/*** * * Copyright (c) 1996-2002, Valve LLC. All rights reserved. * * This product contains software technology licensed from Id * Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc. * All Rights Reserved. * * This source code contains proprietary and confidential information of * Valve LLC and its suppliers. Access to this code is restricted to * persons who have executed a written SDK license with Valve. Any access, * use or distribution of this code by or to any unlicensed person is illegal. * ****/ //========================================================= // nodes.cpp - AI node tree stuff. //========================================================= #include #include #include "extdll.h" #include "util.h" #include "cbase.h" #include "monsters.h" #include "nodes.h" #include "nodes_compat.h" #include "animation.h" #include "doors.h" #define HULL_STEP_SIZE 16// how far the test hull moves on each step #define NODE_HEIGHT 8 // how high to lift nodes off the ground after we drop them all (make stair/ramp mapping easier) // to help eliminate node clutter by level designers, this is used to cap how many other nodes // any given node is allowed to 'see' in the first stage of graph creation "LinkVisibleNodes()". #define MAX_NODE_INITIAL_LINKS 128 #define MAX_NODES 1024 extern DLL_GLOBAL edict_t *g_pBodyQueueHead; Vector VecBModelOrigin( entvars_t *pevBModel ); CGraph WorldGraph; LINK_ENTITY_TO_CLASS( info_node, CNodeEnt ) LINK_ENTITY_TO_CLASS( info_node_air, CNodeEnt ) #if !defined _WIN32 #include #include #define CreateDirectoryA(p, n) mkdir(p, 0777) #endif //========================================================= // CGraph - InitGraph - prepares the graph for use. Frees any // memory currently in use by the world graph, NULLs // all pointers, and zeros the node count. //========================================================= void CGraph::InitGraph( void ) { // Make the graph unavailable // m_fGraphPresent = FALSE; m_fGraphPointersSet = FALSE; m_fRoutingComplete = FALSE; // Free the link pool // if( m_pLinkPool ) { free( m_pLinkPool ); m_pLinkPool = NULL; } // Free the node info // if( m_pNodes ) { free( m_pNodes ); m_pNodes = NULL; } if( m_di ) { free( m_di ); m_di = NULL; } // Free the routing info. // if( m_pRouteInfo ) { free( m_pRouteInfo ); m_pRouteInfo = NULL; } if( m_pHashLinks ) { free( m_pHashLinks ); m_pHashLinks = NULL; } // Zero node and link counts // m_cNodes = 0; m_cLinks = 0; m_nRouteInfo = 0; m_iLastActiveIdleSearch = 0; m_iLastCoverSearch = 0; } //========================================================= // CGraph - AllocNodes - temporary function that mallocs a // reasonable number of nodes so we can build the path which // will be saved to disk. //========================================================= int CGraph::AllocNodes( void ) { // malloc all of the nodes WorldGraph.m_pNodes = (CNode *)calloc( sizeof(CNode), MAX_NODES ); // could not malloc space for all the nodes! if( !WorldGraph.m_pNodes ) { ALERT( at_aiconsole, "**ERROR**\nCouldn't malloc %d nodes!\n", WorldGraph.m_cNodes ); return FALSE; } return TRUE; } //========================================================= // CGraph - LinkEntForLink - sometimes the ent that blocks // a path is a usable door, in which case the monster just // needs to face the door and fire it. In other cases, the // monster needs to operate a button or lever to get the // door to open. This function will return a pointer to the // button if the monster needs to hit a button to open the // door, or returns a pointer to the door if the monster // need only use the door. // // pNode is the node the monster will be standing on when it // will need to stop and trigger the ent. //========================================================= entvars_t *CGraph::LinkEntForLink( CLink *pLink, CNode *pNode ) { CBaseEntity *pSearch; CBaseEntity *pTrigger; entvars_t *pevTrigger; entvars_t *pevLinkEnt; TraceResult tr; pevLinkEnt = pLink->m_pLinkEnt; if( !pevLinkEnt ) return NULL; pSearch = NULL;// start search at the top of the ent list. if( FClassnameIs( pevLinkEnt, "func_door" ) || FClassnameIs( pevLinkEnt, "func_door_rotating" ) ) { ///!!!UNDONE - check for TOGGLE or STAY open doors here. If a door is in the way, and is // TOGGLE or STAY OPEN, even monsters that can't open doors can go that way. if( ( pevLinkEnt->spawnflags & SF_DOOR_USE_ONLY ) ) { // door is use only, so the door is all the monster has to worry about return pevLinkEnt; } while( 1 ) { pTrigger = UTIL_FindEntityByTarget ( pSearch, STRING( pevLinkEnt->targetname ) );// find the button or trigger if ( !pTrigger ) {// no trigger found // right now this is a problem among auto-open doors, or any door that opens through the use // of a trigger brush. Trigger brushes have no models, and don't show up in searches. Just allow // monsters to open these sorts of doors for now. return pevLinkEnt; } pSearch = pTrigger; pevTrigger = pTrigger->pev; if( FClassnameIs( pevTrigger, "func_button" ) || FClassnameIs( pevTrigger, "func_rot_button" ) ) { // only buttons are handled right now. // trace from the node to the trigger, make sure it's one we can see from the node. // !!!HACKHACK Use bodyqueue here cause there are no ents we really wish to ignore! UTIL_TraceLine( pNode->m_vecOrigin, VecBModelOrigin( pevTrigger ), ignore_monsters, g_pBodyQueueHead, &tr ); if( VARS(tr.pHit) == pevTrigger ) { // good to go! return VARS( tr.pHit ); } } } } else { ALERT( at_aiconsole, "Unsupported PathEnt:\n'%s'\n", STRING( pevLinkEnt->classname ) ); return NULL; } } //========================================================= // CGraph - HandleLinkEnt - a brush ent is between two // nodes that would otherwise be able to see each other. // Given the monster's capability, determine whether // or not the monster can go this way. //========================================================= int CGraph::HandleLinkEnt( int iNode, entvars_t *pevLinkEnt, int afCapMask, NODEQUERY queryType ) { edict_t *pentWorld; //edict_t *pentWorld; CBaseEntity *pDoor; TraceResult tr; if( !m_fGraphPresent || !m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available ALERT( at_aiconsole, "Graph not ready!\n" ); return FALSE; } if( FNullEnt( pevLinkEnt ) ) { ALERT( at_aiconsole, "dead path ent!\n" ); return TRUE; } //pentWorld = NULL; // func_door if( FClassnameIs( pevLinkEnt, "func_door" ) || FClassnameIs( pevLinkEnt, "func_door_rotating" ) ) { // ent is a door. pDoor = ( CBaseEntity::Instance( pevLinkEnt ) ); if( ( pevLinkEnt->spawnflags & SF_DOOR_USE_ONLY ) ) { // door is use only. if( ( afCapMask & bits_CAP_OPEN_DOORS ) ) { // let monster right through if he can open doors return TRUE; } else { // monster should try for it if the door is open and looks as if it will stay that way if( pDoor->GetToggleState()== TS_AT_TOP && ( pevLinkEnt->spawnflags & SF_DOOR_NO_AUTO_RETURN ) ) { return TRUE; } return FALSE; } } else { // door must be opened with a button or trigger field. // monster should try for it if the door is open and looks as if it will stay that way if( pDoor->GetToggleState() == TS_AT_TOP && ( pevLinkEnt->spawnflags & SF_DOOR_NO_AUTO_RETURN ) ) { return TRUE; } if( ( afCapMask & bits_CAP_OPEN_DOORS ) ) { if( !( pevLinkEnt->spawnflags & SF_DOOR_NOMONSTERS ) || queryType == NODEGRAPH_STATIC ) return TRUE; } return FALSE; } } // func_breakable else if( FClassnameIs( pevLinkEnt, "func_breakable" ) && queryType == NODEGRAPH_STATIC ) { return TRUE; } else { ALERT( at_aiconsole, "Unhandled Ent in Path %s\n", STRING( pevLinkEnt->classname ) ); return FALSE; } return FALSE; } #if 0 //========================================================= // FindNearestLink - finds the connection (line) nearest // the given point. Returns FALSE if fails, or TRUE if it // has stuffed the index into the nearest link pool connection // into the passed int pointer, and a BOOL telling whether or // not the point is along the line into the passed BOOL pointer. //========================================================= int CGraph::FindNearestLink( const Vector &vecTestPoint, int *piNearestLink, BOOL *pfAlongLine ) { int i, j;// loops int iNearestLink;// index into the link pool, this is the nearest node at any time. float flMinDist;// the distance of of the nearest case so far float flDistToLine;// the distance of the current test case BOOL fCurrentAlongLine; BOOL fSuccess; //float flConstant;// line constant Vector vecSpot1, vecSpot2; Vector2D vec2Spot1, vec2Spot2, vec2TestPoint; Vector2D vec2Normal;// line normal Vector2D vec2Line; TraceResult tr; iNearestLink = -1;// prepare for failure fSuccess = FALSE; flMinDist = 9999;// anything will be closer than this // go through all of the nodes, and each node's connections int cSkip = 0;// how many links proper pairing allowed us to skip int cChecked = 0;// how many links were checked for( i = 0; i < m_cNodes; i++ ) { vecSpot1 = m_pNodes[i].m_vecOrigin; if( m_pNodes[i].m_cNumLinks <= 0 ) { // this shouldn't happen! ALERT( at_aiconsole, "**Node %d has no links\n", i ); continue; } for( j = 0; j < m_pNodes[i].m_cNumLinks; j++ ) { /* !!!This optimization only works when the node graph consists of properly linked pairs. if( INodeLink( i, j ) <= i ) { // since we're going through the nodes in order, don't check // any connections whose second node is lower in the list // than the node we're currently working with. This eliminates // redundant checks. cSkip++; continue; } */ vecSpot2 = PNodeLink( i, j )->m_vecOrigin; // these values need a little attention now and then, or sometimes ramps cause trouble. if( fabs( vecSpot1.z - vecTestPoint.z ) > 48 && fabs( vecSpot2.z - vecTestPoint.z ) > 48 ) { // if both endpoints of the line are 32 units or more above or below the monster, // the monster won't be able to get to them, so we do a bit of trivial rejection here. // this may change if monsters are allowed to jump down. // // !!!LATER: some kind of clever X/Y hashing should be used here, too continue; } // now we have two endpoints for a line segment that we've not already checked. // since all lines that make it this far are within -/+ 32 units of the test point's // Z Plane, we can get away with doing the point->line check in 2d. cChecked++; vec2Spot1 = vecSpot1.Make2D(); vec2Spot2 = vecSpot2.Make2D(); vec2TestPoint = vecTestPoint.Make2D(); // get the line normal. vec2Line = ( vec2Spot1 - vec2Spot2 ).Normalize(); vec2Normal.x = -vec2Line.y; vec2Normal.y = vec2Line.x; if( DotProduct( vec2Line, ( vec2TestPoint - vec2Spot1 ) ) > 0 ) { // point outside of line flDistToLine = ( vec2TestPoint - vec2Spot1 ).Length(); fCurrentAlongLine = FALSE; } else if( DotProduct( vec2Line, ( vec2TestPoint - vec2Spot2 ) ) < 0 ) { // point outside of line flDistToLine = ( vec2TestPoint - vec2Spot2 ).Length(); fCurrentAlongLine = FALSE; } else { // point inside line flDistToLine = fabs( DotProduct( vec2TestPoint - vec2Spot2, vec2Normal ) ); fCurrentAlongLine = TRUE; } if( flDistToLine < flMinDist ) { // just found a line nearer than any other so far UTIL_TraceLine( vecTestPoint, SourceNode( i, j ).m_vecOrigin, ignore_monsters, g_pBodyQueueHead, &tr ); if( tr.flFraction != 1.0 ) { // crap. can't see the first node of this link, try to see the other UTIL_TraceLine ( vecTestPoint, DestNode( i, j ).m_vecOrigin, ignore_monsters, g_pBodyQueueHead, &tr ); if( tr.flFraction != 1.0 ) { // can't use this link, cause can't see either node! continue; } } fSuccess = TRUE;// we know there will be something to return. flMinDist = flDistToLine; iNearestLink = m_pNodes[i].m_iFirstLink + j; *piNearestLink = m_pNodes[i].m_iFirstLink + j; *pfAlongLine = fCurrentAlongLine; } } } /* if( fSuccess ) { WRITE_BYTE( MSG_BROADCAST, SVC_TEMPENTITY ); WRITE_BYTE( MSG_BROADCAST, TE_SHOWLINE ); WRITE_COORD( MSG_BROADCAST, m_pNodes[m_pLinkPool[iNearestLink].m_iSrcNode].m_vecOrigin.x ); WRITE_COORD( MSG_BROADCAST, m_pNodes[m_pLinkPool[iNearestLink].m_iSrcNode].m_vecOrigin.y ); WRITE_COORD( MSG_BROADCAST, m_pNodes[m_pLinkPool[iNearestLink].m_iSrcNode].m_vecOrigin.z + NODE_HEIGHT ); WRITE_COORD( MSG_BROADCAST, m_pNodes[m_pLinkPool[iNearestLink].m_iDestNode].m_vecOrigin.x ); WRITE_COORD( MSG_BROADCAST, m_pNodes[m_pLinkPool[iNearestLink].m_iDestNode].m_vecOrigin.y ); WRITE_COORD( MSG_BROADCAST, m_pNodes[m_pLinkPool[iNearestLink].m_iDestNode].m_vecOrigin.z + NODE_HEIGHT ); } */ ALERT( at_aiconsole, "%d Checked\n", cChecked ); return fSuccess; } #endif int CGraph::HullIndex( const CBaseEntity *pEntity ) { if( pEntity->pev->movetype == MOVETYPE_FLY ) return NODE_FLY_HULL; if( pEntity->pev->mins == Vector( -12, -12, 0 ) ) return NODE_SMALL_HULL; else if( pEntity->pev->mins == VEC_HUMAN_HULL_MIN ) return NODE_HUMAN_HULL; else if( pEntity->pev->mins == Vector( -32, -32, 0 ) ) return NODE_LARGE_HULL; //ALERT( at_aiconsole, "Unknown Hull Mins!\n" ); return NODE_HUMAN_HULL; } int CGraph::NodeType( const CBaseEntity *pEntity ) { if( pEntity->pev->movetype == MOVETYPE_FLY ) { if (pEntity->pev->waterlevel != 0 && pEntity->pev->watertype != CONTENT_FOG) { return bits_NODE_WATER; } else { return bits_NODE_AIR; } } return bits_NODE_LAND; } // Sum up graph weights on the path from iStart to iDest to determine path length float CGraph::PathLength( int iStart, int iDest, int iHull, int afCapMask ) { float distance = 0; int iNext; int iMaxLoop = m_cNodes; int iCurrentNode = iStart; int iCap = CapIndex( afCapMask ); while( iCurrentNode != iDest ) { if( iMaxLoop-- <= 0 ) { ALERT( at_console, "Route Failure\n" ); return 0; } iNext = NextNodeInRoute( iCurrentNode, iDest, iHull, iCap ); if( iCurrentNode == iNext ) { //ALERT( at_aiconsole, "SVD: Can't get there from here..\n" ); return 0; } int iLink; HashSearch( iCurrentNode, iNext, iLink ); if( iLink < 0 ) { ALERT( at_console, "HashLinks is broken from %d to %d.\n", iCurrentNode, iDest ); return 0; } CLink &link = Link( iLink ); distance += link.m_flWeight; iCurrentNode = iNext; } return distance; } // Parse the routing table at iCurrentNode for the next node on the shortest path to iDest int CGraph::NextNodeInRoute( int iCurrentNode, int iDest, int iHull, int iCap ) { int iNext = iCurrentNode; int nCount = iDest + 1; signed char *pRoute = m_pRouteInfo + m_pNodes[iCurrentNode].m_pNextBestNode[iHull][iCap]; // Until we decode the next best node // while( nCount > 0 ) { signed char ch = *pRoute++; //ALERT( at_aiconsole, "C(%d)", ch ); if( ch < 0 ) { // Sequence phrase // ch = -ch; if( nCount <= ch ) { iNext = iDest; nCount = 0; //ALERT( at_aiconsole, "SEQ: iNext/iDest=%d\n", iNext ); } else { //ALERT( at_aiconsole, "SEQ: nCount + ch (%d + %d)\n", nCount, ch ); nCount = nCount - ch; } } else { //ALERT( at_aiconsole, "C(%d)", *pRoute ); // Repeat phrase // if( nCount <= ch + 1 ) { iNext = iCurrentNode + *pRoute; if( iNext >= m_cNodes ) iNext -= m_cNodes; else if( iNext < 0 ) iNext += m_cNodes; nCount = 0; //ALERT( at_aiconsole, "REP: iNext=%d\n", iNext ); } else { //ALERT( at_aiconsole, "REP: nCount - ch+1 (%d - %d+1)\n", nCount, ch ); nCount = nCount - ch - 1; } pRoute++; } } return iNext; } //========================================================= // CGraph - FindShortestPath // // accepts a capability mask (afCapMask), and will only // find a path usable by a monster with those capabilities // returns the number of nodes copied into supplied array //========================================================= int CGraph::FindShortestPath( int *piPath, int iStart, int iDest, int iHull, int afCapMask ) { int iVisitNode; int iCurrentNode; int iNumPathNodes; int iHullMask = 0; if( !m_fGraphPresent || !m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available or built ALERT( at_aiconsole, "Graph not ready!\n" ); return FALSE; } if( iStart < 0 || iStart > m_cNodes ) { // The start node is bad? ALERT( at_aiconsole, "Can't build a path, iStart is %d!\n", iStart ); return FALSE; } if( iStart == iDest ) { piPath[0] = iStart; piPath[1] = iDest; return 2; } // Is routing information present. // if( m_fRoutingComplete ) { int iCap = CapIndex( afCapMask ); iNumPathNodes = 0; piPath[iNumPathNodes++] = iStart; iCurrentNode = iStart; int iNext; //ALERT( at_aiconsole, "GOAL: %d to %d\n", iStart, iDest ); // Until we arrive at the destination // while( iCurrentNode != iDest ) { iNext = NextNodeInRoute( iCurrentNode, iDest, iHull, iCap ); if( iCurrentNode == iNext ) { //ALERT( at_aiconsole, "SVD: Can't get there from here..\n" ); return 0; break; } if( iNumPathNodes >= MAX_PATH_SIZE ) { //ALERT( at_aiconsole, "SVD: Don't return the entire path.\n" ); break; } piPath[iNumPathNodes++] = iNext; iCurrentNode = iNext; } //ALERT( at_aiconsole, "SVD: Path with %d nodes.\n", iNumPathNodes ); } else { int i; CQueuePriority queue; switch( iHull ) { case NODE_SMALL_HULL: iHullMask = bits_LINK_SMALL_HULL; break; case NODE_HUMAN_HULL: iHullMask = bits_LINK_HUMAN_HULL; break; case NODE_LARGE_HULL: iHullMask = bits_LINK_LARGE_HULL; break; case NODE_FLY_HULL: iHullMask = bits_LINK_FLY_HULL; break; } // Mark all the nodes as unvisited. // for ( i = 0; i < m_cNodes; i++) { m_pNodes[i].m_flClosestSoFar = -1.0f; } m_pNodes[iStart].m_flClosestSoFar = 0.0; m_pNodes[iStart].m_iPreviousNode = iStart;// tag this as the origin node queue.Insert( iStart, 0.0 );// insert start node while( !queue.Empty() ) { // now pull a node out of the queue float flCurrentDistance; iCurrentNode = queue.Remove( flCurrentDistance ); // For straight-line weights, the following Shortcut works. For arbitrary weights, // it doesn't. // if( iCurrentNode == iDest ) break; CNode *pCurrentNode = &m_pNodes[iCurrentNode]; for( i = 0; i < pCurrentNode->m_cNumLinks; i++ ) { // run through all of this node's neighbors iVisitNode = INodeLink( iCurrentNode, i ); if( ( m_pLinkPool[m_pNodes[iCurrentNode].m_iFirstLink + i].m_afLinkInfo & iHullMask ) != iHullMask ) { // monster is too large to walk this connection //ALERT( at_aiconsole, "fat ass %d/%d\n",m_pLinkPool[m_pNodes[iCurrentNode].m_iFirstLink + i].m_afLinkInfo, iMonsterHull ); continue; } // check the connection from the current node to the node we're about to mark visited and push into the queue if( m_pLinkPool[m_pNodes[iCurrentNode].m_iFirstLink + i].m_pLinkEnt != NULL ) { // there's a brush ent in the way! Don't mark this node or put it into the queue unless the monster can negotiate it if( !HandleLinkEnt( iCurrentNode, m_pLinkPool[m_pNodes[iCurrentNode].m_iFirstLink + i].m_pLinkEnt, afCapMask, NODEGRAPH_STATIC ) ) { // monster should not try to go this way. continue; } } float flOurDistance = flCurrentDistance + m_pLinkPool[m_pNodes[iCurrentNode].m_iFirstLink + i].m_flWeight; if( m_pNodes[iVisitNode].m_flClosestSoFar < -0.5f || flOurDistance < m_pNodes[iVisitNode].m_flClosestSoFar - 0.001f ) { m_pNodes[iVisitNode].m_flClosestSoFar = flOurDistance; m_pNodes[iVisitNode].m_iPreviousNode = iCurrentNode; queue.Insert( iVisitNode, flOurDistance ); } } } if( m_pNodes[iDest].m_flClosestSoFar < -0.5f ) { // Destination is unreachable, no path found. return 0; } // the queue is not empty // now we must walk backwards through the m_iPreviousNode field, and count how many connections there are in the path iCurrentNode = iDest; iNumPathNodes = 1;// count the dest while( iCurrentNode != iStart ) { iNumPathNodes++; iCurrentNode = m_pNodes[iCurrentNode].m_iPreviousNode; } iCurrentNode = iDest; for( i = iNumPathNodes - 1; i >= 0; i-- ) { piPath[i] = iCurrentNode; iCurrentNode = m_pNodes[iCurrentNode].m_iPreviousNode; } } #if 0 if( m_fRoutingComplete ) { // This will draw the entire path that was generated for the monster. for( int i = 0; i < iNumPathNodes - 1; i++ ) { MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY ); WRITE_BYTE( TE_SHOWLINE ); WRITE_COORD( m_pNodes[piPath[i]].m_vecOrigin.x ); WRITE_COORD( m_pNodes[piPath[i]].m_vecOrigin.y ); WRITE_COORD( m_pNodes[piPath[i]].m_vecOrigin.z + NODE_HEIGHT ); WRITE_COORD( m_pNodes[piPath[i + 1]].m_vecOrigin.x ); WRITE_COORD( m_pNodes[piPath[i + 1]].m_vecOrigin.y ); WRITE_COORD( m_pNodes[piPath[i + 1]].m_vecOrigin.z + NODE_HEIGHT ); MESSAGE_END(); } } #endif #if 0 // MAZE map MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY ); WRITE_BYTE( TE_SHOWLINE ); WRITE_COORD( m_pNodes[4].m_vecOrigin.x ); WRITE_COORD( m_pNodes[4].m_vecOrigin.y ); WRITE_COORD( m_pNodes[4].m_vecOrigin.z + NODE_HEIGHT ); WRITE_COORD( m_pNodes[9].m_vecOrigin.x ); WRITE_COORD( m_pNodes[9].m_vecOrigin.y ); WRITE_COORD( m_pNodes[9].m_vecOrigin.z + NODE_HEIGHT ); MESSAGE_END(); #endif return iNumPathNodes; } inline ULONG Hash( void *p, int len ) { CRC32_t ulCrc; CRC32_INIT( &ulCrc ); CRC32_PROCESS_BUFFER( &ulCrc, p, len ); return CRC32_FINAL( ulCrc ); } void inline CalcBounds( int &Lower, int &Upper, int Goal, int Best ) { int Temp = 2 * Goal - Best; if( Best > Goal ) { Lower = Q_max( 0, Temp ); Upper = Best; } else { Upper = Q_min( 255, Temp ); Lower = Best; } } // Convert from [-8192,8192] to [0, 255] // inline int CALC_RANGE( int x, int lower, int upper ) { return NUM_RANGES * ( x - lower ) / ( ( upper - lower + 1 ) ); } void inline UpdateRange( int &minValue, int &maxValue, int Goal, int Best ) { int Lower, Upper; CalcBounds( Lower, Upper, Goal, Best ); if( Upper < maxValue ) maxValue = Upper; if( minValue < Lower ) minValue = Lower; } void CGraph::CheckNode( Vector vecOrigin, int iNode ) { // Have we already seen this point before?. // if( m_di[iNode].m_CheckedEvent == m_CheckedCounter ) return; m_di[iNode].m_CheckedEvent = m_CheckedCounter; float flDist = ( vecOrigin - m_pNodes[iNode].m_vecOriginPeek ).Length(); if( flDist < m_flShortest ) { TraceResult tr; // make sure that vecOrigin can trace to this node! UTIL_TraceLine( vecOrigin, m_pNodes[iNode].m_vecOriginPeek, ignore_monsters, 0, &tr ); if( tr.flFraction == 1.0f ) { m_iNearest = iNode; m_flShortest = flDist; UpdateRange( m_minX, m_maxX, CALC_RANGE( vecOrigin.x, m_RegionMin[0], m_RegionMax[0] ), m_pNodes[iNode].m_Region[0] ); UpdateRange( m_minY, m_maxY, CALC_RANGE( vecOrigin.y, m_RegionMin[1], m_RegionMax[1] ), m_pNodes[iNode].m_Region[1] ); UpdateRange( m_minZ, m_maxZ, CALC_RANGE( vecOrigin.z, m_RegionMin[2], m_RegionMax[2] ), m_pNodes[iNode].m_Region[2] ); // From maxCircle, calculate maximum bounds box. All points must be // simultaneously inside all bounds of the box. // m_minBoxX = CALC_RANGE( vecOrigin.x - flDist, m_RegionMin[0], m_RegionMax[0] ); m_maxBoxX = CALC_RANGE( vecOrigin.x + flDist, m_RegionMin[0], m_RegionMax[0] ); m_minBoxY = CALC_RANGE( vecOrigin.y - flDist, m_RegionMin[1], m_RegionMax[1] ); m_maxBoxY = CALC_RANGE( vecOrigin.y + flDist, m_RegionMin[1], m_RegionMax[1] ); m_minBoxZ = CALC_RANGE( vecOrigin.z - flDist, m_RegionMin[2], m_RegionMax[2] ); m_maxBoxZ = CALC_RANGE( vecOrigin.z + flDist, m_RegionMin[2], m_RegionMax[2] ); } } } //========================================================= // CGraph - FindNearestNode - returns the index of the node nearest // the given vector -1 is failure (couldn't find a valid // near node ) //========================================================= int CGraph::FindNearestNode( const Vector &vecOrigin, CBaseEntity *pEntity ) { return FindNearestNode( vecOrigin, NodeType( pEntity ) ); } int CGraph::FindNearestNode( const Vector &vecOrigin, int afNodeTypes ) { int i; TraceResult tr; if( !m_fGraphPresent || !m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available ALERT( at_aiconsole, "Graph not ready!\n" ); return -1; } // Check with the cache // ULONG iHash = ( CACHE_SIZE - 1 ) & Hash( (void *)(const float *)vecOrigin, sizeof(vecOrigin) ); if( m_Cache[iHash].v == vecOrigin ) { //ALERT( at_aiconsole, "Cache Hit.\n" ); return m_Cache[iHash].n; } /* else { //ALERT( at_aiconsole, "Cache Miss.\n" ); } */ // Mark all points as unchecked. // m_CheckedCounter++; if( m_CheckedCounter == 0 ) { for( i = 0; i < m_cNodes; i++ ) { m_di[i].m_CheckedEvent = 0; } m_CheckedCounter++; } m_iNearest = -1; m_flShortest = 999999.0f; // just a big number. // If we can find a visible point, then let CalcBounds set the limits, but if // we have no visible point at all to start with, then don't restrict the limits. // #if 1 m_minX = 0; m_maxX = 255; m_minY = 0; m_maxY = 255; m_minZ = 0; m_maxZ = 255; m_minBoxX = 0; m_maxBoxX = 255; m_minBoxY = 0; m_maxBoxY = 255; m_minBoxZ = 0; m_maxBoxZ = 255; #else m_minBoxX = CALC_RANGE( vecOrigin.x - flDist, m_RegionMin[0], m_RegionMax[0] ); m_maxBoxX = CALC_RANGE( vecOrigin.x + flDist, m_RegionMin[0], m_RegionMax[0] ); m_minBoxY = CALC_RANGE( vecOrigin.y - flDist, m_RegionMin[1], m_RegionMax[1] ); m_maxBoxY = CALC_RANGE( vecOrigin.y + flDist, m_RegionMin[1], m_RegionMax[1] ); m_minBoxZ = CALC_RANGE( vecOrigin.z - flDist, m_RegionMin[2], m_RegionMax[2] ); m_maxBoxZ = CALC_RANGE( vecOrigin.z + flDist, m_RegionMin[2], m_RegionMax[2] ); CalcBounds( m_minX, m_maxX, CALC_RANGE( vecOrigin.x, m_RegionMin[0], m_RegionMax[0] ), m_pNodes[m_iNearest].m_Region[0] ); CalcBounds( m_minY, m_maxY, CALC_RANGE( vecOrigin.y, m_RegionMin[1], m_RegionMax[1] ), m_pNodes[m_iNearest].m_Region[1] ); CalcBounds( m_minZ, m_maxZ, CALC_RANGE( vecOrigin.z, m_RegionMin[2], m_RegionMax[2] ), m_pNodes[m_iNearest].m_Region[2] ); #endif int halfX = ( m_minX + m_maxX ) / 2; int halfY = ( m_minY + m_maxY ) / 2; int halfZ = ( m_minZ + m_maxZ ) / 2; int j; for( i = halfX; i >= m_minX; i-- ) { for( j = m_RangeStart[0][i]; j <= m_RangeEnd[0][i]; j++ ) { if( !( m_pNodes[m_di[j].m_SortedBy[0]].m_afNodeInfo & afNodeTypes ) ) continue; int rgY = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[1]; if( rgY > m_maxBoxY ) break; if( rgY < m_minBoxY ) continue; int rgZ = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[2]; if( rgZ < m_minBoxZ ) continue; if( rgZ > m_maxBoxZ ) continue; CheckNode( vecOrigin, m_di[j].m_SortedBy[0] ); } } for( i = Q_max( m_minY, halfY + 1 ); i <= m_maxY; i++ ) { for( j = m_RangeStart[1][i]; j <= m_RangeEnd[1][i]; j++ ) { if( !( m_pNodes[m_di[j].m_SortedBy[1]].m_afNodeInfo & afNodeTypes ) ) continue; int rgZ = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[2]; if( rgZ > m_maxBoxZ ) break; if( rgZ < m_minBoxZ ) continue; int rgX = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[0]; if( rgX < m_minBoxX ) continue; if( rgX > m_maxBoxX ) continue; CheckNode( vecOrigin, m_di[j].m_SortedBy[1] ); } } for( i = Q_min( m_maxZ, halfZ ); i >= m_minZ; i-- ) { for( j = m_RangeStart[2][i]; j <= m_RangeEnd[2][i]; j++ ) { if( !( m_pNodes[m_di[j].m_SortedBy[2]].m_afNodeInfo & afNodeTypes ) ) continue; int rgX = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[0]; if( rgX > m_maxBoxX ) break; if( rgX < m_minBoxX ) continue; int rgY = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[1]; if( rgY < m_minBoxY ) continue; if( rgY > m_maxBoxY ) continue; CheckNode( vecOrigin, m_di[j].m_SortedBy[2] ); } } for( i = Q_max( m_minX, halfX + 1 ); i <= m_maxX; i++ ) { for( j = m_RangeStart[0][i]; j <= m_RangeEnd[0][i]; j++ ) { if( !( m_pNodes[m_di[j].m_SortedBy[0]].m_afNodeInfo & afNodeTypes ) ) continue; int rgY = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[1]; if( rgY > m_maxBoxY ) break; if( rgY < m_minBoxY ) continue; int rgZ = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[2]; if( rgZ < m_minBoxZ ) continue; if( rgZ > m_maxBoxZ ) continue; CheckNode( vecOrigin, m_di[j].m_SortedBy[0] ); } } for( i = Q_min( m_maxY, halfY ); i >= m_minY; i-- ) { for( j = m_RangeStart[1][i]; j <= m_RangeEnd[1][i]; j++ ) { if( !( m_pNodes[m_di[j].m_SortedBy[1]].m_afNodeInfo & afNodeTypes ) ) continue; int rgZ = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[2]; if( rgZ > m_maxBoxZ ) break; if( rgZ < m_minBoxZ ) continue; int rgX = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[0]; if( rgX < m_minBoxX ) continue; if( rgX > m_maxBoxX ) continue; CheckNode( vecOrigin, m_di[j].m_SortedBy[1] ); } } for( i = Q_max( m_minZ, halfZ + 1 ); i <= m_maxZ; i++ ) { for( j = m_RangeStart[2][i]; j <= m_RangeEnd[2][i]; j++ ) { if( !( m_pNodes[m_di[j].m_SortedBy[2]].m_afNodeInfo & afNodeTypes ) ) continue; int rgX = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[0]; if( rgX > m_maxBoxX ) break; if( rgX < m_minBoxX ) continue; int rgY = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[1]; if( rgY < m_minBoxY ) continue; if( rgY > m_maxBoxY ) continue; CheckNode(vecOrigin, m_di[j].m_SortedBy[2]); } } #if 0 // Verify our answers. // int iNearestCheck = -1; m_flShortest = 8192;// find nodes within this radius for( i = 0; i < m_cNodes; i++ ) { float flDist = ( vecOrigin - m_pNodes[i].m_vecOriginPeek ).Length(); if( flDist < m_flShortest ) { // make sure that vecOrigin can trace to this node! UTIL_TraceLine( vecOrigin, m_pNodes[i].m_vecOriginPeek, ignore_monsters, 0, &tr ); if( tr.flFraction == 1.0 ) { iNearestCheck = i; m_flShortest = flDist; } } } if( iNearestCheck != m_iNearest ) { ALERT( at_aiconsole, "NOT closest %d(%f,%f,%f) %d(%f,%f,%f).\n", iNearestCheck, m_pNodes[iNearestCheck].m_vecOriginPeek.x, m_pNodes[iNearestCheck].m_vecOriginPeek.y, m_pNodes[iNearestCheck].m_vecOriginPeek.z, m_iNearest, ( m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.x ), ( m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.y ), ( m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.z ) ); } if( m_iNearest == -1 ) { ALERT( at_aiconsole, "All that work for nothing.\n" ); } #endif m_Cache[iHash].v = vecOrigin; m_Cache[iHash].n = m_iNearest; return m_iNearest; } //========================================================= // CGraph - ShowNodeConnections - draws a line from the given node // to all connected nodes //========================================================= void CGraph::ShowNodeConnections( int iNode ) { Vector vecSpot; CNode *pNode; CNode *pLinkNode; int i; if( !m_fGraphPresent || !m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available or built ALERT( at_aiconsole, "Graph not ready!\n" ); return; } if( iNode < 0 ) { ALERT( at_aiconsole, "Can't show connections for node %d\n", iNode ); return; } pNode = &m_pNodes[iNode]; UTIL_ParticleEffect( pNode->m_vecOrigin, g_vecZero, 255, 20 );// show node position if( pNode->m_cNumLinks <= 0 ) { // no connections! ALERT ( at_aiconsole, "**No Connections!\n" ); } for( i = 0; i < pNode->m_cNumLinks; i++ ) { pLinkNode = &Node( NodeLink( iNode, i ).m_iDestNode ); vecSpot = pLinkNode->m_vecOrigin; MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY ); WRITE_BYTE( TE_SHOWLINE ); WRITE_COORD( m_pNodes[iNode].m_vecOrigin.x ); WRITE_COORD( m_pNodes[iNode].m_vecOrigin.y ); WRITE_COORD( m_pNodes[iNode].m_vecOrigin.z + NODE_HEIGHT ); WRITE_COORD( vecSpot.x ); WRITE_COORD( vecSpot.y ); WRITE_COORD( vecSpot.z + NODE_HEIGHT ); MESSAGE_END(); } } //========================================================= // CGraph - LinkVisibleNodes - the first, most basic // function of node graph creation, this connects every // node to every other node that it can see. Expects a // pointer to an empty connection pool and a file pointer // to write progress to. Returns the total number of initial // links. // // If there's a problem with this process, the index // of the offending node will be written to piBadNode //========================================================= int CGraph::LinkVisibleNodes( CLink *pLinkPool, FILE *file, int *piBadNode ) { int i, j, z; edict_t *pTraceEnt; int cTotalLinks, cLinksThisNode, cMaxInitialLinks; TraceResult tr; // !!!BUGBUG - this function returns 0 if there is a problem in the middle of connecting the graph // it also returns 0 if none of the nodes in a level can see each other. piBadNode is ALWAYS read // by BuildNodeGraph() if this function returns a 0, so make sure that it doesn't get some random // number back. *piBadNode = 0; if( m_cNodes <= 0 ) { ALERT( at_aiconsole, "No Nodes!\n" ); return FALSE; } // if the file pointer is bad, don't blow up, just don't write the // file. if( !file ) { ALERT( at_aiconsole, "**LinkVisibleNodes:\ncan't write to file." ); } else { fprintf( file, "----------------------------------------------------------------------------\n" ); fprintf( file, "LinkVisibleNodes - Initial Connections\n" ); fprintf( file, "----------------------------------------------------------------------------\n" ); } cTotalLinks = 0;// start with no connections // to keep track of the maximum number of initial links any node had so far. // this lets us keep an eye on MAX_NODE_INITIAL_LINKS to ensure that we are // being generous enough. cMaxInitialLinks = 0; for( i = 0; i < m_cNodes; i++ ) { cLinksThisNode = 0;// reset this count for each node. if( file ) { fprintf( file, "Node #%4d:\n\n", i ); } for( z = 0; z < MAX_NODE_INITIAL_LINKS; z++ ) { // clear out the important fields in the link pool for this node pLinkPool[cTotalLinks + z].m_iSrcNode = i;// so each link knows which node it originates from pLinkPool[cTotalLinks + z].m_iDestNode = 0; pLinkPool[cTotalLinks + z].m_pLinkEnt = NULL; } m_pNodes[i].m_iFirstLink = cTotalLinks; // now build a list of every other node that this node can see for( j = 0; j < m_cNodes; j++ ) { if( j == i ) { // don't connect to self! continue; } #if 0 if( ( m_pNodes[i].m_afNodeInfo & bits_NODE_WATER ) != ( m_pNodes[j].m_afNodeInfo & bits_NODE_WATER ) ) { // don't connect water nodes to air nodes or land nodes. It just wouldn't be prudent at this juncture. continue; } #else if( ( m_pNodes[i].m_afNodeInfo & bits_NODE_GROUP_REALM ) != ( m_pNodes[j].m_afNodeInfo & bits_NODE_GROUP_REALM ) ) { // don't connect air nodes to water nodes to land nodes. It just wouldn't be prudent at this juncture. continue; } #endif tr.pHit = NULL;// clear every time so we don't get stuck with last trace's hit ent pTraceEnt = 0; UTIL_TraceLine( m_pNodes[i].m_vecOrigin, m_pNodes[j].m_vecOrigin, ignore_monsters, g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about &tr ); if( tr.fStartSolid ) continue; if( tr.flFraction != 1.0f ) { // trace hit a brush ent, trace backwards to make sure that this ent is the only thing in the way. pTraceEnt = tr.pHit;// store the ent that the trace hit, for comparison UTIL_TraceLine( m_pNodes[j].m_vecOrigin, m_pNodes[i].m_vecOrigin, ignore_monsters, g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about &tr ); // there is a solid_bsp ent in the way of these two nodes, so we must record several things about in order to keep // track of it in the pathfinding code, as well as through save and restore of the node graph. ANY data that is manipulated // as part of the process of adding a LINKENT to a connection here must also be done in CGraph::SetGraphPointers, where reloaded // graphs are prepared for use. if( tr.pHit == pTraceEnt && !FClassnameIs( tr.pHit, "worldspawn" ) ) { // get a pointer pLinkPool[cTotalLinks].m_pLinkEnt = VARS( tr.pHit ); // record the modelname, so that we can save/load node trees memcpy( pLinkPool[cTotalLinks].m_szLinkEntModelname, STRING( VARS( tr.pHit )->model ), 4 ); // set the flag for this ent that indicates that it is attached to the world graph // if this ent is removed from the world, it must also be removed from the connections // that it formerly blocked. if( !FBitSet( VARS( tr.pHit )->flags, FL_GRAPHED ) ) { VARS( tr.pHit )->flags += FL_GRAPHED; } } else { // even if the ent wasn't there, these nodes couldn't be connected. Skip. continue; } } if( file ) { fprintf( file, "%4d", j ); if( !FNullEnt( pLinkPool[cTotalLinks].m_pLinkEnt ) ) { // record info about the ent in the way, if any. fprintf( file, " Entity on connection: %s, name: %s Model: %s", STRING( VARS( pTraceEnt )->classname ), STRING( VARS( pTraceEnt )->targetname ), STRING( VARS( tr.pHit )->model ) ); } //fprintf( file, "\n", j ); fprintf( file, "\n" ); } pLinkPool[cTotalLinks].m_iDestNode = j; cLinksThisNode++; cTotalLinks++; // If we hit this, either a level designer is placing too many nodes in the same area, or // we need to allow for a larger initial link pool. if( cLinksThisNode == MAX_NODE_INITIAL_LINKS ) { ALERT( at_aiconsole, "**LinkVisibleNodes:\nNode %d has NodeLinks > MAX_NODE_INITIAL_LINKS", i ); fprintf( file, "** NODE %d HAS NodeLinks > MAX_NODE_INITIAL_LINKS **\n", i ); *piBadNode = i; return FALSE; } else if( cTotalLinks > MAX_NODE_INITIAL_LINKS * m_cNodes ) { // this is paranoia ALERT( at_aiconsole, "**LinkVisibleNodes:\nTotalLinks > MAX_NODE_INITIAL_LINKS * NUMNODES" ); *piBadNode = i; return FALSE; } if( cLinksThisNode == 0 ) { fprintf( file, "**NO INITIAL LINKS**\n" ); } // record the connection info in the link pool WorldGraph.m_pNodes[i].m_cNumLinks = cLinksThisNode; // keep track of the most initial links ANY node had, so we can figure out // if we have a large enough default link pool if( cLinksThisNode > cMaxInitialLinks ) { cMaxInitialLinks = cLinksThisNode; } } if( file ) { fprintf( file, "----------------------------------------------------------------------------\n" ); } } fprintf( file, "\n%4d Total Initial Connections - %4d Maximum connections for a single node.\n", cTotalLinks, cMaxInitialLinks ); fprintf( file, "----------------------------------------------------------------------------\n\n\n" ); return cTotalLinks; } //========================================================= // CGraph - RejectInlineLinks - expects a pointer to a link // pool, and a pointer to and already-open file ( if you // want status reports written to disk ). RETURNS the number // of connections that were rejected //========================================================= int CGraph::RejectInlineLinks( CLink *pLinkPool, FILE *file ) { int i, j, k; int cRejectedLinks; BOOL fRestartLoop;// have to restart the J loop if we eliminate a link. CNode *pSrcNode; CNode *pCheckNode;// the node we are testing for (one of pSrcNode's connections) CNode *pTestNode;// the node we are checking against ( also one of pSrcNode's connections) float flDistToTestNode, flDistToCheckNode; Vector2D vec2DirToTestNode, vec2DirToCheckNode; if( file ) { fprintf( file, "----------------------------------------------------------------------------\n" ); fprintf( file, "InLine Rejection:\n" ); fprintf( file, "----------------------------------------------------------------------------\n" ); } cRejectedLinks = 0; for( i = 0; i < m_cNodes; i++ ) { pSrcNode = &m_pNodes[i]; if( file ) { fprintf( file, "Node %3d:\n", i ); } for( j = 0; j < pSrcNode->m_cNumLinks; j++ ) { pCheckNode = &m_pNodes[pLinkPool[pSrcNode->m_iFirstLink + j].m_iDestNode]; vec2DirToCheckNode = ( pCheckNode->m_vecOrigin - pSrcNode->m_vecOrigin ).Make2D(); flDistToCheckNode = vec2DirToCheckNode.Length(); vec2DirToCheckNode = vec2DirToCheckNode.Normalize(); pLinkPool[pSrcNode->m_iFirstLink + j].m_flWeight = flDistToCheckNode; fRestartLoop = FALSE; for( k = 0; k < pSrcNode->m_cNumLinks && !fRestartLoop; k++ ) { if( k == j ) { // don't check against same node continue; } pTestNode = &m_pNodes[pLinkPool[pSrcNode->m_iFirstLink + k].m_iDestNode]; vec2DirToTestNode = ( pTestNode->m_vecOrigin - pSrcNode->m_vecOrigin ).Make2D(); flDistToTestNode = vec2DirToTestNode.Length(); vec2DirToTestNode = vec2DirToTestNode.Normalize(); if( DotProduct( vec2DirToCheckNode, vec2DirToTestNode ) >= 0.998f ) { // there's a chance that TestNode intersects the line to CheckNode. If so, we should disconnect the link to CheckNode. if( flDistToTestNode < flDistToCheckNode ) { if( file ) { fprintf( file, "REJECTED NODE %3d through Node %3d, Dot = %8f\n", pLinkPool[pSrcNode->m_iFirstLink + j].m_iDestNode, pLinkPool[pSrcNode->m_iFirstLink + k].m_iDestNode, (double)DotProduct( vec2DirToCheckNode, vec2DirToTestNode ) ); } pLinkPool[pSrcNode->m_iFirstLink + j] = pLinkPool[pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 )]; pSrcNode->m_cNumLinks--; j--; cRejectedLinks++;// keeping track of how many links are cut, so that we can return that value. fRestartLoop = TRUE; } } } } if( file ) { fprintf( file, "----------------------------------------------------------------------------\n\n" ); } } return cRejectedLinks; } //========================================================= // TestHull is a modelless clip hull that verifies reachable // nodes by walking from every node to each of it's connections //========================================================= class CTestHull : public CBaseMonster { public: void Spawn( entvars_t *pevMasterNode ); virtual int ObjectCaps( void ) { return CBaseMonster :: ObjectCaps() & ~FCAP_ACROSS_TRANSITION; } void EXPORT CallBuildNodeGraph ( void ); void BuildNodeGraph( void ); void EXPORT ShowBadNode( void ); void EXPORT DropDelay( void ); void EXPORT PathFind( void ); Vector vecBadNodeOrigin; }; LINK_ENTITY_TO_CLASS( testhull, CTestHull ) //========================================================= // CTestHull::Spawn //========================================================= void CTestHull::Spawn( entvars_t *pevMasterNode ) { SET_MODEL( ENT( pev ), "models/player.mdl" ); UTIL_SetSize( pev, VEC_HUMAN_HULL_MIN, VEC_HUMAN_HULL_MAX ); pev->solid = SOLID_SLIDEBOX; pev->movetype = MOVETYPE_STEP; pev->effects = 0; pev->health = 50; pev->yaw_speed = 8; if( WorldGraph.m_fGraphPresent ) {// graph loaded from disk, so we don't need the test hull SetThink(&CTestHull :: SUB_Remove ); SetNextThink( 0 ); } else { SetThink( &CTestHull::DropDelay ); SetNextThink( 1.0f ); } // Make this invisible // UNDONE: Shouldn't we just use EF_NODRAW? This doesn't need to go to the client. pev->rendermode = kRenderTransTexture; pev->renderamt = 0; } //========================================================= // TestHull::DropDelay - spawns TestHull on top of // the 0th node and drops it to the ground. //========================================================= void CTestHull::DropDelay( void ) { UTIL_CenterPrintAll( "Node Graph out of Date. Rebuilding..." ); UTIL_SetOrigin ( this, WorldGraph.m_pNodes[ 0 ].m_vecOrigin ); SetThink( &CTestHull::CallBuildNodeGraph ); SetNextThink( 1.0f ); } //========================================================= // nodes start out as ents in the world. As they are spawned, // the node info is recorded then the ents are discarded. //========================================================= void CNodeEnt::KeyValue( KeyValueData *pkvd ) { if( FStrEq( pkvd->szKeyName, "hinttype" ) ) { m_sHintType = (short)atoi( pkvd->szValue ); pkvd->fHandled = TRUE; } if( FStrEq( pkvd->szKeyName, "activity" ) ) { m_sHintActivity = (short)atoi( pkvd->szValue ); pkvd->fHandled = TRUE; } else CBaseEntity::KeyValue( pkvd ); } //========================================================= //========================================================= void CNodeEnt::Spawn( void ) { pev->movetype = MOVETYPE_NONE; pev->solid = SOLID_NOT;// always solid_not if( WorldGraph.m_fGraphPresent ) { // graph loaded from disk, so discard all these node ents as soon as they spawn REMOVE_ENTITY( edict() ); return; } if( WorldGraph.m_cNodes == 0 ) { // this is the first node to spawn, spawn the test hull entity that builds and walks the node tree CTestHull *pHull = GetClassPtr( (CTestHull *)NULL ); pHull->Spawn( pev ); } if( WorldGraph.m_cNodes >= MAX_NODES ) { ALERT( at_aiconsole, "cNodes > MAX_NODES\n" ); return; } WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_vecOriginPeek = WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_vecOrigin = pev->origin; WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_flHintYaw = pev->angles.y; WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_sHintType = m_sHintType; WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_sHintActivity = m_sHintActivity; if( FClassnameIs( pev, "info_node_air" ) ) WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_afNodeInfo = bits_NODE_AIR; else WorldGraph.m_pNodes[WorldGraph.m_cNodes].m_afNodeInfo = 0; WorldGraph.m_cNodes++; REMOVE_ENTITY( edict() ); } //========================================================= // CTestHull - ShowBadNode - makes a bad node fizzle. When // there's a problem with node graph generation, the test // hull will be placed up the bad node's location and will generate // particles //========================================================= void CTestHull::ShowBadNode( void ) { pev->movetype = MOVETYPE_FLY; pev->angles.y = pev->angles.y + 4; UTIL_MakeVectors( pev->angles ); UTIL_ParticleEffect( pev->origin, g_vecZero, 255, 25 ); UTIL_ParticleEffect( pev->origin + gpGlobals->v_forward * 64, g_vecZero, 255, 25 ); UTIL_ParticleEffect( pev->origin - gpGlobals->v_forward * 64, g_vecZero, 255, 25 ); UTIL_ParticleEffect( pev->origin + gpGlobals->v_right * 64, g_vecZero, 255, 25 ); UTIL_ParticleEffect( pev->origin - gpGlobals->v_right * 64, g_vecZero, 255, 25 ); SetNextThink( 0.1f ); } extern BOOL gTouchDisabled; void CTestHull::CallBuildNodeGraph( void ) { // TOUCH HACK -- Don't allow this entity to call anyone's "touch" function gTouchDisabled = TRUE; BuildNodeGraph(); gTouchDisabled = FALSE; // Undo TOUCH HACK } //========================================================= // BuildNodeGraph - think function called by the empty walk // hull that is spawned by the first node to spawn. This // function links all nodes that can see each other, then // eliminates all inline links, then uses a monster-sized // hull that walks between each node and each of its links // to ensure that a monster can actually fit through the space //========================================================= void CTestHull::BuildNodeGraph( void ) { //TraceResult tr; FILE *file; char szNrpFilename [MAX_PATH];// text node report filename CLink *pTempPool; // temporary link pool CNode *pSrcNode;// node we're currently working with CNode *pDestNode;// the other node in comparison operations BOOL fSkipRemainingHulls;//if smallest hull can't fit, don't check any others BOOL fPairsValid;// are all links in the graph evenly paired? int i, j, hull; int iBadNode;// this is the node that caused graph generation to fail //int cMaxInitialLinks = 0; //int cMaxValidLinks = 0; //int iPoolIndex = 0; int cPoolLinks;// number of links in the pool. Vector vecDirToCheckNode; Vector vecDirToTestNode; Vector vecStepCheckDir; Vector vecTraceSpot; Vector vecSpot; Vector2D vec2DirToCheckNode; Vector2D vec2DirToTestNode; Vector2D vec2StepCheckDir; Vector2D vec2TraceSpot; Vector2D vec2Spot; float flYaw;// use this stuff to walk the hull between nodes float flDist; int step; SetThink(&CTestHull :: SUB_Remove );// no matter what happens, the hull gets rid of itself. SetNextThink( 0 ); //malloc a swollen temporary connection pool that we trim down after we know exactly how many connections there are. pTempPool = (CLink *)calloc( sizeof(CLink), ( WorldGraph.m_cNodes * MAX_NODE_INITIAL_LINKS ) ); if( !pTempPool ) { ALERT( at_aiconsole, "**Could not malloc TempPool!\n" ); return; } // make sure directories have been made GET_GAME_DIR( szNrpFilename ); strcat( szNrpFilename, "/maps" ); CreateDirectoryA( szNrpFilename, NULL ); strcat( szNrpFilename, "/graphs" ); CreateDirectoryA( szNrpFilename, NULL ); strcat( szNrpFilename, "/" ); strcat( szNrpFilename, STRING( gpGlobals->mapname ) ); strcat( szNrpFilename, ".nrp" ); file = fopen( szNrpFilename, "w+" ); if( !file ) { // file error ALERT( at_aiconsole, "Couldn't create %s!\n", szNrpFilename ); if( pTempPool ) { free( pTempPool ); } return; } fprintf( file, "Node Graph Report for map: %s.bsp\n", STRING( gpGlobals->mapname ) ); fprintf( file, "%d Total Nodes\n\n", WorldGraph.m_cNodes ); for( i = 0; i < WorldGraph.m_cNodes; i++ ) { // print all node numbers and their locations to the file. WorldGraph.m_pNodes[i].m_cNumLinks = 0; WorldGraph.m_pNodes[i].m_iFirstLink = 0; memset( WorldGraph.m_pNodes[i].m_pNextBestNode, 0, sizeof(WorldGraph.m_pNodes[i].m_pNextBestNode) ); fprintf( file, "Node# %4d\n", i ); fprintf( file, "Location %4d,%4d,%4d\n",(int)WorldGraph.m_pNodes[i].m_vecOrigin.x, (int)WorldGraph.m_pNodes[i].m_vecOrigin.y, (int)WorldGraph.m_pNodes[i].m_vecOrigin.z ); fprintf( file, "HintType: %4d\n", WorldGraph.m_pNodes[i].m_sHintType ); fprintf( file, "HintActivity: %4d\n", WorldGraph.m_pNodes[i].m_sHintActivity ); fprintf( file, "HintYaw: %4f\n", (double)WorldGraph.m_pNodes[i].m_flHintYaw ); fprintf( file, "-------------------------------------------------------------------------------\n" ); } fprintf( file, "\n\n" ); // Automatically recognize WATER nodes and drop the LAND nodes to the floor. // for( i = 0; i < WorldGraph.m_cNodes; i++) { if( WorldGraph.m_pNodes[i].m_afNodeInfo & bits_NODE_AIR ) { // do nothing } else if( UTIL_PointContents( WorldGraph.m_pNodes[i].m_vecOrigin ) == CONTENTS_WATER ) { WorldGraph.m_pNodes[i].m_afNodeInfo |= bits_NODE_WATER; } else { WorldGraph.m_pNodes[i].m_afNodeInfo |= bits_NODE_LAND; // trace to the ground, then pop up 8 units and place node there to make it // easier for them to connect (think stairs, chairs, and bumps in the floor). // After the routing is done, push them back down. // TraceResult tr; UTIL_TraceLine( WorldGraph.m_pNodes[i].m_vecOrigin, WorldGraph.m_pNodes[i].m_vecOrigin - Vector( 0, 0, 384 ), ignore_monsters, g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about &tr ); // This trace is ONLY used if we hit an entity flagged with FL_WORLDBRUSH TraceResult trEnt; UTIL_TraceLine( WorldGraph.m_pNodes[i].m_vecOrigin, WorldGraph.m_pNodes[i].m_vecOrigin - Vector( 0, 0, 384 ), dont_ignore_monsters, g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about &trEnt ); // Did we hit something closer than the floor? if( trEnt.flFraction < tr.flFraction ) { // If it was a world brush entity, copy the node location if( trEnt.pHit && ( trEnt.pHit->v.flags & FL_WORLDBRUSH ) ) tr.vecEndPos = trEnt.vecEndPos; } WorldGraph.m_pNodes[i].m_vecOriginPeek.z = WorldGraph.m_pNodes[i].m_vecOrigin.z = tr.vecEndPos.z + NODE_HEIGHT; } } cPoolLinks = WorldGraph.LinkVisibleNodes( pTempPool, file, &iBadNode ); if( !cPoolLinks ) { ALERT( at_aiconsole, "**ConnectVisibleNodes FAILED!\n" ); SetThink( &CTestHull::ShowBadNode );// send the hull off to show the offending node. //pev->solid = SOLID_NOT; pev->origin = WorldGraph.m_pNodes[iBadNode].m_vecOrigin; if( pTempPool ) { free( pTempPool ); } if( file ) { // close the file fclose( file ); } return; } // send the walkhull to all of this node's connections now. We'll do this here since // so much of it relies on being able to control the test hull. fprintf( file, "----------------------------------------------------------------------------\n" ); fprintf( file, "Walk Rejection:\n"); for( i = 0; i < WorldGraph.m_cNodes; i++ ) { pSrcNode = &WorldGraph.m_pNodes[i]; fprintf( file, "-------------------------------------------------------------------------------\n" ); fprintf( file, "Node %4d:\n\n", i ); for( j = 0; j < pSrcNode->m_cNumLinks; j++ ) { // assume that all hulls can walk this link, then eliminate the ones that can't. pTempPool[pSrcNode->m_iFirstLink + j].m_afLinkInfo = bits_LINK_SMALL_HULL | bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL | bits_LINK_FLY_HULL; // do a check for each hull size. // if we can't fit a tiny hull through a connection, no other hulls with fit either, so we // should just fall out of the loop. Do so by setting the SkipRemainingHulls flag. fSkipRemainingHulls = FALSE; for( hull = 0; hull < MAX_NODE_HULLS; hull++ ) { if( fSkipRemainingHulls && ( hull == NODE_HUMAN_HULL || hull == NODE_LARGE_HULL ) ) // skip the remaining walk hulls continue; switch( hull ) { case NODE_SMALL_HULL: UTIL_SetSize( pev, Vector( -12, -12, 0 ), Vector( 12, 12, 24 ) ); break; case NODE_HUMAN_HULL: UTIL_SetSize( pev, VEC_HUMAN_HULL_MIN, VEC_HUMAN_HULL_MAX ); break; case NODE_LARGE_HULL: UTIL_SetSize( pev, Vector( -32, -32, 0 ), Vector( 32, 32, 64 ) ); break; case NODE_FLY_HULL: UTIL_SetSize( pev, Vector( -32, -32, 0 ), Vector( 32, 32, 64 ) ); // UTIL_SetSize( pev, Vector( 0, 0, 0 ), Vector( 0, 0, 0 ) ); break; } UTIL_SetOrigin ( this, pSrcNode->m_vecOrigin );// place the hull on the node if( !FBitSet( pev->flags, FL_ONGROUND ) ) { ALERT( at_aiconsole, "OFFGROUND!\n" ); } // now build a yaw that points to the dest node, and get the distance. if( j < 0 ) { ALERT( at_aiconsole, "**** j = %d ****\n", j ); if( pTempPool ) { free( pTempPool ); } if( file ) { // close the file fclose( file ); } return; } pDestNode = &WorldGraph.m_pNodes[pTempPool[pSrcNode->m_iFirstLink + j].m_iDestNode]; vecSpot = pDestNode->m_vecOrigin; //vecSpot.z = pev->origin.z; if( hull < NODE_FLY_HULL ) { int SaveFlags = pev->flags; int MoveMode = WALKMOVE_WORLDONLY; if( pSrcNode->m_afNodeInfo & bits_NODE_WATER ) { pev->flags |= FL_SWIM; MoveMode = WALKMOVE_NORMAL; } flYaw = UTIL_VecToYaw( pDestNode->m_vecOrigin - pev->origin ); flDist = ( vecSpot - pev->origin ).Length2D(); int fWalkFailed = FALSE; // in this loop we take tiny steps from the current node to the nodes that it links to, one at a time. // pev->angles.y = flYaw; for( step = 0; step < flDist && !fWalkFailed; step += HULL_STEP_SIZE ) { float stepSize = HULL_STEP_SIZE; if( ( step + stepSize ) >= ( flDist - 1 ) ) stepSize = ( flDist - step ) - 1; if( !WALK_MOVE( ENT( pev ), flYaw, stepSize, MoveMode ) ) { // can't take the next step fWalkFailed = TRUE; break; } } if( !fWalkFailed && ( pev->origin - vecSpot ).Length() > 64 ) { // ALERT( at_console, "bogus walk\n" ); // we thought we fWalkFailed = TRUE; } if( fWalkFailed ) { //pTempPool[pSrcNode->m_iFirstLink + j] = pTempPool[pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 )]; // now me must eliminate the hull that couldn't walk this connection switch( hull ) { case NODE_SMALL_HULL: // if this hull can't fit, nothing can, so drop the connection fprintf( file, "NODE_SMALL_HULL step %d\n", step ); pTempPool[pSrcNode->m_iFirstLink + j].m_afLinkInfo &= ~( bits_LINK_SMALL_HULL | bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL ); fSkipRemainingHulls = TRUE;// don't bother checking larger hulls break; case NODE_HUMAN_HULL: fprintf( file, "NODE_HUMAN_HULL step %d\n", step ); pTempPool[pSrcNode->m_iFirstLink + j].m_afLinkInfo &= ~( bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL ); fSkipRemainingHulls = TRUE;// don't bother checking larger hulls break; case NODE_LARGE_HULL: fprintf( file, "NODE_LARGE_HULL step %d\n", step ); pTempPool[pSrcNode->m_iFirstLink + j].m_afLinkInfo &= ~bits_LINK_LARGE_HULL; break; } } pev->flags = SaveFlags; } else { TraceResult tr; UTIL_TraceHull( pSrcNode->m_vecOrigin + Vector( 0, 0, 32 ), pDestNode->m_vecOriginPeek + Vector( 0, 0, 32 ), ignore_monsters, large_hull, ENT( pev ), &tr ); if( tr.fStartSolid || tr.flFraction < 1.0f ) { pTempPool[pSrcNode->m_iFirstLink + j].m_afLinkInfo &= ~bits_LINK_FLY_HULL; } } } if( pTempPool[pSrcNode->m_iFirstLink + j].m_afLinkInfo == 0 ) { fprintf( file, "Rejected Node %3d - Unreachable by ", pTempPool[ pSrcNode->m_iFirstLink + j].m_iDestNode ); pTempPool[pSrcNode->m_iFirstLink + j] = pTempPool[pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 )]; fprintf( file, "Any Hull\n" ); pSrcNode->m_cNumLinks--; cPoolLinks--;// we just removed a link, so decrement the total number of links in the pool. j--; } } } fprintf( file, "-------------------------------------------------------------------------------\n\n\n" ); cPoolLinks -= WorldGraph.RejectInlineLinks( pTempPool, file ); // now malloc a pool just large enough to hold the links that are actually used WorldGraph.m_pLinkPool = (CLink *)calloc( sizeof(CLink), cPoolLinks ); if( !WorldGraph.m_pLinkPool ) { // couldn't make the link pool! ALERT( at_aiconsole, "Couldn't malloc LinkPool!\n" ); if( pTempPool ) { free( pTempPool ); } if( file ) { // close the file fclose( file ); } return; } WorldGraph.m_cLinks = cPoolLinks; //copy only the used portions of the TempPool into the graph's link pool int iFinalPoolIndex = 0; int iOldFirstLink; for( i = 0; i < WorldGraph.m_cNodes; i++ ) { iOldFirstLink = WorldGraph.m_pNodes[i].m_iFirstLink;// store this, because we have to re-assign it before entering the copy loop WorldGraph.m_pNodes[i].m_iFirstLink = iFinalPoolIndex; for( j = 0; j < WorldGraph.m_pNodes[i].m_cNumLinks; j++ ) { WorldGraph.m_pLinkPool[iFinalPoolIndex++] = pTempPool[iOldFirstLink + j]; } } // Node sorting numbers linked nodes close to each other // WorldGraph.SortNodes(); // This is used for HashSearch // WorldGraph.BuildLinkLookups(); fPairsValid = TRUE; // assume that the connection pairs are all valid to start fprintf( file, "\n\n-------------------------------------------------------------------------------\n" ); fprintf( file, "Link Pairings:\n" ); // link integrity check. The idea here is that if Node A links to Node B, node B should // link to node A. If not, we have a situation that prevents us from using a basic // optimization in the FindNearestLink function. for( i = 0; i < WorldGraph.m_cNodes; i++ ) { for( j = 0; j < WorldGraph.m_pNodes[i].m_cNumLinks; j++ ) { int iLink; WorldGraph.HashSearch( WorldGraph.INodeLink( i, j ), i, iLink ); if( iLink < 0 ) { fPairsValid = FALSE;// unmatched link pair. fprintf( file, "WARNING: Node %3d does not connect back to Node %3d\n", WorldGraph.INodeLink( i, j ), i ); } } } // !!!LATER - if all connections are properly paired, when can enable an optimization in the pathfinding code // (in the find nearest line function) if( fPairsValid ) { fprintf( file, "\nAll Connections are Paired!\n" ); } #ifdef _MSC_VER #define SIZET_FMT "%Iu" #else #define SIZET_FMT "%zu" #endif fprintf( file, "-------------------------------------------------------------------------------\n" ); fprintf( file, "\n\n-------------------------------------------------------------------------------\n" ); fprintf( file, "Total Number of Connections in Pool: %d\n", cPoolLinks ); fprintf( file, "-------------------------------------------------------------------------------\n" ); fprintf( file, "Connection Pool: " SIZET_FMT " bytes\n", sizeof(CLink) * cPoolLinks ); fprintf( file, "-------------------------------------------------------------------------------\n" ); ALERT( at_aiconsole, "%d Nodes, %d Connections\n", WorldGraph.m_cNodes, cPoolLinks ); // This is used for FindNearestNode // WorldGraph.BuildRegionTables(); // Push all of the LAND nodes down to the ground now. Leave the water and air nodes alone. // for( i = 0; i < WorldGraph.m_cNodes; i++ ) { if( ( WorldGraph.m_pNodes[i].m_afNodeInfo & bits_NODE_LAND ) ) { WorldGraph.m_pNodes[i].m_vecOrigin.z -= NODE_HEIGHT; } } if( pTempPool ) { // free the temp pool free( pTempPool ); } if( file ) { fclose( file ); } // We now have some graphing capabilities. // WorldGraph.m_fGraphPresent = TRUE;//graph is in memory. WorldGraph.m_fGraphPointersSet = TRUE;// since the graph was generated, the pointers are ready WorldGraph.m_fRoutingComplete = FALSE; // Optimal routes aren't computed, yet. // Compute and compress the routing information. // WorldGraph.ComputeStaticRoutingTables(); // save the node graph for this level WorldGraph.FSaveGraph( STRING( gpGlobals->mapname ) ); ALERT( at_console, "Done.\n" ); } //========================================================= // returns a hardcoded path. //========================================================= void CTestHull::PathFind( void ) { int iPath[50]; int iPathSize; int i; CNode *pNode, *pNextNode; if( !WorldGraph.m_fGraphPresent || !WorldGraph.m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available ALERT( at_aiconsole, "Graph not ready!\n" ); return; } iPathSize = WorldGraph.FindShortestPath( iPath, 0, 19, 0, 0 ); // UNDONE use hull constant if( !iPathSize ) { ALERT( at_aiconsole, "No Path!\n" ); return; } ALERT( at_aiconsole, "%d\n", iPathSize ); pNode = &WorldGraph.m_pNodes[iPath[0]]; for( i = 0; i < iPathSize - 1; i++ ) { pNextNode = &WorldGraph.m_pNodes[iPath[i + 1]]; MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY ); WRITE_BYTE( TE_SHOWLINE ); WRITE_COORD( pNode->m_vecOrigin.x ); WRITE_COORD( pNode->m_vecOrigin.y ); WRITE_COORD( pNode->m_vecOrigin.z + NODE_HEIGHT ); WRITE_COORD( pNextNode->m_vecOrigin.x ); WRITE_COORD( pNextNode->m_vecOrigin.y ); WRITE_COORD( pNextNode->m_vecOrigin.z + NODE_HEIGHT ); MESSAGE_END(); pNode = pNextNode; } } //========================================================= // CStack Constructor //========================================================= CStack::CStack( void ) { m_level = 0; } //========================================================= // pushes a value onto the stack //========================================================= void CStack::Push( int value ) { if( m_level >= MAX_STACK_NODES ) { printf( "Error!\n" ); return; } m_stack[m_level] = value; m_level++; } //========================================================= // pops a value off of the stack //========================================================= int CStack::Pop( void ) { if( m_level <= 0 ) return -1; m_level--; return m_stack[m_level]; } //========================================================= // returns the value on the top of the stack //========================================================= int CStack::Top( void ) { return m_stack[m_level - 1]; } //========================================================= // copies every element on the stack into an array LIFO //========================================================= void CStack::CopyToArray( int *piArray ) { int i; for( i = 0; i < m_level; i++ ) { piArray[i] = m_stack[i]; } } //========================================================= // CQueue constructor //========================================================= CQueue::CQueue( void ) { m_cSize = 0; m_head = 0; m_tail = -1; } //========================================================= // inserts a value into the queue //========================================================= void CQueue::Insert( int iValue, float fPriority ) { if( Full() ) { printf( "Queue is full!\n" ); return; } m_tail++; if( m_tail == MAX_STACK_NODES ) { //wrap around m_tail = 0; } m_queue[m_tail].Id = iValue; m_queue[m_tail].Priority = fPriority; m_cSize++; } //========================================================= // removes a value from the queue (FIFO) //========================================================= int CQueue::Remove( float &fPriority ) { if( m_head == MAX_STACK_NODES ) { // wrap m_head = 0; } m_cSize--; fPriority = m_queue[m_head].Priority; return m_queue[m_head++].Id; } //========================================================= // CQueue constructor //========================================================= CQueuePriority::CQueuePriority( void ) { m_cSize = 0; } //========================================================= // inserts a value into the priority queue //========================================================= void CQueuePriority::Insert( int iValue, float fPriority ) { if( Full() ) { printf( "Queue is full!\n" ); return; } m_heap[m_cSize].Priority = fPriority; m_heap[m_cSize].Id = iValue; m_cSize++; Heap_SiftUp(); } //========================================================= // removes the smallest item from the priority queue // //========================================================= int CQueuePriority::Remove( float &fPriority ) { int iReturn = m_heap[0].Id; fPriority = m_heap[0].Priority; m_cSize--; m_heap[0] = m_heap[m_cSize]; Heap_SiftDown( 0 ); return iReturn; } #define HEAP_LEFT_CHILD(x) ( 2 * ( x ) + 1 ) #define HEAP_RIGHT_CHILD(x) ( 2 * ( x ) + 2 ) #define HEAP_PARENT(x) ( ( ( x ) - 1 ) / 2 ) void CQueuePriority::Heap_SiftDown( int iSubRoot ) { int parent = iSubRoot; int child = HEAP_LEFT_CHILD( parent ); struct tag_HEAP_NODE Ref = m_heap[parent]; while( child < m_cSize ) { int rightchild = HEAP_RIGHT_CHILD( parent ); if( rightchild < m_cSize ) { if( m_heap[rightchild].Priority < m_heap[child].Priority ) { child = rightchild; } } if( Ref.Priority <= m_heap[child].Priority ) break; m_heap[parent] = m_heap[child]; parent = child; child = HEAP_LEFT_CHILD( parent ); } m_heap[parent] = Ref; } void CQueuePriority::Heap_SiftUp( void ) { int child = m_cSize - 1; while( child ) { int parent = HEAP_PARENT( child ); if( m_heap[parent].Priority <= m_heap[child].Priority ) break; struct tag_HEAP_NODE Tmp; Tmp = m_heap[child]; m_heap[child] = m_heap[parent]; m_heap[parent] = Tmp; child = parent; } } //========================================================= // CGraph - FLoadGraph - attempts to load a node graph from disk. // if the current level is maps/snar.bsp, maps/graphs/snar.nod // will be loaded. If file cannot be loaded, the node tree // will be created and saved to disk. //========================================================= int CGraph::FLoadGraph( const char *szMapName ) { char szFilename[MAX_PATH]; int iVersion; int length; byte *aMemFile; byte *pMemFile; // make sure the directories have been made char szDirName[MAX_PATH]; GET_GAME_DIR( szDirName ); strcat( szDirName, "/maps" ); CreateDirectoryA( szDirName, NULL ); strcat( szDirName, "/graphs" ); CreateDirectoryA( szDirName, NULL ); strcpy( szFilename, "maps/graphs/" ); strcat( szFilename, szMapName ); strcat( szFilename, ".nod" ); pMemFile = aMemFile = LOAD_FILE_FOR_ME( szFilename, &length ); if( !aMemFile ) return FALSE; // Read the graph version number // length -= sizeof(int); if( length < 0 ) goto ShortFile; iVersion = *(int *) pMemFile; pMemFile += sizeof(int); if( iVersion == GRAPH_VERSION || iVersion == GRAPH_VERSION_RETAIL ) { // Read the graph class // if ( iVersion == GRAPH_VERSION ) { length -= sizeof(CGraph); if( length < 0 ) goto ShortFile; memcpy( this, pMemFile, sizeof(CGraph) ); pMemFile += sizeof(CGraph); // Set the pointers to zero, just in case we run out of memory. // m_pNodes = NULL; m_pLinkPool = NULL; m_di = NULL; m_pRouteInfo = NULL; m_pHashLinks = NULL; } #if _GRAPH_VERSION != _GRAPH_VERSION_RETAIL else { ALERT( at_aiconsole, "Loading CGraph in GRAPH_VERSION 16 compatibility mode\n" ); length -= sizeof(CGraph_Retail); if( length < 0 ) goto ShortFile; reinterpret_cast(pMemFile) -> copyOverTo(this); pMemFile += sizeof(CGraph_Retail); } #endif // Malloc for the nodes // m_pNodes = (CNode *)calloc( sizeof(CNode), m_cNodes ); if( !m_pNodes ) { ALERT( at_aiconsole, "**ERROR**\nCouldn't malloc %d nodes!\n", m_cNodes ); goto NoMemory; } // Read in all the nodes // length -= sizeof(CNode) * m_cNodes; if( length < 0 ) goto ShortFile; memcpy( m_pNodes, pMemFile, sizeof(CNode) * m_cNodes ); pMemFile += sizeof(CNode) * m_cNodes; // Malloc for the link pool // m_pLinkPool = (CLink *)calloc( sizeof(CLink), m_cLinks ); if( !m_pLinkPool ) { ALERT( at_aiconsole, "**ERROR**\nCouldn't malloc %d link!\n", m_cLinks ); goto NoMemory; } // Read in all the links // if( iVersion == GRAPH_VERSION ) { length -= sizeof(CLink) * m_cLinks; if( length < 0 ) goto ShortFile; memcpy( m_pLinkPool, pMemFile, sizeof(CLink) * m_cLinks ); pMemFile += sizeof(CLink) * m_cLinks; } #if _GRAPH_VERSION != _GRAPH_VERSION_RETAIL else { ALERT( at_aiconsole, "Loading CLink array in GRAPH_VERSION 16 compatibility mode\n" ); length -= sizeof(CLink_Retail) * m_cLinks; if( length < 0 ) goto ShortFile; reinterpret_cast(pMemFile) -> copyOverTo(m_pLinkPool); pMemFile += sizeof(CLink_Retail) * m_cLinks; } #endif // Malloc for the sorting info. // m_di = (DIST_INFO *)calloc( sizeof(DIST_INFO), m_cNodes ); if( !m_di ) { ALERT( at_aiconsole, "***ERROR**\nCouldn't malloc %d entries sorting nodes!\n", m_cNodes ); goto NoMemory; } // Read it in. // length -= sizeof(DIST_INFO) * m_cNodes; if( length < 0 ) goto ShortFile; memcpy( m_di, pMemFile, sizeof(DIST_INFO) * m_cNodes ); pMemFile += sizeof(DIST_INFO) * m_cNodes; // Malloc for the routing info. // m_fRoutingComplete = FALSE; m_pRouteInfo = (signed char *)calloc( sizeof(signed char), m_nRouteInfo ); if( !m_pRouteInfo ) { ALERT( at_aiconsole, "***ERROR**\nCouldn't malloc %d route bytes!\n", m_nRouteInfo ); goto NoMemory; } m_CheckedCounter = 0; for(int i = 0; i < m_cNodes; i++ ) { m_di[i].m_CheckedEvent = 0; } // Read in the route information. // length -= sizeof(char) * m_nRouteInfo; if( length < 0 ) goto ShortFile; memcpy( m_pRouteInfo, pMemFile, sizeof(char) * m_nRouteInfo ); pMemFile += sizeof(char) * m_nRouteInfo; m_fRoutingComplete = TRUE; // malloc for the hash links // m_pHashLinks = (short *)calloc( sizeof(short), m_nHashLinks ); if( !m_pHashLinks ) { ALERT( at_aiconsole, "***ERROR**\nCouldn't malloc %d hash link bytes!\n", m_nHashLinks ); goto NoMemory; } // Read in the hash link information // length -= sizeof(short) * m_nHashLinks; if( length < 0 ) goto ShortFile; memcpy( m_pHashLinks, pMemFile, sizeof(short) * m_nHashLinks ); pMemFile += sizeof(short) * m_nHashLinks; // Set the graph present flag, clear the pointers set flag // m_fGraphPresent = TRUE; m_fGraphPointersSet = FALSE; FREE_FILE( aMemFile ); if( length != 0 ) { ALERT( at_aiconsole, "***WARNING***:Node graph was longer than expected by %d bytes.!\n", length ); } return TRUE; } else { // This file was written by a different build of the dll! // ALERT( at_aiconsole, "**ERROR** Graph version is %d, expected %d\n", iVersion, GRAPH_VERSION ); goto ShortFile; } ShortFile: NoMemory: FREE_FILE( aMemFile ); return FALSE; } //========================================================= // CGraph - FSaveGraph - It's not rocket science. // this WILL overwrite existing files. //========================================================= int CGraph::FSaveGraph( const char *szMapName ) { int iVersion = GRAPH_VERSION; char szFilename[MAX_PATH]; FILE *file; if( !m_fGraphPresent || !m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available or built ALERT( at_aiconsole, "Graph not ready!\n" ); return FALSE; } // make sure directories have been made GET_GAME_DIR( szFilename ); strcat( szFilename, "/maps" ); CreateDirectoryA( szFilename, NULL ); strcat( szFilename, "/graphs" ); CreateDirectoryA( szFilename, NULL ); strcat( szFilename, "/" ); strcat( szFilename, szMapName ); strcat( szFilename, ".nod" ); file = fopen( szFilename, "wb" ); ALERT( at_aiconsole, "Created: %s\n", szFilename ); if( !file ) { // couldn't create ALERT( at_aiconsole, "Couldn't Create: %s\n", szFilename ); return FALSE; } else { // write the version fwrite( &iVersion, sizeof(int), 1, file ); // write the CGraph class fwrite( this, sizeof(CGraph), 1, file ); // write the nodes fwrite( m_pNodes, sizeof(CNode), m_cNodes, file ); // write the links fwrite( m_pLinkPool, sizeof(CLink), m_cLinks, file ); fwrite( m_di, sizeof(DIST_INFO), m_cNodes, file ); // Write the route info. // if( m_pRouteInfo && m_nRouteInfo ) { fwrite( m_pRouteInfo, sizeof(signed char), m_nRouteInfo, file ); } if( m_pHashLinks && m_nHashLinks ) { fwrite( m_pHashLinks, sizeof(short), m_nHashLinks, file ); } fclose( file ); return TRUE; } } //========================================================= // CGraph - FSetGraphPointers - Takes the modelnames of // all of the brush ents that block connections in the node // graph and resolves them into pointers to those entities. // this is done after loading the graph from disk, whereupon // the pointers are not valid. //========================================================= int CGraph::FSetGraphPointers( void ) { int i; CBaseEntity *pLinkEnt; for( i = 0; i < m_cLinks; i++ ) { // go through all of the links if( m_pLinkPool[i].m_pLinkEnt != NULL ) { char name[5]; // when graphs are saved, any valid pointers are will be non-zero, signifying that we should // reset those pointers upon reloading. Any pointers that were NULL when the graph was saved // will be NULL when reloaded, and will ignored by this function. // m_szLinkEntModelname is not necessarily NULL terminated (so we can store it in a more alignment-friendly 4 bytes) memcpy( name, m_pLinkPool[i].m_szLinkEntModelname, 4 ); name[4] = 0; pLinkEnt = UTIL_FindEntityByString( NULL, "model", name ); if ( !pLinkEnt ) { // the ent isn't around anymore? Either there is a major problem, or it was removed from the world // ( like a func_breakable that's been destroyed or something ). Make sure that LinkEnt is null. ALERT( at_aiconsole, "**Could not find model %s\n", name ); m_pLinkPool[i].m_pLinkEnt = NULL; } else { m_pLinkPool[ i ].m_pLinkEnt = pLinkEnt->pev; if( !FBitSet( m_pLinkPool[i].m_pLinkEnt->flags, FL_GRAPHED ) ) { m_pLinkPool[i].m_pLinkEnt->flags += FL_GRAPHED; } } } } // the pointers are now set. m_fGraphPointersSet = TRUE; return TRUE; } //========================================================= // CGraph - CheckNODFile - this function checks the date of // the BSP file that was just loaded and the date of the a // ssociated .NOD file. If the NOD file is not present, or // is older than the BSP file, we rebuild it. // // returns FALSE if the .NOD file doesn't qualify and needs // to be rebuilt. // // !!!BUGBUG - the file times we get back are 20 hours ahead! // since this happens consistantly, we can still correctly // determine which of the 2 files is newer. This needs fixed, // though. ( I now suspect that we are getting GMT back from // these functions and must compensate for local time ) (sjb) //========================================================= int CGraph::CheckNODFile( const char *szMapName ) { int retValue; char szBspFilename[MAX_PATH]; char szGraphFilename[MAX_PATH]; strcpy( szBspFilename, "maps/" ); strcat( szBspFilename, szMapName ); strcat( szBspFilename, ".bsp" ); strcpy( szGraphFilename, "maps/graphs/" ); strcat( szGraphFilename, szMapName ); strcat( szGraphFilename, ".nod" ); retValue = TRUE; int iCompare; if( COMPARE_FILE_TIME( szBspFilename, szGraphFilename, &iCompare ) ) { if( iCompare > 0 ) { // BSP file is newer. ALERT( at_aiconsole, ".NOD File will be updated\n\n" ); retValue = FALSE; } } else { retValue = FALSE; } return retValue; } #define ENTRY_STATE_EMPTY -1 struct tagNodePair { short iSrc; short iDest; }; void CGraph::HashInsert( int iSrcNode, int iDestNode, int iKey ) { struct tagNodePair np; np.iSrc = iSrcNode; np.iDest = iDestNode; CRC32_t dwHash; CRC32_INIT( &dwHash ); CRC32_PROCESS_BUFFER( &dwHash, &np, sizeof(np) ); dwHash = CRC32_FINAL( dwHash ); int di = m_HashPrimes[dwHash&15]; int i = ( dwHash >> 4 ) % m_nHashLinks; while( m_pHashLinks[i] != ENTRY_STATE_EMPTY ) { i += di; if( i >= m_nHashLinks ) i -= m_nHashLinks; } m_pHashLinks[i] = iKey; } void CGraph::HashSearch( int iSrcNode, int iDestNode, int &iKey ) { struct tagNodePair np; np.iSrc = iSrcNode; np.iDest = iDestNode; CRC32_t dwHash; CRC32_INIT( &dwHash ); CRC32_PROCESS_BUFFER( &dwHash, &np, sizeof(np) ); dwHash = CRC32_FINAL( dwHash ); int di = m_HashPrimes[dwHash&15]; int i = ( dwHash >> 4 ) % m_nHashLinks; while( m_pHashLinks[i] != ENTRY_STATE_EMPTY ) { CLink &link = Link( m_pHashLinks[i] ); if( iSrcNode == link.m_iSrcNode && iDestNode == link.m_iDestNode ) { break; } else { i += di; if( i >= m_nHashLinks ) i -= m_nHashLinks; } } iKey = m_pHashLinks[i]; } #define NUMBER_OF_PRIMES 177 int Primes[NUMBER_OF_PRIMES] = { 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 0 }; void CGraph::HashChoosePrimes( int TableSize ) { int iPrime, iZone; int LargestPrime = TableSize / 2; if( LargestPrime > Primes[NUMBER_OF_PRIMES - 2] ) { LargestPrime = Primes[NUMBER_OF_PRIMES - 2]; } int Spacing = LargestPrime / 16; // Pick a set primes that are evenly spaced from (0 to LargestPrime) // We divide this interval into 16 equal sized zones. We want to find // one prime number that best represents that zone. // for( iZone = 1, iPrime = 0; iPrime < 16; iZone += Spacing ) { // Search for a prime number that is less than the target zone // number given by iZone. // int Lower = Primes[0]; for( int jPrime = 0; Primes[jPrime] != 0; jPrime++ ) { if( jPrime != 0 && TableSize % Primes[jPrime] == 0 ) continue; int Upper = Primes[jPrime]; if( Lower <= iZone && iZone <= Upper ) { // Choose the closest lower prime number. // if( iZone - Lower <= Upper - iZone ) { m_HashPrimes[iPrime++] = Lower; } else { m_HashPrimes[iPrime++] = Upper; } break; } Lower = Upper; } } // Alternate negative and positive numbers // for( iPrime = 0; iPrime < 16; iPrime += 2 ) { m_HashPrimes[iPrime] = TableSize - m_HashPrimes[iPrime]; } // Shuffle the set of primes to reduce correlation with bits in // hash key. // for( iPrime = 0; iPrime < 16 - 1; iPrime++ ) { int Pick = RANDOM_LONG( 0, 15 - iPrime); int Temp = m_HashPrimes[Pick]; m_HashPrimes[Pick] = m_HashPrimes[15 - iPrime]; m_HashPrimes[15 - iPrime] = Temp; } } // Renumber nodes so that nodes that link together are together. // #define UNNUMBERED_NODE -1 void CGraph::SortNodes( void ) { // We are using m_iPreviousNode to be the new node number. // After assigning new node numbers to everything, we move // things and patchup the links. // int i, iNodeCnt = 0; m_pNodes[0].m_iPreviousNode = iNodeCnt++; for( i = 1; i < m_cNodes; i++ ) { m_pNodes[i].m_iPreviousNode = UNNUMBERED_NODE; } for( i = 0; i < m_cNodes; i++ ) { // Run through all of this node's neighbors // for( int j = 0; j < m_pNodes[i].m_cNumLinks; j++ ) { int iDestNode = INodeLink( i, j ); if( m_pNodes[iDestNode].m_iPreviousNode == UNNUMBERED_NODE ) { m_pNodes[iDestNode].m_iPreviousNode = iNodeCnt++; } } } // Assign remaining node numbers to unlinked nodes. // for( i = 0; i < m_cNodes; i++ ) { if( m_pNodes[i].m_iPreviousNode == UNNUMBERED_NODE ) { m_pNodes[i].m_iPreviousNode = iNodeCnt++; } } // Alter links to reflect new node numbers. // for( i = 0; i < m_cLinks; i++ ) { m_pLinkPool[i].m_iSrcNode = m_pNodes[m_pLinkPool[i].m_iSrcNode].m_iPreviousNode; m_pLinkPool[i].m_iDestNode = m_pNodes[m_pLinkPool[i].m_iDestNode].m_iPreviousNode; } // Rearrange nodes to reflect new node numbering. // for( i = 0; i < m_cNodes; i++ ) { while( m_pNodes[i].m_iPreviousNode != i ) { // Move current node off to where it should be, and bring // that other node back into the current slot. // int iDestNode = m_pNodes[i].m_iPreviousNode; CNode TempNode = m_pNodes[iDestNode]; m_pNodes[iDestNode] = m_pNodes[i]; m_pNodes[i] = TempNode; } } } void CGraph::BuildLinkLookups( void ) { int i; m_nHashLinks = 3 * m_cLinks / 2 + 3; HashChoosePrimes( m_nHashLinks ); m_pHashLinks = (short *)calloc( sizeof(short), m_nHashLinks ); if( !m_pHashLinks ) { ALERT( at_aiconsole, "Couldn't allocated Link Lookup Table.\n" ); return; } for( i = 0; i < m_nHashLinks; i++ ) { m_pHashLinks[i] = ENTRY_STATE_EMPTY; } for( i = 0; i < m_cLinks; i++ ) { CLink &link = Link( i ); HashInsert( link.m_iSrcNode, link.m_iDestNode, i ); } #if 0 for( i = 0; i < m_cLinks; i++ ) { CLink &link = Link( i ); int iKey; HashSearch( link.m_iSrcNode, link.m_iDestNode, iKey ); if( iKey != i ) { ALERT( at_aiconsole, "HashLinks don't match (%d versus %d)\n", i, iKey ); } } #endif } void CGraph::BuildRegionTables( void ) { int i, j; if( m_di ) free( m_di ); // Go ahead and setup for range searching the nodes for FindNearestNodes // m_di = (DIST_INFO *)calloc( sizeof(DIST_INFO), m_cNodes ); if( !m_di ) { ALERT( at_aiconsole, "Couldn't allocated node ordering array.\n" ); return; } // Calculate regions for all the nodes. // // for( i = 0; i < 3; i++ ) { m_RegionMin[i] = 999999999.0; // just a big number out there; m_RegionMax[i] = -999999999.0; // just a big number out there; } for( i = 0; i < m_cNodes; i++ ) { if( m_pNodes[i].m_vecOrigin.x < m_RegionMin[0] ) m_RegionMin[0] = m_pNodes[i].m_vecOrigin.x; if( m_pNodes[i].m_vecOrigin.y < m_RegionMin[1] ) m_RegionMin[1] = m_pNodes[i].m_vecOrigin.y; if( m_pNodes[i].m_vecOrigin.z < m_RegionMin[2] ) m_RegionMin[2] = m_pNodes[i].m_vecOrigin.z; if( m_pNodes[i].m_vecOrigin.x > m_RegionMax[0] ) m_RegionMax[0] = m_pNodes[i].m_vecOrigin.x; if( m_pNodes[i].m_vecOrigin.y > m_RegionMax[1] ) m_RegionMax[1] = m_pNodes[i].m_vecOrigin.y; if( m_pNodes[i].m_vecOrigin.z > m_RegionMax[2] ) m_RegionMax[2] = m_pNodes[i].m_vecOrigin.z; } for( i = 0; i < m_cNodes; i++ ) { m_pNodes[i].m_Region[0] = CALC_RANGE( m_pNodes[i].m_vecOrigin.x, m_RegionMin[0], m_RegionMax[0] ); m_pNodes[i].m_Region[1] = CALC_RANGE( m_pNodes[i].m_vecOrigin.y, m_RegionMin[1], m_RegionMax[1] ); m_pNodes[i].m_Region[2] = CALC_RANGE( m_pNodes[i].m_vecOrigin.z, m_RegionMin[2], m_RegionMax[2] ); } for( i = 0; i < 3; i++ ) { for( j = 0; j < NUM_RANGES; j++ ) { m_RangeStart[i][j] = 255; m_RangeEnd[i][j] = 0; } for( j = 0; j < m_cNodes; j++ ) { m_di[j].m_SortedBy[i] = j; } for( j = 0; j < m_cNodes - 1; j++ ) { int jNode = m_di[j].m_SortedBy[i]; int jCodeX = m_pNodes[jNode].m_Region[0]; int jCodeY = m_pNodes[jNode].m_Region[1]; int jCodeZ = m_pNodes[jNode].m_Region[2]; int jCode; switch( i ) { case 0: jCode = ( jCodeX << 16 ) + ( jCodeY << 8 ) + jCodeZ; break; case 1: jCode = ( jCodeY << 16 ) + ( jCodeZ << 8 ) + jCodeX; break; case 2: jCode = ( jCodeZ << 16 ) + ( jCodeX << 8 ) + jCodeY; break; } for( int k = j + 1; k < m_cNodes; k++ ) { int kNode = m_di[k].m_SortedBy[i]; int kCodeX = m_pNodes[kNode].m_Region[0]; int kCodeY = m_pNodes[kNode].m_Region[1]; int kCodeZ = m_pNodes[kNode].m_Region[2]; int kCode; switch( i ) { case 0: kCode = ( kCodeX << 16 ) + ( kCodeY << 8 ) + kCodeZ; break; case 1: kCode = ( kCodeY << 16 ) + ( kCodeZ << 8 ) + kCodeX; break; case 2: kCode = ( kCodeZ << 16 ) + ( kCodeX << 8 ) + kCodeY; break; } if( kCode < jCode ) { // Swap j and k entries. // int Tmp = m_di[j].m_SortedBy[i]; m_di[j].m_SortedBy[i] = m_di[k].m_SortedBy[i]; m_di[k].m_SortedBy[i] = Tmp; } } } } // Generate lookup tables. // for( i = 0; i < m_cNodes; i++ ) { int CodeX = m_pNodes[m_di[i].m_SortedBy[0]].m_Region[0]; int CodeY = m_pNodes[m_di[i].m_SortedBy[1]].m_Region[1]; int CodeZ = m_pNodes[m_di[i].m_SortedBy[2]].m_Region[2]; if( i < m_RangeStart[0][CodeX] ) { m_RangeStart[0][CodeX] = i; } if( i < m_RangeStart[1][CodeY] ) { m_RangeStart[1][CodeY] = i; } if( i < m_RangeStart[2][CodeZ] ) { m_RangeStart[2][CodeZ] = i; } if( m_RangeEnd[0][CodeX] < i ) { m_RangeEnd[0][CodeX] = i; } if( m_RangeEnd[1][CodeY] < i ) { m_RangeEnd[1][CodeY] = i; } if( m_RangeEnd[2][CodeZ] < i ) { m_RangeEnd[2][CodeZ] = i; } } // Initialize the cache. // memset( m_Cache, 0, sizeof(m_Cache) ); } void CGraph::ComputeStaticRoutingTables( void ) { int iFrom; int nRoutes = m_cNodes * m_cNodes; #define FROM_TO(x,y) ( ( x ) * m_cNodes + ( y ) ) short *Routes = new short[nRoutes]; int *pMyPath = new int[m_cNodes]; unsigned short *BestNextNodes = new unsigned short[m_cNodes]; signed char *pRoute = new signed char[m_cNodes*2]; if( Routes && pMyPath && BestNextNodes && pRoute ) { int nTotalCompressedSize = 0; for( int iHull = 0; iHull < MAX_NODE_HULLS; iHull++ ) { for( int iCap = 0; iCap < 2; iCap++ ) { int iCapMask; switch( iCap ) { case 0: iCapMask = 0; break; case 1: iCapMask = bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE; break; } // Initialize Routing table to uncalculated. // for( iFrom = 0; iFrom < m_cNodes; iFrom++ ) { for( int iTo = 0; iTo < m_cNodes; iTo++ ) { Routes[FROM_TO( iFrom, iTo )] = -1; } } for( iFrom = 0; iFrom < m_cNodes; iFrom++ ) { for( int iTo = m_cNodes - 1; iTo >= 0; iTo-- ) { if( Routes[FROM_TO( iFrom, iTo )] != -1 ) continue; int cPathSize = FindShortestPath( pMyPath, iFrom, iTo, iHull, iCapMask ); // Use the computed path to update the routing table. // if( cPathSize > 1 ) { for( int iNode = 0; iNode < cPathSize - 1; iNode++ ) { int iStart = pMyPath[iNode]; int iNext = pMyPath[iNode + 1]; for( int iNode1 = iNode + 1; iNode1 < cPathSize; iNode1++ ) { int iEnd = pMyPath[iNode1]; Routes[FROM_TO(iStart, iEnd)] = iNext; } } #if 0 // Well, at first glance, this should work, but actually it's safer // to be told explictly that you can take a series of node in a // particular direction. Some links don't appear to have links in // the opposite direction. // for( iNode = cPathSize-1; iNode >= 1; iNode-- ) { int iStart = pMyPath[iNode]; int iNext = pMyPath[iNode - 1]; for( int iNode1 = iNode-1; iNode1 >= 0; iNode1-- ) { int iEnd = pMyPath[iNode1]; Routes[FROM_TO( iStart, iEnd )] = iNext; } } #endif } else { Routes[FROM_TO( iFrom, iTo )] = iFrom; Routes[FROM_TO( iTo, iFrom )] = iTo; } } } for( iFrom = 0; iFrom < m_cNodes; iFrom++ ) { for( int iTo = 0; iTo < m_cNodes; iTo++ ) { BestNextNodes[iTo] = Routes[FROM_TO( iFrom, iTo )]; } // Compress this node's routing table. // int iLastNode = 9999999; // just really big. int cSequence = 0; int cRepeats = 0; int CompressedSize = 0; signed char *p = pRoute; for( int i = 0; i < m_cNodes; i++ ) { BOOL CanRepeat = ( ( BestNextNodes[i] == iLastNode ) && cRepeats < 127 ); BOOL CanSequence = ( BestNextNodes[i] == i && cSequence < 128 ); if( cRepeats ) { if( CanRepeat ) { cRepeats++; } else { // Emit the repeat phrase. // CompressedSize += 2; // (count-1, iLastNode-i) *p++ = cRepeats - 1; int a = iLastNode - iFrom; int b = iLastNode - iFrom + m_cNodes; int c = iLastNode - iFrom - m_cNodes; if( -128 <= a && a <= 127 ) { *p++ = a; } else if( -128 <= b && b <= 127 ) { *p++ = b; } else if( -128 <= c && c <= 127 ) { *p++ = c; } else { ALERT( at_aiconsole, "Nodes need sorting (%d,%d)!\n", iLastNode, iFrom ); } cRepeats = 0; if( CanSequence ) { // Start a sequence. // cSequence++; } else { // Start another repeat. // cRepeats++; } } } else if( cSequence ) { if( CanSequence ) { cSequence++; } else { // It may be advantageous to combine // a single-entry sequence phrase with the // next repeat phrase. // if( cSequence == 1 && CanRepeat ) { // Combine with repeat phrase. // cRepeats = 2; cSequence = 0; } else { // Emit the sequence phrase. // CompressedSize += 1; // (-count) *p++ = -cSequence; cSequence = 0; // Start a repeat sequence. // cRepeats++; } } } else { if( CanSequence ) { // Start a sequence phrase. // cSequence++; } else { // Start a repeat sequence. // cRepeats++; } } iLastNode = BestNextNodes[i]; } if( cRepeats ) { // Emit the repeat phrase. // CompressedSize += 2; *p++ = cRepeats - 1; #if 0 iLastNode = iFrom + *pRoute; if( iLastNode >= m_cNodes ) iLastNode -= m_cNodes; else if( iLastNode < 0 ) iLastNode += m_cNodes; #endif int a = iLastNode - iFrom; int b = iLastNode - iFrom + m_cNodes; int c = iLastNode - iFrom - m_cNodes; if( -128 <= a && a <= 127 ) { *p++ = a; } else if( -128 <= b && b <= 127 ) { *p++ = b; } else if( -128 <= c && c <= 127 ) { *p++ = c; } else { ALERT( at_aiconsole, "Nodes need sorting (%d,%d)!\n", iLastNode, iFrom ); } } if( cSequence ) { // Emit the Sequence phrase. // CompressedSize += 1; *p++ = -cSequence; } // Go find a place to store this thing and point to it. // int nRoute = p - pRoute; if( m_pRouteInfo ) { int i; for( i = 0; i < m_nRouteInfo - nRoute; i++ ) { if( memcmp( m_pRouteInfo + i, pRoute, nRoute ) == 0 ) { break; } } if( i < m_nRouteInfo - nRoute ) { m_pNodes[iFrom].m_pNextBestNode[iHull][iCap] = i; } else { signed char *Tmp = (signed char *)calloc( sizeof(signed char), ( m_nRouteInfo + nRoute ) ); memcpy( Tmp, m_pRouteInfo, m_nRouteInfo ); free( m_pRouteInfo ); m_pRouteInfo = Tmp; memcpy( m_pRouteInfo + m_nRouteInfo, pRoute, nRoute ); m_pNodes[iFrom].m_pNextBestNode[iHull][iCap] = m_nRouteInfo; m_nRouteInfo += nRoute; nTotalCompressedSize += CompressedSize; } } else { m_nRouteInfo = nRoute; m_pRouteInfo = (signed char *)calloc( sizeof(signed char), nRoute ); memcpy( m_pRouteInfo, pRoute, nRoute ); m_pNodes[iFrom].m_pNextBestNode[iHull][iCap] = 0; nTotalCompressedSize += CompressedSize; } } } } ALERT( at_aiconsole, "Size of Routes = %d\n", nTotalCompressedSize ); } if( Routes ) delete[] Routes; if( BestNextNodes ) delete[] BestNextNodes; if( pRoute ) delete[] pRoute; if( pMyPath ) delete[] pMyPath; Routes = 0; BestNextNodes = 0; pRoute = 0; pMyPath = 0; #if 0 TestRoutingTables(); #endif m_fRoutingComplete = TRUE; } // Test those routing tables. Doesn't really work, yet. // void CGraph::TestRoutingTables( void ) { int i; int *pMyPath = new int[m_cNodes]; int *pMyPath2 = new int[m_cNodes]; if( pMyPath && pMyPath2 ) { for( int iHull = 0; iHull < MAX_NODE_HULLS; iHull++ ) { for( int iCap = 0; iCap < 2; iCap++ ) { int iCapMask; switch( iCap ) { case 0: iCapMask = 0; break; case 1: iCapMask = bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE; break; } for( int iFrom = 0; iFrom < m_cNodes; iFrom++ ) { for( int iTo = 0; iTo < m_cNodes; iTo++ ) { m_fRoutingComplete = FALSE; int cPathSize1 = FindShortestPath( pMyPath, iFrom, iTo, iHull, iCapMask ); m_fRoutingComplete = TRUE; int cPathSize2 = FindShortestPath( pMyPath2, iFrom, iTo, iHull, iCapMask ); // Unless we can look at the entire path, we can verify that it's correct. // if( cPathSize2 == MAX_PATH_SIZE ) continue; // Compare distances. // #if 1 float flDistance1 = 0.0; for( i = 0; i < cPathSize1 - 1; i++ ) { // Find the link from pMyPath[i] to pMyPath[i+1] // if( pMyPath[i] == pMyPath[i + 1] ) continue; int iVisitNode; BOOL bFound = FALSE; for( int iLink = 0; iLink < m_pNodes[pMyPath[i]].m_cNumLinks; iLink++ ) { iVisitNode = INodeLink( pMyPath[i], iLink ); if( iVisitNode == pMyPath[i + 1] ) { flDistance1 += m_pLinkPool[m_pNodes[pMyPath[i]].m_iFirstLink + iLink].m_flWeight; bFound = TRUE; break; } } if( !bFound ) { ALERT( at_aiconsole, "No link.\n" ); } } float flDistance2 = 0.0; for( i = 0; i < cPathSize2 - 1; i++ ) { // Find the link from pMyPath2[i] to pMyPath2[i+1] // if( pMyPath2[i] == pMyPath2[i + 1] ) continue; int iVisitNode; BOOL bFound = FALSE; for( int iLink = 0; iLink < m_pNodes[pMyPath2[i]].m_cNumLinks; iLink++ ) { iVisitNode = INodeLink( pMyPath2[i], iLink ); if( iVisitNode == pMyPath2[i + 1] ) { flDistance2 += m_pLinkPool[m_pNodes[pMyPath2[i]].m_iFirstLink + iLink].m_flWeight; bFound = TRUE; break; } } if( !bFound ) { ALERT( at_aiconsole, "No link.\n" ); } } if( fabs( flDistance1 - flDistance2 ) > 0.1f ) { #else if( cPathSize1 != cPathSize2 || memcmp( pMyPath, pMyPath2, sizeof(int) * cPathSize1 ) != 0 ) { #endif ALERT( at_aiconsole, "Routing is inconsistent!!!\n" ); ALERT( at_aiconsole, "(%d to %d |%d/%d)1:", iFrom, iTo, iHull, iCap ); for( i = 0; i < cPathSize1; i++ ) { ALERT( at_aiconsole, "%d ", pMyPath[i] ); } ALERT( at_aiconsole, "\n(%d to %d |%d/%d)2:", iFrom, iTo, iHull, iCap ); for( i = 0; i < cPathSize2; i++ ) { ALERT( at_aiconsole, "%d ", pMyPath2[i] ); } ALERT( at_aiconsole, "\n" ); m_fRoutingComplete = FALSE; cPathSize1 = FindShortestPath( pMyPath, iFrom, iTo, iHull, iCapMask ); m_fRoutingComplete = TRUE; cPathSize2 = FindShortestPath( pMyPath2, iFrom, iTo, iHull, iCapMask ); goto EnoughSaid; } } } } } } EnoughSaid: if( pMyPath ) delete[] pMyPath; if( pMyPath2 ) delete[] pMyPath2; pMyPath = 0; pMyPath2 = 0; } //========================================================= // CNodeViewer - Draws a graph of the shorted path from all nodes // to current location (typically the player). It then draws // as many connects as it can per frame, trying not to overflow the buffer //========================================================= class CNodeViewer : public CBaseEntity { public: void Spawn( void ); int m_iBaseNode; int m_iDraw; int m_nVisited; int m_aFrom[128]; int m_aTo[128]; int m_iHull; int m_afNodeType; Vector m_vecColor; void FindNodeConnections( int iNode ); void AddNode( int iFrom, int iTo ); void EXPORT DrawThink( void ); }; LINK_ENTITY_TO_CLASS( node_viewer, CNodeViewer ) LINK_ENTITY_TO_CLASS( node_viewer_human, CNodeViewer ) LINK_ENTITY_TO_CLASS( node_viewer_fly, CNodeViewer ) LINK_ENTITY_TO_CLASS( node_viewer_large, CNodeViewer ) void CNodeViewer::Spawn() { if( !WorldGraph.m_fGraphPresent || !WorldGraph.m_fGraphPointersSet ) { // protect us in the case that the node graph isn't available or built ALERT( at_console, "Graph not ready!\n" ); UTIL_Remove( this ); return; } if( FClassnameIs( pev, "node_viewer_fly" ) ) { m_iHull = NODE_FLY_HULL; m_afNodeType = bits_NODE_AIR; m_vecColor = Vector( 160, 100, 255 ); } else if( FClassnameIs( pev, "node_viewer_large" ) ) { m_iHull = NODE_LARGE_HULL; m_afNodeType = bits_NODE_LAND | bits_NODE_WATER; m_vecColor = Vector( 100, 255, 160 ); } else { m_iHull = NODE_HUMAN_HULL; m_afNodeType = bits_NODE_LAND | bits_NODE_WATER; m_vecColor = Vector( 255, 160, 100 ); } m_iBaseNode = WorldGraph.FindNearestNode( pev->origin, m_afNodeType ); if( m_iBaseNode < 0 ) { ALERT( at_console, "No nearby node\n" ); return; } m_nVisited = 0; ALERT( at_aiconsole, "basenode %d\n", m_iBaseNode ); if( WorldGraph.m_cNodes < 128 ) { for( int i = 0; i < WorldGraph.m_cNodes; i++ ) { AddNode( i, WorldGraph.NextNodeInRoute( i, m_iBaseNode, m_iHull, 0 ) ); } } else { // do a depth traversal FindNodeConnections( m_iBaseNode ); int start = 0; int end; do{ end = m_nVisited; // ALERT( at_console, "%d :", m_nVisited ); for( end = m_nVisited; start < end; start++ ) { FindNodeConnections( m_aFrom[start] ); FindNodeConnections( m_aTo[start] ); } } while( end != m_nVisited ); } ALERT( at_aiconsole, "%d nodes\n", m_nVisited ); m_iDraw = 0; SetThink( &CNodeViewer::DrawThink ); SetNextThink( 0 ); } void CNodeViewer::FindNodeConnections( int iNode ) { AddNode( iNode, WorldGraph.NextNodeInRoute( iNode, m_iBaseNode, m_iHull, 0 ) ); for( int i = 0; i < WorldGraph.m_pNodes[iNode].m_cNumLinks; i++ ) { CLink *pToLink = &WorldGraph.NodeLink( iNode, i ); AddNode( pToLink->m_iDestNode, WorldGraph.NextNodeInRoute( pToLink->m_iDestNode, m_iBaseNode, m_iHull, 0 ) ); } } void CNodeViewer::AddNode( int iFrom, int iTo ) { if( m_nVisited >= 128 ) { return; } else { if( iFrom == iTo ) return; for( int i = 0; i < m_nVisited; i++ ) { if( m_aFrom[i] == iFrom && m_aTo[i] == iTo ) return; if( m_aFrom[i] == iTo && m_aTo[i] == iFrom ) return; } m_aFrom[m_nVisited] = iFrom; m_aTo[m_nVisited] = iTo; m_nVisited++; } } void CNodeViewer::DrawThink( void ) { SetNextThink( 0 ); for( int i = 0; i < 10; i++ ) { if( m_iDraw == m_nVisited ) { UTIL_Remove( this ); return; } extern short g_sModelIndexLaser; MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY ); WRITE_BYTE( TE_BEAMPOINTS ); WRITE_COORD( WorldGraph.m_pNodes[m_aFrom[m_iDraw]].m_vecOrigin.x ); WRITE_COORD( WorldGraph.m_pNodes[m_aFrom[m_iDraw]].m_vecOrigin.y ); WRITE_COORD( WorldGraph.m_pNodes[m_aFrom[m_iDraw]].m_vecOrigin.z + NODE_HEIGHT ); WRITE_COORD( WorldGraph.m_pNodes[m_aTo[m_iDraw]].m_vecOrigin.x ); WRITE_COORD( WorldGraph.m_pNodes[m_aTo[m_iDraw]].m_vecOrigin.y ); WRITE_COORD( WorldGraph.m_pNodes[m_aTo[m_iDraw]].m_vecOrigin.z + NODE_HEIGHT ); WRITE_SHORT( g_sModelIndexLaser ); WRITE_BYTE( 0 ); // framerate WRITE_BYTE( 0 ); // framerate WRITE_BYTE( 250 ); // life WRITE_BYTE( 40 ); // width WRITE_BYTE( 0 ); // noise WRITE_BYTE( m_vecColor.x ); // r, g, b WRITE_BYTE( m_vecColor.y ); // r, g, b WRITE_BYTE( m_vecColor.z ); // r, g, b WRITE_BYTE( 128 ); // brightness WRITE_BYTE( 0 ); // speed MESSAGE_END(); m_iDraw++; } }