You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1105 lines
27 KiB
1105 lines
27 KiB
#include "bot/bot_common.h" |
|
|
|
// Determine actual path positions |
|
|
|
bool CNavPath::ComputePathPositions() |
|
{ |
|
if (m_segmentCount == 0) |
|
return false; |
|
|
|
// start in first area's center |
|
m_path[0].pos = *m_path[0].area->GetCenter(); |
|
m_path[0].ladder = NULL; |
|
m_path[0].how = NUM_TRAVERSE_TYPES; |
|
|
|
for (int i = 1; i < m_segmentCount; ++i) |
|
{ |
|
const PathSegment *from = &m_path[i - 1]; |
|
PathSegment *to = &m_path[ i ]; |
|
|
|
// walk along the floor to the next area |
|
if (to->how <= GO_WEST) |
|
{ |
|
to->ladder = NULL; |
|
|
|
// compute next point, keeping path as straight as possible |
|
from->area->ComputeClosestPointInPortal(to->area, (NavDirType)to->how, &from->pos, &to->pos); |
|
|
|
// move goal position into the goal area a bit |
|
// how far to "step into" an area - must be less than min area size |
|
const float stepInDist = 5.0f; |
|
AddDirectionVector(&to->pos, (NavDirType)to->how, stepInDist); |
|
|
|
// we need to walk out of "from" area, so keep Z where we can reach it |
|
to->pos.z = from->area->GetZ(&to->pos); |
|
|
|
// if this is a "jump down" connection, we must insert an additional point on the path |
|
if (to->area->IsConnected(from->area, NUM_DIRECTIONS) == false) |
|
{ |
|
// this is a "jump down" link |
|
// compute direction of path just prior to "jump down" |
|
Vector2D dir; |
|
DirectionToVector2D((NavDirType)to->how, &dir); |
|
|
|
// shift top of "jump down" out a bit to "get over the ledge" |
|
const float pushDist = 25.0f; |
|
to->pos.x += pushDist * dir.x; |
|
to->pos.y += pushDist * dir.y; |
|
|
|
// insert a duplicate node to represent the bottom of the fall |
|
if (m_segmentCount < MAX_PATH_SEGMENTS - 1) |
|
{ |
|
// copy nodes down |
|
for (int j = m_segmentCount; j > i; --j) |
|
m_path[j] = m_path[j - 1]; |
|
|
|
// path is one node longer |
|
++m_segmentCount; |
|
|
|
// move index ahead into the new node we just duplicated |
|
++i; |
|
|
|
m_path[i].pos.x = to->pos.x + pushDist * dir.x; |
|
m_path[i].pos.y = to->pos.y + pushDist * dir.y; |
|
|
|
// put this one at the bottom of the fall |
|
m_path[i].pos.z = to->area->GetZ(&m_path[i].pos); |
|
} |
|
} |
|
} |
|
// to get to next area, must go up a ladder |
|
else if (to->how == GO_LADDER_UP) |
|
{ |
|
// find our ladder |
|
const NavLadderList *list = from->area->GetLadderList (LADDER_UP); |
|
int it; |
|
for (it = list->Head (); it != list->InvalidIndex (); it = list->Next (it)) |
|
{ |
|
CNavLadder *ladder = list->Element (it); |
|
|
|
// can't use "behind" area when ascending... |
|
if (ladder->m_topForwardArea == to->area || ladder->m_topLeftArea == to->area || ladder->m_topRightArea == to->area) |
|
{ |
|
to->ladder = ladder; |
|
to->pos = ladder->m_bottom; |
|
AddDirectionVector (&to->pos, ladder->m_dir, 2.0f * HalfHumanWidth); |
|
break; |
|
} |
|
} |
|
|
|
if (it == list->InvalidIndex ()) |
|
{ |
|
//PrintIfWatched( "ERROR: Can't find ladder in path\n" ); |
|
return false; |
|
} |
|
|
|
} |
|
// to get to next area, must go down a ladder |
|
else if (to->how == GO_LADDER_DOWN) |
|
{ |
|
// find our ladder |
|
const NavLadderList *list = from->area->GetLadderList (LADDER_DOWN); |
|
int it; |
|
for (it = list->Head (); it != list->InvalidIndex (); it = list->Next (it)) |
|
{ |
|
CNavLadder *ladder = list->Element (it); |
|
|
|
if (ladder->m_bottomArea == to->area) |
|
{ |
|
to->ladder = ladder; |
|
to->pos = ladder->m_top; |
|
AddDirectionVector (&to->pos, OppositeDirection (ladder->m_dir), 2.0f * HalfHumanWidth); |
|
break; |
|
} |
|
} |
|
|
|
if (it == list->InvalidIndex ()) |
|
{ |
|
//PrintIfWatched( "ERROR: Can't find ladder in path\n" ); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// Return true if position is at the end of the path |
|
|
|
bool CNavPath::IsAtEnd(const Vector &pos) const |
|
{ |
|
if (!IsValid()) |
|
return false; |
|
|
|
const float epsilon = 20.0f; |
|
return (pos - GetEndpoint()).IsLengthLessThan(epsilon); |
|
} |
|
|
|
// Return length of path from start to finish |
|
|
|
float CNavPath::GetLength() const |
|
{ |
|
float length = 0.0f; |
|
for (int i = 1; i < GetSegmentCount(); ++i) |
|
{ |
|
length += (m_path[i].pos - m_path[i - 1].pos).Length(); |
|
} |
|
|
|
return length; |
|
} |
|
|
|
// Return point a given distance along the path - if distance is out of path bounds, point is clamped to start/end |
|
// TODO: Be careful of returning "positions" along one-way drops, ladders, etc. |
|
|
|
NOXREF bool CNavPath::GetPointAlongPath(float distAlong, Vector *pointOnPath) const |
|
{ |
|
if (!IsValid() || pointOnPath == NULL) |
|
return false; |
|
|
|
if (distAlong <= 0.0f) |
|
{ |
|
*pointOnPath = m_path[0].pos; |
|
return true; |
|
} |
|
|
|
float lengthSoFar = 0.0f; |
|
float segmentLength; |
|
Vector dir; |
|
for (int i = 1; i < GetSegmentCount(); ++i) |
|
{ |
|
dir = m_path[i].pos - m_path[i - 1].pos; |
|
segmentLength = dir.Length(); |
|
|
|
if (segmentLength + lengthSoFar >= distAlong) |
|
{ |
|
// desired point is on this segment of the path |
|
float delta = distAlong - lengthSoFar; |
|
float t = delta / segmentLength; |
|
|
|
*pointOnPath = m_path[i].pos + t * dir; |
|
|
|
return true; |
|
} |
|
|
|
lengthSoFar += segmentLength; |
|
} |
|
|
|
*pointOnPath = m_path[ GetSegmentCount() - 1 ].pos; |
|
return true; |
|
} |
|
|
|
// Return the node index closest to the given distance along the path without going over - returns (-1) if error |
|
|
|
int CNavPath::GetSegmentIndexAlongPath(float distAlong) const |
|
{ |
|
if (!IsValid()) |
|
return -1; |
|
|
|
if (distAlong <= 0.0f) |
|
{ |
|
return 0; |
|
} |
|
|
|
float lengthSoFar = 0.0f; |
|
Vector dir; |
|
for (int i = 1; i < GetSegmentCount(); ++i) |
|
{ |
|
lengthSoFar += (m_path[i].pos - m_path[i - 1].pos).Length(); |
|
|
|
if (lengthSoFar > distAlong) |
|
{ |
|
return i - 1; |
|
} |
|
} |
|
|
|
return GetSegmentCount() - 1; |
|
} |
|
|
|
// Compute closest point on path to given point |
|
// NOTE: This does not do line-of-sight tests, so closest point may be thru the floor, etc |
|
|
|
NOXREF bool CNavPath::FindClosestPointOnPath(const Vector *worldPos, int startIndex, int endIndex, Vector *close) const |
|
{ |
|
if (!IsValid() || close == NULL) |
|
return false; |
|
|
|
Vector along, toWorldPos; |
|
Vector pos; |
|
const Vector *from, *to; |
|
float length; |
|
float closeLength; |
|
float closeDistSq = 9999999999.9; |
|
float distSq; |
|
|
|
for (int i = startIndex; i <= endIndex; ++i) |
|
{ |
|
from = &m_path[i - 1].pos; |
|
to = &m_path[i].pos; |
|
|
|
// compute ray along this path segment |
|
along = *to - *from; |
|
|
|
// make it a unit vector along the path |
|
length = along.NormalizeInPlace(); |
|
|
|
// compute vector from start of segment to our point |
|
toWorldPos = *worldPos - *from; |
|
|
|
// find distance of closest point on ray |
|
closeLength = DotProduct(toWorldPos, along); |
|
|
|
// constrain point to be on path segment |
|
if (closeLength <= 0.0f) |
|
pos = *from; |
|
else if (closeLength >= length) |
|
pos = *to; |
|
else |
|
pos = *from + closeLength * along; |
|
|
|
distSq = (pos - *worldPos).LengthSquared(); |
|
|
|
// keep the closest point so far |
|
if (distSq < closeDistSq) |
|
{ |
|
closeDistSq = distSq; |
|
*close = pos; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// Build trivial path when start and goal are in the same nav area |
|
|
|
bool CNavPath::BuildTrivialPath(const Vector *start, const Vector *goal) |
|
{ |
|
m_segmentCount = 0; |
|
|
|
CNavArea *startArea = TheNavAreaGrid.GetNearestNavArea(start); |
|
if (startArea == NULL) |
|
return false; |
|
|
|
CNavArea *goalArea = TheNavAreaGrid.GetNearestNavArea(goal); |
|
if (goalArea == NULL) |
|
return false; |
|
|
|
m_segmentCount = 2; |
|
|
|
m_path[0].area = startArea; |
|
m_path[0].pos.x = start->x; |
|
m_path[0].pos.y = start->y; |
|
m_path[0].pos.z = startArea->GetZ(start); |
|
m_path[0].ladder = NULL; |
|
m_path[0].how = NUM_TRAVERSE_TYPES; |
|
|
|
m_path[1].area = goalArea; |
|
m_path[1].pos.x = goal->x; |
|
m_path[1].pos.y = goal->y; |
|
m_path[1].pos.z = goalArea->GetZ(goal); |
|
m_path[1].ladder = NULL; |
|
m_path[1].how = NUM_TRAVERSE_TYPES; |
|
|
|
return true; |
|
} |
|
|
|
// Draw the path for debugging |
|
|
|
void CNavPath::Draw() |
|
{ |
|
if (!IsValid()) |
|
return; |
|
|
|
for (int i = 1; i < m_segmentCount; ++i) |
|
{ |
|
UTIL_DrawBeamPoints(m_path[i - 1].pos + Vector(0, 0, HalfHumanHeight), m_path[i].pos + Vector(0, 0, HalfHumanHeight), 2, 255, 75, 0); |
|
} |
|
} |
|
|
|
// Check line of sight from 'anchor' node on path to subsequent nodes until |
|
// we find a node that can't been seen from 'anchor' |
|
|
|
int CNavPath::FindNextOccludedNode(int anchor_) |
|
{ |
|
int lastVisible = anchor_; |
|
for (int i = anchor_ + 1; i < m_segmentCount; ++i) |
|
{ |
|
// don't remove ladder nodes |
|
if (m_path[i].ladder) |
|
return i; |
|
|
|
if (!IsWalkableTraceLineClear(m_path[ anchor_ ].pos, m_path[ i ].pos)) |
|
{ |
|
// cant see this node from anchor node |
|
return i; |
|
} |
|
|
|
Vector anchorPlusHalf = m_path[ anchor_ ].pos + Vector(0, 0, HalfHumanHeight); |
|
Vector iPlusHalf = m_path[ i ].pos + Vector(0, 0, HalfHumanHeight); |
|
if (!IsWalkableTraceLineClear(anchorPlusHalf, iPlusHalf)) |
|
{ |
|
// cant see this node from anchor node |
|
return i; |
|
} |
|
|
|
Vector anchorPlusFull = m_path[ anchor_ ].pos + Vector(0, 0, HumanHeight); |
|
Vector iPlusFull = m_path[ i ].pos + Vector(0, 0, HumanHeight); |
|
if (!IsWalkableTraceLineClear(anchorPlusFull, iPlusFull)) |
|
{ |
|
// cant see this node from anchor node |
|
return i; |
|
} |
|
} |
|
|
|
return m_segmentCount; |
|
} |
|
|
|
// Smooth out path, removing redundant nodes |
|
|
|
void CNavPath::Optimize() |
|
{ |
|
// DONT USE THIS: Optimizing the path results in cutting thru obstacles |
|
#if 0 |
|
if (m_segmentCount < 3) |
|
return; |
|
|
|
int anchor_ = 0; |
|
while (anchor_ < m_segmentCount) |
|
{ |
|
int occluded = FindNextOccludedNode(anchor_); |
|
int nextAnchor = occluded - 1; |
|
|
|
if (nextAnchor > anchor_) |
|
{ |
|
// remove redundant nodes between anchor and nextAnchor |
|
int removeCount = nextAnchor - anchor_ - 1; |
|
if (removeCount > 0) |
|
{ |
|
for (int i = nextAnchor; i < m_segmentCount; ++i) |
|
{ |
|
m_path[i - removeCount] = m_path[i]; |
|
} |
|
m_segmentCount -= removeCount; |
|
} |
|
} |
|
|
|
++anchor_; |
|
} |
|
#endif |
|
} |
|
|
|
CNavPathFollower::CNavPathFollower() |
|
{ |
|
m_improv = NULL; |
|
m_path = NULL; |
|
|
|
m_segmentIndex = 0; |
|
m_isLadderStarted = false; |
|
|
|
m_isDebug = false; |
|
} |
|
|
|
void CNavPathFollower::Reset() |
|
{ |
|
m_segmentIndex = 1; |
|
m_isLadderStarted = false; |
|
|
|
m_stuckMonitor.Reset(); |
|
} |
|
|
|
// Move improv along path |
|
|
|
void CNavPathFollower::Update(float deltaT, bool avoidObstacles) |
|
{ |
|
if (m_path == NULL || m_path->IsValid() == false) |
|
return; |
|
|
|
const CNavPath::PathSegment *node = (*m_path)[m_segmentIndex]; |
|
|
|
if (node == NULL) |
|
{ |
|
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_INVALID_PATH); |
|
m_path->Invalidate(); |
|
return; |
|
} |
|
|
|
// handle ladders |
|
if (node->ladder) |
|
{ |
|
const Vector *approachPos = NULL; |
|
const Vector *departPos = NULL; |
|
|
|
if (m_segmentIndex) |
|
approachPos = &(*m_path)[m_segmentIndex - 1]->pos; |
|
|
|
if (m_segmentIndex < m_path->GetSegmentCount() - 1) |
|
departPos = &(*m_path)[m_segmentIndex + 1]->pos; |
|
|
|
if (!m_isLadderStarted) |
|
{ |
|
// set up ladder movement |
|
m_improv->StartLadder(node->ladder, node->how, approachPos, departPos); |
|
m_isLadderStarted = true; |
|
} |
|
|
|
// move improv along ladder |
|
if (m_improv->TraverseLadder(node->ladder, node->how, approachPos, departPos, deltaT)) |
|
{ |
|
// completed ladder |
|
++m_segmentIndex; |
|
} |
|
|
|
return; |
|
} |
|
|
|
// reset ladder init flag |
|
m_isLadderStarted = false; |
|
|
|
// Check if we reached the end of the path |
|
const float closeRange = 20.0f; |
|
if ((m_improv->GetFeet() - node->pos).IsLengthLessThan(closeRange)) |
|
{ |
|
++m_segmentIndex; |
|
|
|
if (m_segmentIndex >= m_path->GetSegmentCount()) |
|
{ |
|
m_improv->OnMoveToSuccess(m_path->GetEndpoint()); |
|
m_path->Invalidate(); |
|
return; |
|
} |
|
} |
|
|
|
m_goal = node->pos; |
|
|
|
const float aheadRange = 300.0f; |
|
m_segmentIndex = FindPathPoint(aheadRange, &m_goal, &m_behindIndex); |
|
if (m_segmentIndex >= m_path->GetSegmentCount()) |
|
m_segmentIndex = m_path->GetSegmentCount() - 1; |
|
|
|
bool isApproachingJumpArea = false; |
|
|
|
// Crouching |
|
if (!m_improv->IsUsingLadder()) |
|
{ |
|
// because hostage crouching is not really supported by the engine, |
|
// if we are standing in a crouch area, we must crouch to avoid collisions |
|
if (m_improv->GetLastKnownArea() && (m_improv->GetLastKnownArea()->GetAttributes() & NAV_CROUCH) && !(m_improv->GetLastKnownArea()->GetAttributes() & NAV_JUMP)) |
|
{ |
|
m_improv->Crouch(); |
|
} |
|
|
|
// if we are approaching a crouch area, crouch |
|
// if there are no crouch areas coming up, stand |
|
const float crouchRange = 50.0f; |
|
bool didCrouch = false; |
|
for (int i = m_segmentIndex; i < m_path->GetSegmentCount(); ++i) |
|
{ |
|
const CNavArea *to = (*m_path)[i]->area; |
|
|
|
// if there is a jump area on the way to the crouch area, don't crouch as it messes up the jump |
|
if (to->GetAttributes() & NAV_JUMP) |
|
{ |
|
isApproachingJumpArea = true; |
|
break; |
|
} |
|
|
|
Vector close; |
|
to->GetClosestPointOnArea(&m_improv->GetCentroid(), &close); |
|
|
|
if ((close - m_improv->GetFeet()).Make2D().IsLengthGreaterThan(crouchRange)) |
|
break; |
|
|
|
if (to->GetAttributes() & NAV_CROUCH) |
|
{ |
|
m_improv->Crouch(); |
|
didCrouch = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!didCrouch && !m_improv->IsJumping()) |
|
{ |
|
// no crouch areas coming up |
|
m_improv->StandUp(); |
|
} |
|
} // end crouching logic |
|
|
|
if (m_isDebug) |
|
{ |
|
m_path->Draw(); |
|
UTIL_DrawBeamPoints(m_improv->GetCentroid(), m_goal + Vector(0, 0, StepHeight), 1, 255, 0, 255); |
|
UTIL_DrawBeamPoints(m_goal + Vector(0, 0, StepHeight), m_improv->GetCentroid(), 1, 255, 0, 255); |
|
} |
|
|
|
// check if improv becomes stuck |
|
m_stuckMonitor.Update(m_improv); |
|
|
|
// if improv has been stuck for too long, give up |
|
const float giveUpTime = 2.0f; |
|
if (m_stuckMonitor.GetDuration() > giveUpTime) |
|
{ |
|
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_STUCK); |
|
m_path->Invalidate(); |
|
return; |
|
} |
|
|
|
// if our goal is high above us, we must have fallen |
|
if (m_goal.z - m_improv->GetFeet().z > JumpCrouchHeight) |
|
{ |
|
const float closeRange = 75.0f; |
|
Vector2D to(m_improv->GetFeet().x - m_goal.x, m_improv->GetFeet().y - m_goal.y); |
|
|
|
if (to.IsLengthLessThan(closeRange)) |
|
{ |
|
// we can't reach the goal position |
|
// check if we can reach the next node, in case this was a "jump down" situation |
|
const CNavPath::PathSegment *nextNode = (*m_path)[m_behindIndex + 1]; |
|
if (m_behindIndex >= 0 && nextNode) |
|
{ |
|
if (nextNode->pos.z - m_improv->GetFeet().z > JumpCrouchHeight) |
|
{ |
|
// the next node is too high, too - we really did fall of the path |
|
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_FELL_OFF); |
|
m_path->Invalidate(); |
|
return; |
|
} |
|
} |
|
else |
|
{ |
|
// fell trying to get to the last node in the path |
|
m_improv->OnMoveToFailure(m_path->GetEndpoint(), IImprovEvent::FAIL_FELL_OFF); |
|
m_path->Invalidate(); |
|
return; |
|
} |
|
} |
|
} |
|
|
|
// avoid small obstacles |
|
if (avoidObstacles && !isApproachingJumpArea && !m_improv->IsJumping() && m_segmentIndex < m_path->GetSegmentCount() - 1) |
|
{ |
|
FeelerReflexAdjustment(&m_goal); |
|
|
|
// currently, this is only used for hostages, and their collision physics stinks |
|
// do more feeler checks to avoid short obstacles |
|
/* |
|
const float inc = 0.25f; |
|
for (float t = 0.5f; t < 1.0f; t += inc) |
|
{ |
|
FeelerReflexAdjustment(&m_goal, t * StepHeight); |
|
} |
|
*/ |
|
} |
|
|
|
// move improv along path |
|
m_improv->TrackPath(m_goal, deltaT); |
|
} |
|
|
|
// Return the closest point to our current position on our current path |
|
// If "local" is true, only check the portion of the path surrounding m_pathIndex |
|
|
|
int CNavPathFollower::FindOurPositionOnPath(Vector *close, bool local) const |
|
{ |
|
Vector along, toFeet; |
|
Vector feet = m_improv->GetFeet(); |
|
Vector eyes = m_improv->GetEyes(); |
|
Vector pos; |
|
const Vector *from, *to; |
|
float length; |
|
float closeLength; |
|
float closeDistSq = 1.0e10; |
|
int closeIndex = -1; |
|
float distSq; |
|
int start, end; |
|
|
|
if (!m_path->IsValid()) |
|
return -1; |
|
|
|
if (local) |
|
{ |
|
start = m_segmentIndex - 3; |
|
if (start < 1) |
|
start = 1; |
|
|
|
end = m_segmentIndex + 3; |
|
if (end > m_path->GetSegmentCount()) |
|
end = m_path->GetSegmentCount(); |
|
} |
|
else |
|
{ |
|
start = 1; |
|
end = m_path->GetSegmentCount(); |
|
} |
|
|
|
for (int i = start; i < end; ++i) |
|
{ |
|
from = &(*m_path)[i - 1]->pos; |
|
to = &(*m_path)[i]->pos; |
|
|
|
// compute ray along this path segment |
|
along = *to - *from; |
|
|
|
// make it a unit vector along the path |
|
length = along.NormalizeInPlace(); |
|
|
|
// compute vector from start of segment to our point |
|
toFeet = feet - *from; |
|
|
|
// find distance of closest point on ray |
|
closeLength = DotProduct(toFeet, along); |
|
|
|
// constrain point to be on path segment |
|
if (closeLength <= 0.0f) |
|
pos = *from; |
|
else if (closeLength >= length) |
|
pos = *to; |
|
else |
|
pos = *from + closeLength * along; |
|
|
|
distSq = (pos - feet).LengthSquared(); |
|
|
|
// keep the closest point so far |
|
if (distSq < closeDistSq) |
|
{ |
|
// don't use points we cant see |
|
Vector probe = pos + Vector(0, 0, HalfHumanHeight); |
|
if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_DOORS | WALK_THRU_BREAKABLES)) |
|
continue; |
|
|
|
// don't use points we cant reach |
|
//if (!IsStraightLinePathWalkable(&pos)) |
|
// continue; |
|
|
|
closeDistSq = distSq; |
|
if (close) |
|
*close = pos; |
|
closeIndex = i - 1; |
|
} |
|
} |
|
|
|
return closeIndex; |
|
} |
|
|
|
// Compute a point a fixed distance ahead along our path |
|
// Returns path index just after point |
|
|
|
int CNavPathFollower::FindPathPoint(float aheadRange, Vector *point, int *prevIndex) |
|
{ |
|
// find path index just past aheadRange |
|
int afterIndex; |
|
|
|
// finds the closest point on local area of path, and returns the path index just prior to it |
|
Vector close; |
|
int startIndex = FindOurPositionOnPath(&close, true); |
|
|
|
if (prevIndex) |
|
*prevIndex = startIndex; |
|
|
|
if (startIndex <= 0) |
|
{ |
|
// went off the end of the path |
|
// or next point in path is unwalkable (ie: jump-down) |
|
// keep same point |
|
return m_segmentIndex; |
|
} |
|
|
|
// if we are crouching, just follow the path exactly |
|
if (m_improv->IsCrouching()) |
|
{ |
|
// we want to move to the immediately next point along the path from where we are now |
|
int index = startIndex + 1; |
|
if (index >= m_path->GetSegmentCount()) |
|
index = m_path->GetSegmentCount() - 1; |
|
|
|
*point = (*m_path)[index]->pos; |
|
|
|
// if we are very close to the next point in the path, skip ahead to the next one to avoid wiggling |
|
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc |
|
const float closeEpsilon = 20.0f; |
|
while ((*point - close).Make2D().IsLengthLessThan(closeEpsilon)) |
|
{ |
|
++index; |
|
|
|
if (index >= m_path->GetSegmentCount()) |
|
{ |
|
index = m_path->GetSegmentCount() - 1; |
|
break; |
|
} |
|
|
|
*point = (*m_path)[index]->pos; |
|
} |
|
|
|
return index; |
|
} |
|
|
|
// make sure we use a node a minimum distance ahead of us, to avoid wiggling |
|
while (startIndex < m_path->GetSegmentCount() - 1) |
|
{ |
|
Vector pos = (*m_path)[startIndex + 1]->pos; |
|
|
|
// we must do a 2D check here, in case the goal point is floating in space due to jump down, etc |
|
const float closeEpsilon = 20.0f; |
|
if ((pos - close).Make2D().IsLengthLessThan(closeEpsilon)) |
|
{ |
|
++startIndex; |
|
} |
|
else |
|
{ |
|
break; |
|
} |
|
} |
|
|
|
// if we hit a ladder or jump area, must stop (dont use ladder behind us) |
|
if (startIndex > m_segmentIndex && startIndex < m_path->GetSegmentCount() && ((*m_path)[startIndex]->ladder || ((*m_path)[startIndex]->area->GetAttributes() & NAV_JUMP))) |
|
{ |
|
*point = (*m_path)[startIndex]->pos; |
|
return startIndex; |
|
} |
|
|
|
// we need the point just *ahead* of us |
|
++startIndex; |
|
if (startIndex >= m_path->GetSegmentCount()) |
|
startIndex = m_path->GetSegmentCount() - 1; |
|
|
|
// if we hit a ladder or jump area, must stop |
|
if (startIndex < m_path->GetSegmentCount() && ((*m_path)[startIndex]->ladder || ((*m_path)[startIndex]->area->GetAttributes() & NAV_JUMP))) |
|
{ |
|
*point = (*m_path)[startIndex]->pos; |
|
return startIndex; |
|
} |
|
|
|
// note direction of path segment we are standing on |
|
Vector initDir = (*m_path)[startIndex]->pos - (*m_path)[startIndex - 1]->pos; |
|
initDir.NormalizeInPlace(); |
|
|
|
Vector feet = m_improv->GetFeet(); |
|
Vector eyes = m_improv->GetEyes(); |
|
float rangeSoFar = 0; |
|
|
|
// this flag is true if our ahead point is visible |
|
bool visible = true; |
|
|
|
Vector prevDir = initDir; |
|
|
|
// step along the path until we pass aheadRange |
|
bool isCorner = false; |
|
int i; |
|
for (i = startIndex; i < m_path->GetSegmentCount(); ++i) |
|
{ |
|
Vector pos = (*m_path)[i]->pos; |
|
Vector to = pos - (*m_path)[i - 1]->pos; |
|
Vector dir = to.Normalize(); |
|
|
|
// don't allow path to double-back from our starting direction (going upstairs, down curved passages, etc) |
|
if (DotProduct(dir, initDir) < 0.0f) // -0.25f |
|
{ |
|
--i; |
|
break; |
|
} |
|
|
|
// if the path turns a corner, we want to move towards the corner, not into the wall/stairs/etc |
|
if (DotProduct(dir, prevDir) < 0.5f) |
|
{ |
|
isCorner = true; |
|
--i; |
|
break; |
|
} |
|
prevDir = dir; |
|
|
|
// don't use points we cant see |
|
Vector probe = pos + Vector(0, 0, HalfHumanHeight); |
|
if (!IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES)) |
|
{ |
|
// presumably, the previous point is visible, so we will interpolate |
|
visible = false; |
|
break; |
|
} |
|
|
|
// if we encounter a ladder or jump area, we must stop |
|
if (i < m_path->GetSegmentCount() && ((*m_path)[i]->ladder || (*m_path)[i]->area->GetAttributes() & NAV_JUMP)) |
|
break; |
|
|
|
// Check straight-line path from our current position to this position |
|
// Test for un-jumpable height change, or unrecoverable fall |
|
//if (!IsStraightLinePathWalkable(&pos)) |
|
//{ |
|
// --i; |
|
// break; |
|
//} |
|
|
|
Vector along = (i == startIndex) ? (pos - feet) : (pos - (*m_path)[i - 1]->pos); |
|
rangeSoFar += along.Length2D(); |
|
|
|
// stop if we have gone farther than aheadRange |
|
if (rangeSoFar >= aheadRange) |
|
break; |
|
} |
|
|
|
if (i < startIndex) |
|
afterIndex = startIndex; |
|
else if (i < m_path->GetSegmentCount()) |
|
afterIndex = i; |
|
else |
|
afterIndex = m_path->GetSegmentCount() - 1; |
|
|
|
// compute point on the path at aheadRange |
|
if (afterIndex == 0) |
|
{ |
|
*point = (*m_path)[0]->pos; |
|
} |
|
else |
|
{ |
|
// interpolate point along path segment |
|
const Vector *afterPoint = &(*m_path)[afterIndex]->pos; |
|
const Vector *beforePoint = &(*m_path)[afterIndex - 1]->pos; |
|
|
|
Vector to = *afterPoint - *beforePoint; |
|
float length = to.Length2D(); |
|
|
|
float t = 1.0f - ((rangeSoFar - aheadRange) / length); |
|
|
|
if (t < 0.0f) |
|
t = 0.0f; |
|
else if (t > 1.0f) |
|
t = 1.0f; |
|
|
|
*point = *beforePoint + t * to; |
|
|
|
// if afterPoint wasn't visible, slide point backwards towards beforePoint until it is |
|
if (!visible) |
|
{ |
|
const float sightStepSize = 25.0f; |
|
float dt = sightStepSize / length; |
|
|
|
Vector probe = *point + Vector(0, 0, HalfHumanHeight); |
|
while (t > 0.0f && !IsWalkableTraceLineClear(eyes, probe, WALK_THRU_BREAKABLES)) |
|
{ |
|
t -= dt; |
|
*point = *beforePoint + t * to; |
|
} |
|
|
|
if (t <= 0.0f) |
|
*point = *beforePoint; |
|
} |
|
} |
|
|
|
// if position found is too close to us, or behind us, force it farther down the path so we don't stop and wiggle |
|
if (!isCorner) |
|
{ |
|
const float epsilon = 50.0f; |
|
Vector2D toPoint; |
|
Vector2D centroid(m_improv->GetCentroid().x, m_improv->GetCentroid().y); |
|
|
|
toPoint.x = point->x - centroid.x; |
|
toPoint.y = point->y - centroid.y; |
|
|
|
if (DotProduct(toPoint, initDir.Make2D()) < 0.0f || toPoint.IsLengthLessThan(epsilon)) |
|
{ |
|
int i; |
|
for (i = startIndex; i < m_path->GetSegmentCount(); ++i) |
|
{ |
|
toPoint.x = (*m_path)[i]->pos.x - centroid.x; |
|
toPoint.y = (*m_path)[i]->pos.y - centroid.y; |
|
if ((*m_path)[i]->ladder || ((*m_path)[i]->area->GetAttributes() & NAV_JUMP) || toPoint.IsLengthGreaterThan(epsilon)) |
|
{ |
|
*point = (*m_path)[i]->pos; |
|
startIndex = i; |
|
break; |
|
} |
|
} |
|
|
|
if (i == m_path->GetSegmentCount()) |
|
{ |
|
*point = m_path->GetEndpoint(); |
|
startIndex = m_path->GetSegmentCount() - 1; |
|
} |
|
} |
|
} |
|
|
|
// m_pathIndex should always be the next point on the path, even if we're not moving directly towards it |
|
if (startIndex < m_path->GetSegmentCount()) |
|
return startIndex; |
|
|
|
return m_path->GetSegmentCount() - 1; |
|
} |
|
|
|
// Do reflex avoidance movements if our "feelers" are touched |
|
// TODO: Parameterize feeler spacing |
|
|
|
void CNavPathFollower::FeelerReflexAdjustment(Vector *goalPosition, float height) |
|
{ |
|
// if we are in a "precise" area, do not do feeler adjustments |
|
if (m_improv->GetLastKnownArea() && (m_improv->GetLastKnownArea()->GetAttributes() & NAV_PRECISE)) |
|
return; |
|
|
|
Vector dir(BotCOS(m_improv->GetMoveAngle()), BotSIN(m_improv->GetMoveAngle()), 0.0f); |
|
dir.z = 0.0f; |
|
dir.NormalizeInPlace(); |
|
|
|
Vector lat(-dir.y, dir.x, 0.0f); |
|
|
|
const float feelerOffset = (m_improv->IsCrouching()) ? 20.0f : 25.0f; // 15, 20 |
|
const float feelerLengthRun = 50.0f; // 100 - too long for tight hallways (cs_747) |
|
const float feelerLengthWalk = 30.0f; |
|
|
|
// if obstacle is lower than StepHeight, we'll walk right over it |
|
const float feelerHeight = (height > 0.0f) ? height : StepHeight + 0.1f; |
|
float feelerLength = (m_improv->IsRunning()) ? feelerLengthRun : feelerLengthWalk; |
|
|
|
feelerLength = (m_improv->IsCrouching()) ? 20.0f : feelerLength; |
|
|
|
// Feelers must follow floor slope |
|
float ground; |
|
Vector normal; |
|
if (m_improv->GetSimpleGroundHeightWithFloor(&m_improv->GetEyes(), &ground, &normal) == false) |
|
return; |
|
|
|
// get forward vector along floor |
|
dir = CrossProduct(lat, normal); |
|
|
|
// correct the sideways vector |
|
lat = CrossProduct(dir, normal); |
|
|
|
Vector feet = m_improv->GetFeet(); |
|
feet.z += feelerHeight; |
|
|
|
Vector from = feet + feelerOffset * lat; |
|
Vector to = from + feelerLength * dir; |
|
|
|
bool leftClear = IsWalkableTraceLineClear(from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES); |
|
|
|
// draw debug beams |
|
if (m_isDebug) |
|
{ |
|
if (leftClear) |
|
UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0); |
|
else |
|
UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0); |
|
} |
|
|
|
from = feet - feelerOffset * lat; |
|
to = from + feelerLength * dir; |
|
|
|
bool rightClear = IsWalkableTraceLineClear(from, to, WALK_THRU_DOORS | WALK_THRU_BREAKABLES); |
|
|
|
// draw debug beams |
|
if (m_isDebug) |
|
{ |
|
if (rightClear) |
|
UTIL_DrawBeamPoints(from, to, 1, 0, 255, 0); |
|
else |
|
UTIL_DrawBeamPoints(from, to, 1, 255, 0, 0); |
|
} |
|
|
|
const float avoidRange = (m_improv->IsCrouching()) ? 150.0f : 300.0f; |
|
|
|
if (!rightClear) |
|
{ |
|
if (leftClear) |
|
{ |
|
// right hit, left clear - veer left |
|
*goalPosition = *goalPosition + avoidRange * lat; |
|
//*goalPosition = m_improv->GetFeet() + avoidRange * lat; |
|
//m_improv->StrafeLeft(); |
|
} |
|
} |
|
else if (!leftClear) |
|
{ |
|
// right clear, left hit - veer right |
|
*goalPosition = *goalPosition - avoidRange * lat; |
|
//*goalPosition = m_improv->GetFeet() - avoidRange * lat; |
|
//m_improv->StrafeRight(); |
|
} |
|
} |
|
|
|
// Reset the stuck-checker |
|
|
|
CStuckMonitor::CStuckMonitor() |
|
{ |
|
m_isStuck = false; |
|
m_avgVelIndex = 0; |
|
m_avgVelCount = 0; |
|
} |
|
|
|
// Reset the stuck-checker |
|
|
|
void CStuckMonitor::Reset() |
|
{ |
|
m_isStuck = false; |
|
m_avgVelIndex = 0; |
|
m_avgVelCount = 0; |
|
} |
|
|
|
// Test if the improv has become stuck |
|
|
|
void CStuckMonitor::Update(CImprov *improv) |
|
{ |
|
if (m_isStuck) |
|
{ |
|
// improv is stuck - see if it has moved far enough to be considered unstuck |
|
const float unstuckRange = 75.0f; |
|
if ((improv->GetCentroid() - m_stuckSpot).IsLengthGreaterThan(unstuckRange)) |
|
{ |
|
// no longer stuck |
|
Reset(); |
|
//PrintIfWatched( "UN-STUCK\n" ); |
|
} |
|
} |
|
else |
|
{ |
|
// check if improv has become stuck |
|
|
|
// compute average velocity over a short period (for stuck check) |
|
Vector vel = improv->GetCentroid() - m_lastCentroid; |
|
|
|
// if we are jumping, ignore Z |
|
//if (improv->IsJumping()) |
|
// vel.z = 0.0f; |
|
|
|
// ignore Z unless we are on a ladder (which is only Z) |
|
if (!improv->IsUsingLadder()) |
|
vel.z = 0.0f; |
|
|
|
// cannot be Length2D, or will break ladder movement (they are only Z) |
|
float moveDist = vel.Length(); |
|
|
|
float deltaT = gpGlobals->time - m_lastTime; |
|
if (deltaT <= 0.0f) |
|
return; |
|
|
|
m_lastTime = gpGlobals->time; |
|
|
|
// compute current velocity |
|
m_avgVel[m_avgVelIndex++] = moveDist / deltaT; |
|
|
|
if (m_avgVelIndex == MAX_VEL_SAMPLES) |
|
m_avgVelIndex = 0; |
|
|
|
if (m_avgVelCount < MAX_VEL_SAMPLES) |
|
{ |
|
++m_avgVelCount; |
|
} |
|
else |
|
{ |
|
// we have enough samples to know if we're stuck |
|
|
|
float avgVel = 0.0f; |
|
for (int t = 0; t < m_avgVelCount; ++t) |
|
avgVel += m_avgVel[t]; |
|
|
|
avgVel /= m_avgVelCount; |
|
|
|
// cannot make this velocity too high, or actors will get "stuck" when going down ladders |
|
float stuckVel = (improv->IsUsingLadder()) ? 10.0f : 20.0f; |
|
|
|
if (avgVel < stuckVel) |
|
{ |
|
// note when and where we initially become stuck |
|
m_stuckTimer.Start(); |
|
m_stuckSpot = improv->GetCentroid(); |
|
m_isStuck = true; |
|
} |
|
} |
|
} |
|
|
|
// always need to track this |
|
m_lastCentroid = improv->GetCentroid(); |
|
}
|
|
|