mirror of https://github.com/PurpleI2P/i2pd.git
I2P: End-to-End encrypted and anonymous Internet
https://i2pd.website/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.1 KiB
121 lines
4.1 KiB
#include <memory> |
|
#include <cryptopp/integer.h> |
|
#include <cryptopp/eccrypto.h> |
|
#include "util/Log.h" |
|
#include "Signature.h" |
|
|
|
namespace i2p |
|
{ |
|
namespace crypto |
|
{ |
|
class Ed25519 |
|
{ |
|
public: |
|
|
|
Ed25519 () |
|
{ |
|
q = CryptoPP::Integer::Power2 (255) - CryptoPP::Integer (19); // 2^255-19 |
|
l = CryptoPP::Integer::Power2 (252) + CryptoPP::Integer ("27742317777372353535851937790883648493"); |
|
// 2^252 + 27742317777372353535851937790883648493 |
|
d = CryptoPP::Integer (-121665) * CryptoPP::Integer (121666).InverseMod (q); // -121665/121666 |
|
I = a_exp_b_mod_c (CryptoPP::Integer::Two (), (q - CryptoPP::Integer::One ()).DividedBy (4), q); |
|
B = DecodePoint (CryptoPP::Integer (4)*CryptoPP::Integer (5).InverseMod (q)); |
|
} |
|
|
|
CryptoPP::ECP::Point DecodePublicKey (const uint8_t * key) const |
|
{ |
|
return DecodePoint (CryptoPP::Integer (key, 32)); |
|
} |
|
|
|
CryptoPP::ECP::Point GeneratePublicKey (const uint8_t * privateKey) const |
|
{ |
|
return Mul (B, CryptoPP::Integer (privateKey, 32)); |
|
} |
|
|
|
private: |
|
|
|
CryptoPP::ECP::Point Sum (const CryptoPP::ECP::Point& p1, const CryptoPP::ECP::Point& p2) const |
|
{ |
|
CryptoPP::Integer m = d*p1.x*p2.x*p1.y*p2.y, |
|
x = a_times_b_mod_c (p1.x*p2.y + p2.x*p1.y, (CryptoPP::Integer::One() + m).InverseMod (q), q), |
|
y = a_times_b_mod_c (p1.y*p2.y + p1.x*p2.x, (CryptoPP::Integer::One() - m).InverseMod (q), q); |
|
return CryptoPP::ECP::Point {x, y}; |
|
} |
|
|
|
CryptoPP::ECP::Point Mul (const CryptoPP::ECP::Point& p, const CryptoPP::Integer& e) const |
|
{ |
|
CryptoPP::ECP::Point res {0, 1}; |
|
if (!e.IsZero ()) |
|
{ |
|
auto bitCount = e.BitCount (); |
|
for (int i = bitCount - 1; i >= 0; i--) |
|
{ |
|
res = Sum (res, res); |
|
if (e.GetBit (i)) res = Sum (res, p); |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
bool IsOnCurve (const CryptoPP::ECP::Point& p) const |
|
{ |
|
auto x2 = p.x.Squared(), y2 = p.y.Squared (); |
|
return (y2 - x2 - CryptoPP::Integer::One() - d*x2*y2).Modulo (q).IsZero (); |
|
} |
|
|
|
CryptoPP::Integer RecoverX (const CryptoPP::Integer& y) const |
|
{ |
|
auto y2 = y.Squared (); |
|
auto xx = (y2 - CryptoPP::Integer::One())*(d*y2 + CryptoPP::Integer::One()).InverseMod (q); |
|
auto x = a_exp_b_mod_c (xx, (q + CryptoPP::Integer (3)).DividedBy (8), q); |
|
if (!(x.Squared () - xx).Modulo (q).IsZero ()) |
|
x = a_times_b_mod_c (x, I, q); |
|
if (x.IsOdd ()) x = q - x; |
|
return x; |
|
} |
|
|
|
CryptoPP::ECP::Point DecodePoint (const CryptoPP::Integer& y) const |
|
{ |
|
auto x = RecoverX (y); |
|
CryptoPP::ECP::Point p {x, y}; |
|
if (!IsOnCurve (p)) |
|
{ |
|
LogPrint (eLogError, "Decoded point is not on 25519"); |
|
return CryptoPP::ECP::Point {0, 1}; |
|
} |
|
return p; |
|
} |
|
|
|
private: |
|
|
|
CryptoPP::Integer q, l, d, I; |
|
CryptoPP::ECP::Point B; // base point |
|
}; |
|
|
|
static std::unique_ptr<Ed25519> g_Ed25519; |
|
std::unique_ptr<Ed25519>& GetEd25519 () |
|
{ |
|
if (!g_Ed25519) |
|
g_Ed25519.reset (new Ed25519 ()); |
|
return g_Ed25519; |
|
} |
|
|
|
|
|
EDDSA25519Verifier::EDDSA25519Verifier (const uint8_t * signingKey): |
|
m_PublicKey (GetEd25519 ()->DecodePublicKey (signingKey)) |
|
{ |
|
} |
|
|
|
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const |
|
{ |
|
return true; // TODO: |
|
} |
|
|
|
void EDDSA25519Signer::Sign (CryptoPP::RandomNumberGenerator& rnd, const uint8_t * buf, int len, uint8_t * signature) const |
|
{ |
|
// TODO |
|
} |
|
} |
|
} |
|
|
|
|
|
|