float fl) const |
|
{ |
|
return Vector2D((vec_t)(x * fl), (vec_t)(y * fl)); |
|
} |
|
Vector2D operator/(float fl) const |
|
{ |
|
return Vector2D((vec_t)(x / fl), (vec_t)(y / fl)); |
|
} |
|
Vector2D operator/=(float fl) const |
|
{ |
|
return Vector2D((vec_t)(x / fl), (vec_t)(y / fl)); |
|
} |
|
|
|
float Length() const |
|
{ |
|
return sqrt((float)(x * x + y * y)); |
|
} |
|
float LengthSquared() const |
|
{ |
|
return (x * x + y * y); |
|
} |
|
operator float*() |
|
{ |
|
return &x; |
|
} |
|
operator const float*() const |
|
{ |
|
return &x; |
|
} |
|
Vector2D Normalize() const |
|
{ |
|
float flLen = Length(); |
|
if (!flLen) |
|
return Vector2D(0, 0); |
|
|
|
flLen = 1 / flLen; |
|
|
|
return Vector2D((vec_t)(x * flLen), (vec_t)(y * flLen)); |
|
} |
|
bool IsLengthLessThan(float length) const |
|
{ |
|
return (LengthSquared() < length * length); |
|
} |
|
bool IsLengthGreaterThan(float length) const |
|
{ |
|
return (LengthSquared() > length * length); |
|
} |
|
float NormalizeInPlace() |
|
{ |
|
float flLen = Length(); |
|
if (flLen > 0.0) |
|
{ |
|
x = (vec_t)(1 / flLen * x); |
|
y = (vec_t)(1 / flLen * y); |
|
} |
|
else |
|
{ |
|
x = 1.0; |
|
y = 0.0; |
|
} |
|
return flLen; |
|
} |
|
bool IsZero(float tolerance = 0.01f) const |
|
{ |
|
return (x > -tolerance && x < tolerance && |
|
y > -tolerance && y < tolerance); |
|
} |
|
}; |
|
|
|
inline float DotProduct(const Vector2D &a, const Vector2D &b) |
|
{ |
|
return (a.x * b.x + a.y * b.y); |
|
} |
|
|
|
inline Vector2D operator*(float fl, const Vector2D &v) |
|
{ |
|
return v * fl; |
|
} |
|
|
|
class Vector |
|
{ |
|
public: |
|
vec_t x, y, z; |
|
Vector() : x(0.0), y(0.0), z(0.0) {} |
|
Vector(float X, float Y, float Z) : x(0.0), y(0.0), z(0.0) |
|
{ |
|
x = X; |
|
y = Y; |
|
z = Z; |
|
} |
|
Vector(const Vector &v) : x(0.0), y(0.0), z(0.0) |
|
{ |
|
x = v.x; |
|
y = v.y; |
|
z = v.z; |
|
} |
|
Vector(const float rgfl[3]) : x(0.0), y(0.0), z(0.0) |
|
{ |
|
x = rgfl[0]; |
|
y = rgfl[1]; |
|
z = rgfl[2]; |
|
} |
|
Vector operator-() const |
|
{ |
|
return Vector(-x, -y, -z); |
|
} |
|
int operator==(const Vector &v) const |
|
{ |
|
return x == v.x && y == v.y && z == v.z; |
|
} |
|
int operator!=(const Vector &v) const |
|
{ |
|
return !(*this == v); |
|
} |
|
Vector operator+(const Vector &v) const |
|
{ |
|
return Vector(x + v.x, y + v.y, z + v.z); |
|
} |
|
Vector operator-(const Vector &v) const |
|
{ |
|
return Vector(x - v.x, y - v.y, z - v.z); |
|
} |
|
Vector operator*(float fl) const |
|
{ |
|
return Vector((vec_t)(x * fl), (vec_t)(y * fl), (vec_t)(z * fl)); |
|
} |
|
Vector operator/(float fl) const |
|
{ |
|
return Vector((vec_t)(x / fl), (vec_t)(y / fl), (vec_t)(z / fl)); |
|
} |
|
Vector operator/=(float fl) const |
|
{ |
|
return Vector((vec_t)(x / fl), (vec_t)(y / fl), (vec_t)(z / fl)); |
|
} |
|
void CopyToArray(float *rgfl) const |
|
{ |
|
rgfl[0] = x; |
|
rgfl[1] = y; |
|
rgfl[2] = z; |
|
} |
|
float Length() const |
|
{ |
|
float x1 = (float)x; |
|
float y1 = (float)y; |
|
float z1 = (float)z; |
|
|
|
return sqrt(x1 * x1 + y1 * y1 + z1 * z1); |
|
|
|
//return sqrt((float)(x * x + y * y + z * z)); |
|
} |
|
float LengthSquared() const |
|
{ |
|
return (x * x + y * y + z * z); |
|
} |
|
operator float*() |
|
{ |
|
return &x; |
|
} |
|
operator const float*() const |
|
{ |
|
return &x; |
|
} |
|
|
|
Vector Normalize() |
|
{ |
|
float flLen = Length(); |
|
if (flLen == 0) |
|
return Vector(0, 0, 1); |
|
|
|
flLen = 1 / flLen; |
|
return Vector(x * flLen, y * flLen, z * flLen); |
|
} |
|
|
|
// for out precision normalize |
|
Vector NormalizePrecision() |
|
{ |
|
return Normalize(); |
|
} |
|
|
|
Vector2D Make2D() const |
|
{ |
|
Vector2D Vec2; |
|
Vec2.x = x; |
|
Vec2.y = y; |
|
return Vec2; |
|
} |
|
float Length2D() const |
|
{ |
|
return sqrt((float)(x * x + y * y)); |
|
} |
|
bool IsLengthLessThan(float length) const |
|
{ |
|
return (LengthSquared() < length * length); |
|
} |
|
bool IsLengthGreaterThan(float length) const |
|
{ |
|
return (LengthSquared() > length * length); |
|
} |
|
|
|
float NormalizeInPlace() |
|
{ |
|
float flLen = Length(); |
|
|
|
if (flLen > 0) |
|
{ |
|
x = (vec_t)(1 / flLen * x); |
|
y = (vec_t)(1 / flLen * y); |
|
z = (vec_t)(1 / flLen * z); |
|
} |
|
else |
|
{ |
|
x = 0; |
|
y = 0; |
|
z = 1; |
|
} |
|
|
|
return flLen; |
|
} |
|
template<typename T> |
|
float NormalizeInPlace() |
|
{ |
|
T flLen = Length(); |
|
|
|
if (flLen > 0) |
|
{ |
|
x = (vec_t)(1 / flLen * x); |
|
y = (vec_t)(1 / flLen * y); |
|
z = (vec_t)(1 / flLen * z); |
|
} |
|
else |
|
{ |
|
x = 0; |
|
y = 0; |
|
z = 1; |
|
} |
|
|
|
return flLen; |
|
} |
|
|
|
bool IsZero(float tolerance = 0.01f) const |
|
{ |
|
return (x > -tolerance && x < tolerance && |
|
y > -tolerance && y < tolerance && |
|
z > -tolerance && z < tolerance); |
|
} |
|
}; |
|
|
|
inline Vector operator*(float fl, const Vector &v) |
|
{ |
|
return v * fl; |
|
} |
|
|
|
inline float DotProduct(const Vector &a, const Vector &b) |
|
{ |
|
return (a.x * b.x + a.y * b.y + a.z * b.z); |
|
} |
|
|
|
inline float DotProduct2D(const Vector &a, const Vector &b) |
|
{ |
|
return (a.x * b.x + a.y * b.y); |
|
} |
|
|
|
inline Vector CrossProduct(const Vector &a, const Vector &b) |
|
{ |
|
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x); |
|
} |
|
|
|
template<class T> |
|
inline void SWAP(T &first, T &second) |
|
{ |
|
T temp = first; |
|
first = second; |
|
second = temp; |
|
} |
|
|
|
template< |
|
typename X, |
|
typename Y, |
|
typename Z, |
|
typename LenType |
|
> |
|
inline LenType LengthSubtract(Vector vecStart, Vector vecDest) |
|
{ |
|
X floatX = (vecDest.x - vecStart.x); |
|
Y floatY = (vecDest.y - vecStart.y); |
|
Z floatZ = (vecDest.z - vecStart.z); |
|
|
|
return sqrt((float)(floatX * floatX + floatY * floatY + floatZ * floatZ)); |
|
} |
|
|
|
template< |
|
typename X, |
|
typename Y, |
|
typename Z, |
|
typename LenType |
|
> |
|
inline Vector NormalizeSubtract(Vector vecStart, Vector vecDest) |
|
{ |
|
Vector dir; |
|
|
|
X floatX = (vecDest.x - vecStart.x); |
|
Y floatY = (vecDest.y - vecStart.y); |
|
Z floatZ = (vecDest.z - vecStart.z); |
|
|
|
LenType flLen = sqrt((float)(floatX * floatX + floatY * floatY + floatZ * floatZ)); |
|
|
|
if (flLen == 0.0) |
|
{ |
|
dir = Vector(0, 0, 1); |
|
} |
|
else |
|
{ |
|
flLen = 1.0 / flLen; |
|
|
|
dir.x = (vec_t)(floatX * flLen); |
|
dir.y = (vec_t)(floatY * flLen); |
|
dir.z = (vec_t)(floatZ * flLen); |
|
} |
|
return dir; |
|
} |
|
|
|
template<typename X, typename Y, typename LenType> |
|
inline Vector NormalizeMulScalar(Vector2D vec, float scalar) |
|
{ |
|
LenType flLen; |
|
X floatX; |
|
Y floatY; |
|
|
|
flLen = (LenType)vec.Length(); |
|
|
|
if (flLen <= 0.0) |
|
{ |
|
floatX = 1; |
|
floatY = 0; |
|
} |
|
else |
|
{ |
|
flLen = 1 / flLen; |
|
|
|
floatX = vec.x * flLen; |
|
floatY = vec.y * flLen; |
|
} |
|
|
|
return Vector((vec_t)(floatX * scalar), (vec_t)(floatY * scalar), 0); |
|
} |
|
|
|
#endif // VECTOR_H
|
|
|