1
0
mirror of https://github.com/PurpleI2P/i2pd.git synced 2025-01-01 20:22:19 +00:00
i2pd/Crypto.cpp
2016-12-20 14:10:14 -05:00

842 lines
24 KiB
C++

#include <string.h>
#include <string>
#include <vector>
#include <mutex>
#include <memory>
#include <openssl/dh.h>
#include <openssl/md5.h>
#include <openssl/crypto.h>
#include "TunnelBase.h"
#include <openssl/ssl.h>
#include "Log.h"
#include "Crypto.h"
namespace i2p
{
namespace crypto
{
const uint8_t elgp_[256]=
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37,
0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6,
0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6,
0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05,
0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB,
0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04,
0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B,
0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F,
0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18,
0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10,
0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const int elgg_ = 2;
const uint8_t dsap_[128]=
{
0x9c, 0x05, 0xb2, 0xaa, 0x96, 0x0d, 0x9b, 0x97, 0xb8, 0x93, 0x19, 0x63, 0xc9, 0xcc, 0x9e, 0x8c,
0x30, 0x26, 0xe9, 0xb8, 0xed, 0x92, 0xfa, 0xd0, 0xa6, 0x9c, 0xc8, 0x86, 0xd5, 0xbf, 0x80, 0x15,
0xfc, 0xad, 0xae, 0x31, 0xa0, 0xad, 0x18, 0xfa, 0xb3, 0xf0, 0x1b, 0x00, 0xa3, 0x58, 0xde, 0x23,
0x76, 0x55, 0xc4, 0x96, 0x4a, 0xfa, 0xa2, 0xb3, 0x37, 0xe9, 0x6a, 0xd3, 0x16, 0xb9, 0xfb, 0x1c,
0xc5, 0x64, 0xb5, 0xae, 0xc5, 0xb6, 0x9a, 0x9f, 0xf6, 0xc3, 0xe4, 0x54, 0x87, 0x07, 0xfe, 0xf8,
0x50, 0x3d, 0x91, 0xdd, 0x86, 0x02, 0xe8, 0x67, 0xe6, 0xd3, 0x5d, 0x22, 0x35, 0xc1, 0x86, 0x9c,
0xe2, 0x47, 0x9c, 0x3b, 0x9d, 0x54, 0x01, 0xde, 0x04, 0xe0, 0x72, 0x7f, 0xb3, 0x3d, 0x65, 0x11,
0x28, 0x5d, 0x4c, 0xf2, 0x95, 0x38, 0xd9, 0xe3, 0xb6, 0x05, 0x1f, 0x5b, 0x22, 0xcc, 0x1c, 0x93
};
const uint8_t dsaq_[20]=
{
0xa5, 0xdf, 0xc2, 0x8f, 0xef, 0x4c, 0xa1, 0xe2, 0x86, 0x74, 0x4c, 0xd8, 0xee, 0xd9, 0xd2, 0x9d,
0x68, 0x40, 0x46, 0xb7
};
const uint8_t dsag_[128]=
{
0x0c, 0x1f, 0x4d, 0x27, 0xd4, 0x00, 0x93, 0xb4, 0x29, 0xe9, 0x62, 0xd7, 0x22, 0x38, 0x24, 0xe0,
0xbb, 0xc4, 0x7e, 0x7c, 0x83, 0x2a, 0x39, 0x23, 0x6f, 0xc6, 0x83, 0xaf, 0x84, 0x88, 0x95, 0x81,
0x07, 0x5f, 0xf9, 0x08, 0x2e, 0xd3, 0x23, 0x53, 0xd4, 0x37, 0x4d, 0x73, 0x01, 0xcd, 0xa1, 0xd2,
0x3c, 0x43, 0x1f, 0x46, 0x98, 0x59, 0x9d, 0xda, 0x02, 0x45, 0x18, 0x24, 0xff, 0x36, 0x97, 0x52,
0x59, 0x36, 0x47, 0xcc, 0x3d, 0xdc, 0x19, 0x7d, 0xe9, 0x85, 0xe4, 0x3d, 0x13, 0x6c, 0xdc, 0xfc,
0x6b, 0xd5, 0x40, 0x9c, 0xd2, 0xf4, 0x50, 0x82, 0x11, 0x42, 0xa5, 0xe6, 0xf8, 0xeb, 0x1c, 0x3a,
0xb5, 0xd0, 0x48, 0x4b, 0x81, 0x29, 0xfc, 0xf1, 0x7b, 0xce, 0x4f, 0x7f, 0x33, 0x32, 0x1c, 0x3c,
0xb3, 0xdb, 0xb1, 0x4a, 0x90, 0x5e, 0x7b, 0x2b, 0x3e, 0x93, 0xbe, 0x47, 0x08, 0xcb, 0xcc, 0x82
};
const int rsae_ = 65537;
struct CryptoConstants
{
// DH/ElGamal
BIGNUM * elgp;
BIGNUM * elgg;
// DSA
BIGNUM * dsap;
BIGNUM * dsaq;
BIGNUM * dsag;
// RSA
BIGNUM * rsae;
CryptoConstants (const uint8_t * elgp_, int elgg_, const uint8_t * dsap_,
const uint8_t * dsaq_, const uint8_t * dsag_, int rsae_)
{
elgp = BN_new ();
BN_bin2bn (elgp_, 256, elgp);
elgg = BN_new ();
BN_set_word (elgg, elgg_);
dsap = BN_new ();
BN_bin2bn (dsap_, 128, dsap);
dsaq = BN_new ();
BN_bin2bn (dsaq_, 20, dsaq);
dsag = BN_new ();
BN_bin2bn (dsag_, 128, dsag);
rsae = BN_new ();
BN_set_word (rsae, rsae_);
}
~CryptoConstants ()
{
BN_free (elgp); BN_free (elgg); BN_free (dsap); BN_free (dsaq); BN_free (dsag); BN_free (rsae);
}
};
static const CryptoConstants& GetCryptoConstants ()
{
static CryptoConstants cryptoConstants (elgp_, elgg_, dsap_, dsaq_, dsag_, rsae_);
return cryptoConstants;
}
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len)
{
int offset = len - BN_num_bytes (bn);
if (offset < 0) return false;
BN_bn2bin (bn, buf + offset);
memset (buf, 0, offset);
return true;
}
// RSA
#define rsae GetCryptoConstants ().rsae
const BIGNUM * GetRSAE ()
{
return rsae;
}
// DSA
#define dsap GetCryptoConstants ().dsap
#define dsaq GetCryptoConstants ().dsaq
#define dsag GetCryptoConstants ().dsag
DSA * CreateDSA ()
{
DSA * dsa = DSA_new ();
DSA_set0_pqg (dsa, BN_dup (dsap), BN_dup (dsaq), BN_dup (dsag));
DSA_set0_key (dsa, NULL, NULL);
return dsa;
}
// DH/ElGamal
const int ELGAMAL_SHORT_EXPONENT_NUM_BITS = 226;
const int ELGAMAL_SHORT_EXPONENT_NUM_BYTES = ELGAMAL_SHORT_EXPONENT_NUM_BITS/8+1;
const int ELGAMAL_FULL_EXPONENT_NUM_BITS = 2048;
const int ELGAMAL_FULL_EXPONENT_NUM_BYTES = ELGAMAL_FULL_EXPONENT_NUM_BITS/8;
#define elgp GetCryptoConstants ().elgp
#define elgg GetCryptoConstants ().elgg
static BN_MONT_CTX * g_MontCtx = nullptr;
static void PrecalculateElggTable (BIGNUM * table[][255], int len) // table is len's array of array of 255 bignums
{
if (len <= 0) return;
BN_CTX * ctx = BN_CTX_new ();
g_MontCtx = BN_MONT_CTX_new ();
BN_MONT_CTX_set (g_MontCtx, elgp, ctx);
auto montCtx = BN_MONT_CTX_new ();
BN_MONT_CTX_copy (montCtx, g_MontCtx);
for (int i = 0; i < len; i++)
{
table[i][0] = BN_new ();
if (!i)
BN_to_montgomery (table[0][0], elgg, montCtx, ctx);
else
BN_mod_mul_montgomery (table[i][0], table[i-1][254], table[i-1][0], montCtx, ctx);
for (int j = 1; j < 255; j++)
{
table[i][j] = BN_new ();
BN_mod_mul_montgomery (table[i][j], table[i][j-1], table[i][0], montCtx, ctx);
}
}
BN_MONT_CTX_free (montCtx);
BN_CTX_free (ctx);
}
static void DestroyElggTable (BIGNUM * table[][255], int len)
{
for (int i = 0; i < len; i++)
for (int j = 0; j < 255; j++)
{
BN_free (table[i][j]);
table[i][j] = nullptr;
}
BN_MONT_CTX_free (g_MontCtx);
}
static BIGNUM * ElggPow (const uint8_t * exp, int len, BIGNUM * table[][255], BN_CTX * ctx)
// exp is in Big Endian
{
if (len <= 0) return nullptr;
auto montCtx = BN_MONT_CTX_new ();
BN_MONT_CTX_copy (montCtx, g_MontCtx);
BIGNUM * res = nullptr;
for (int i = 0; i < len; i++)
{
if (res)
{
if (exp[i])
BN_mod_mul_montgomery (res, res, table[len-1-i][exp[i]-1], montCtx, ctx);
}
else if (exp[i])
res = BN_dup (table[len-i-1][exp[i]-1]);
}
if (res)
BN_from_montgomery (res, res, montCtx, ctx);
BN_MONT_CTX_free (montCtx);
return res;
}
static BIGNUM * ElggPow (const BIGNUM * exp, BIGNUM * table[][255], BN_CTX * ctx)
{
auto len = BN_num_bytes (exp);
uint8_t * buf = new uint8_t[len];
BN_bn2bin (exp, buf);
auto ret = ElggPow (buf, len, table, ctx);
delete[] buf;
return ret;
}
static BIGNUM * (* g_ElggTable)[255] = nullptr;
// DH
DHKeys::DHKeys ()
{
m_DH = DH_new ();
DH_set0_pqg (m_DH, BN_dup (elgp), NULL, BN_dup (elgg));
DH_set0_key (m_DH, NULL, NULL);
}
DHKeys::~DHKeys ()
{
DH_free (m_DH);
}
void DHKeys::GenerateKeys ()
{
BIGNUM * priv_key = NULL, * pub_key = NULL;
#if !defined(__x86_64__) // use short exponent for non x64
priv_key = BN_new ();
BN_rand (priv_key, ELGAMAL_SHORT_EXPONENT_NUM_BITS, 0, 1);
#endif
if (g_ElggTable)
{
#if defined(__x86_64__)
priv_key = BN_new ();
BN_rand (priv_key, ELGAMAL_FULL_EXPONENT_NUM_BITS, 0, 1);
#endif
auto ctx = BN_CTX_new ();
pub_key = ElggPow (priv_key, g_ElggTable, ctx);
DH_set0_key (m_DH, pub_key, priv_key);
BN_CTX_free (ctx);
}
else
{
DH_set0_key (m_DH, NULL, priv_key);
DH_generate_key (m_DH);
DH_get0_key (m_DH, (const BIGNUM **)&pub_key, (const BIGNUM **)&priv_key);
}
bn2buf (pub_key, m_PublicKey, 256);
}
void DHKeys::Agree (const uint8_t * pub, uint8_t * shared)
{
BIGNUM * pk = BN_bin2bn (pub, 256, NULL);
DH_compute_key (shared, pk, m_DH);
BN_free (pk);
}
// ElGamal
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted, bool zeroPadding)
{
BN_CTX * ctx = BN_CTX_new ();
// select random k
BIGNUM * k = BN_new ();
#if defined(__x86_64__)
BN_rand (k, ELGAMAL_FULL_EXPONENT_NUM_BITS, -1, 1); // full exponent for x64
#else
BN_rand (k, ELGAMAL_SHORT_EXPONENT_NUM_BITS, -1, 1); // short exponent of 226 bits
#endif
// calculate a
BIGNUM * a;
if (g_ElggTable)
a = ElggPow (k, g_ElggTable, ctx);
else
{
a = BN_new ();
BN_mod_exp (a, elgg, k, elgp, ctx);
}
BIGNUM * y = BN_new ();
BN_bin2bn (key, 256, y);
// calculate b1
BIGNUM * b1 = BN_new ();
BN_mod_exp (b1, y, k, elgp, ctx);
BN_free (y);
BN_free (k);
// create m
uint8_t m[255];
m[0] = 0xFF;
memcpy (m+33, data, 222);
SHA256 (m+33, 222, m+1);
// calculate b = b1*m mod p
BIGNUM * b = BN_new ();
BN_bin2bn (m, 255, b);
BN_mod_mul (b, b1, b, elgp, ctx);
BN_free (b1);
// copy a and b
if (zeroPadding)
{
encrypted[0] = 0;
bn2buf (a, encrypted + 1, 256);
encrypted[257] = 0;
bn2buf (b, encrypted + 258, 256);
}
else
{
bn2buf (a, encrypted, 256);
bn2buf (b, encrypted + 256, 256);
}
BN_free (b);
BN_free (a);
BN_CTX_free (ctx);
}
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted,
uint8_t * data, bool zeroPadding)
{
BN_CTX * ctx = BN_CTX_new ();
BIGNUM * x = BN_new (), * a = BN_new (), * b = BN_new ();
BN_bin2bn (key, 256, x);
BN_sub (x, elgp, x); BN_sub_word (x, 1); // x = elgp - x- 1
BN_bin2bn (zeroPadding ? encrypted + 1 : encrypted, 256, a);
BN_bin2bn (zeroPadding ? encrypted + 258 : encrypted + 256, 256, b);
// m = b*(a^x mod p) mod p
BN_mod_exp (x, a, x, elgp, ctx);
BN_mod_mul (b, b, x, elgp, ctx);
uint8_t m[255];
bn2buf (b, m, 255);
BN_free (x); BN_free (a); BN_free (b);
BN_CTX_free (ctx);
uint8_t hash[32];
SHA256 (m + 33, 222, hash);
if (memcmp (m + 1, hash, 32))
{
LogPrint (eLogError, "ElGamal decrypt hash doesn't match");
return false;
}
memcpy (data, m + 33, 222);
return true;
}
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub)
{
#if defined(__x86_64__) || defined(__i386__) || defined(_MSC_VER)
RAND_bytes (priv, 256);
#else
// lower 226 bits (28 bytes and 2 bits) only. short exponent
auto numBytes = (ELGAMAL_SHORT_EXPONENT_NUM_BITS)/8 + 1; // 29
auto numZeroBytes = 256 - numBytes;
RAND_bytes (priv + numZeroBytes, numBytes);
memset (priv, 0, numZeroBytes);
priv[numZeroBytes] &= 0x03;
#endif
BN_CTX * ctx = BN_CTX_new ();
BIGNUM * p = BN_new ();
BN_bin2bn (priv, 256, p);
BN_mod_exp (p, elgg, p, elgp, ctx);
bn2buf (p, pub, 256);
BN_free (p);
BN_CTX_free (ctx);
}
// HMAC
const uint64_t IPAD = 0x3636363636363636;
const uint64_t OPAD = 0x5C5C5C5C5C5C5C5C;
#if defined(__AVX__)
static const uint64_t ipads[] = { IPAD, IPAD, IPAD, IPAD };
static const uint64_t opads[] = { OPAD, OPAD, OPAD, OPAD };
#endif
void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest)
// key is 32 bytes
// digest is 16 bytes
// block size is 64 bytes
{
uint64_t buf[256];
uint64_t hash[12]; // 96 bytes
#if defined(__AVX__) // for AVX
__asm__
(
"vmovups %[key], %%ymm0 \n"
"vmovups %[ipad], %%ymm1 \n"
"vmovups %%ymm1, 32(%[buf]) \n"
"vxorps %%ymm0, %%ymm1, %%ymm1 \n"
"vmovups %%ymm1, (%[buf]) \n"
"vmovups %[opad], %%ymm1 \n"
"vmovups %%ymm1, 32(%[hash]) \n"
"vxorps %%ymm0, %%ymm1, %%ymm1 \n"
"vmovups %%ymm1, (%[hash]) \n"
"vzeroall \n" // end of AVX
"movups %%xmm0, 80(%[hash]) \n" // zero last 16 bytes
:
: [key]"m"(*(const uint8_t *)key), [ipad]"m"(*ipads), [opad]"m"(*opads),
[buf]"r"(buf), [hash]"r"(hash)
: "memory", "%xmm0" // TODO: change to %ymm0 later
);
#else
// ikeypad
buf[0] = key.GetLL ()[0] ^ IPAD;
buf[1] = key.GetLL ()[1] ^ IPAD;
buf[2] = key.GetLL ()[2] ^ IPAD;
buf[3] = key.GetLL ()[3] ^ IPAD;
buf[4] = IPAD;
buf[5] = IPAD;
buf[6] = IPAD;
buf[7] = IPAD;
// okeypad
hash[0] = key.GetLL ()[0] ^ OPAD;
hash[1] = key.GetLL ()[1] ^ OPAD;
hash[2] = key.GetLL ()[2] ^ OPAD;
hash[3] = key.GetLL ()[3] ^ OPAD;
hash[4] = OPAD;
hash[5] = OPAD;
hash[6] = OPAD;
hash[7] = OPAD;
// fill last 16 bytes with zeros (first hash size assumed 32 bytes in I2P)
memset (hash + 10, 0, 16);
#endif
// concatenate with msg
memcpy (buf + 8, msg, len);
// calculate first hash
MD5((uint8_t *)buf, len + 64, (uint8_t *)(hash + 8)); // 16 bytes
// calculate digest
MD5((uint8_t *)hash, 96, digest);
}
// AES
#ifdef AESNI
#define KeyExpansion256(round0,round1) \
"pshufd $0xff, %%xmm2, %%xmm2 \n" \
"movaps %%xmm1, %%xmm4 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm1 \n" \
"pxor %%xmm2, %%xmm1 \n" \
"movaps %%xmm1, "#round0"(%[sched]) \n" \
"aeskeygenassist $0, %%xmm1, %%xmm4 \n" \
"pshufd $0xaa, %%xmm4, %%xmm2 \n" \
"movaps %%xmm3, %%xmm4 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pslldq $4, %%xmm4 \n" \
"pxor %%xmm4, %%xmm3 \n" \
"pxor %%xmm2, %%xmm3 \n" \
"movaps %%xmm3, "#round1"(%[sched]) \n"
void ECBCryptoAESNI::ExpandKey (const AESKey& key)
{
__asm__
(
"movups (%[key]), %%xmm1 \n"
"movups 16(%[key]), %%xmm3 \n"
"movaps %%xmm1, (%[sched]) \n"
"movaps %%xmm3, 16(%[sched]) \n"
"aeskeygenassist $1, %%xmm3, %%xmm2 \n"
KeyExpansion256(32,48)
"aeskeygenassist $2, %%xmm3, %%xmm2 \n"
KeyExpansion256(64,80)
"aeskeygenassist $4, %%xmm3, %%xmm2 \n"
KeyExpansion256(96,112)
"aeskeygenassist $8, %%xmm3, %%xmm2 \n"
KeyExpansion256(128,144)
"aeskeygenassist $16, %%xmm3, %%xmm2 \n"
KeyExpansion256(160,176)
"aeskeygenassist $32, %%xmm3, %%xmm2 \n"
KeyExpansion256(192,208)
"aeskeygenassist $64, %%xmm3, %%xmm2 \n"
// key expansion final
"pshufd $0xff, %%xmm2, %%xmm2 \n"
"movaps %%xmm1, %%xmm4 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pslldq $4, %%xmm4 \n"
"pxor %%xmm4, %%xmm1 \n"
"pxor %%xmm2, %%xmm1 \n"
"movups %%xmm1, 224(%[sched]) \n"
: // output
: [key]"r"((const uint8_t *)key), [sched]"r"(GetKeySchedule ()) // input
: "%xmm1", "%xmm2", "%xmm3", "%xmm4", "memory" // clogged
);
}
#define EncryptAES256(sched) \
"pxor (%["#sched"]), %%xmm0 \n" \
"aesenc 16(%["#sched"]), %%xmm0 \n" \
"aesenc 32(%["#sched"]), %%xmm0 \n" \
"aesenc 48(%["#sched"]), %%xmm0 \n" \
"aesenc 64(%["#sched"]), %%xmm0 \n" \
"aesenc 80(%["#sched"]), %%xmm0 \n" \
"aesenc 96(%["#sched"]), %%xmm0 \n" \
"aesenc 112(%["#sched"]), %%xmm0 \n" \
"aesenc 128(%["#sched"]), %%xmm0 \n" \
"aesenc 144(%["#sched"]), %%xmm0 \n" \
"aesenc 160(%["#sched"]), %%xmm0 \n" \
"aesenc 176(%["#sched"]), %%xmm0 \n" \
"aesenc 192(%["#sched"]), %%xmm0 \n" \
"aesenc 208(%["#sched"]), %%xmm0 \n" \
"aesenclast 224(%["#sched"]), %%xmm0 \n"
void ECBEncryptionAESNI::Encrypt (const ChipherBlock * in, ChipherBlock * out)
{
__asm__
(
"movups (%[in]), %%xmm0 \n"
EncryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
);
}
#define DecryptAES256(sched) \
"pxor 224(%["#sched"]), %%xmm0 \n" \
"aesdec 208(%["#sched"]), %%xmm0 \n" \
"aesdec 192(%["#sched"]), %%xmm0 \n" \
"aesdec 176(%["#sched"]), %%xmm0 \n" \
"aesdec 160(%["#sched"]), %%xmm0 \n" \
"aesdec 144(%["#sched"]), %%xmm0 \n" \
"aesdec 128(%["#sched"]), %%xmm0 \n" \
"aesdec 112(%["#sched"]), %%xmm0 \n" \
"aesdec 96(%["#sched"]), %%xmm0 \n" \
"aesdec 80(%["#sched"]), %%xmm0 \n" \
"aesdec 64(%["#sched"]), %%xmm0 \n" \
"aesdec 48(%["#sched"]), %%xmm0 \n" \
"aesdec 32(%["#sched"]), %%xmm0 \n" \
"aesdec 16(%["#sched"]), %%xmm0 \n" \
"aesdeclast (%["#sched"]), %%xmm0 \n"
void ECBDecryptionAESNI::Decrypt (const ChipherBlock * in, ChipherBlock * out)
{
__asm__
(
"movups (%[in]), %%xmm0 \n"
DecryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
: : [sched]"r"(GetKeySchedule ()), [in]"r"(in), [out]"r"(out) : "%xmm0", "memory"
);
}
#define CallAESIMC(offset) \
"movaps "#offset"(%[shed]), %%xmm0 \n" \
"aesimc %%xmm0, %%xmm0 \n" \
"movaps %%xmm0, "#offset"(%[shed]) \n"
void ECBDecryptionAESNI::SetKey (const AESKey& key)
{
ExpandKey (key); // expand encryption key first
// then invert it using aesimc
__asm__
(
CallAESIMC(16)
CallAESIMC(32)
CallAESIMC(48)
CallAESIMC(64)
CallAESIMC(80)
CallAESIMC(96)
CallAESIMC(112)
CallAESIMC(128)
CallAESIMC(144)
CallAESIMC(160)
CallAESIMC(176)
CallAESIMC(192)
CallAESIMC(208)
: : [shed]"r"(GetKeySchedule ()) : "%xmm0", "memory"
);
}
#endif
void CBCEncryption::Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"1: \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched)
"movaps %%xmm0, %%xmm1 \n"
"movups %%xmm0, (%[out]) \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"dec %[num] \n"
"jnz 1b \n"
"movups %%xmm1, (%[iv]) \n"
:
: [iv]"r"((uint8_t *)m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
: "%xmm0", "%xmm1", "cc", "memory"
);
#else
for (int i = 0; i < numBlocks; i++)
{
*m_LastBlock.GetChipherBlock () ^= in[i];
m_ECBEncryption.Encrypt (m_LastBlock.GetChipherBlock (), m_LastBlock.GetChipherBlock ());
out[i] = *m_LastBlock.GetChipherBlock ();
}
#endif
}
void CBCEncryption::Encrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
// len/16
int numBlocks = len >> 4;
if (numBlocks > 0)
Encrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
}
void CBCEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched)
"movups %%xmm0, (%[out]) \n"
"movups %%xmm0, (%[iv]) \n"
:
: [iv]"r"((uint8_t *)m_LastBlock), [sched]"r"(m_ECBEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out)
: "%xmm0", "%xmm1", "memory"
);
#else
Encrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
#endif
}
void CBCDecryption::Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"1: \n"
"movups (%[in]), %%xmm0 \n"
"movaps %%xmm0, %%xmm2 \n"
DecryptAES256(sched)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
"movaps %%xmm2, %%xmm1 \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"dec %[num] \n"
"jnz 1b \n"
"movups %%xmm1, (%[iv]) \n"
:
: [iv]"r"((uint8_t *)m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(numBlocks)
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
);
#else
for (int i = 0; i < numBlocks; i++)
{
ChipherBlock tmp = in[i];
m_ECBDecryption.Decrypt (in + i, out + i);
out[i] ^= *m_IV.GetChipherBlock ();
*m_IV.GetChipherBlock () = tmp;
}
#endif
}
void CBCDecryption::Decrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
int numBlocks = len >> 4;
if (numBlocks > 0)
Decrypt (numBlocks, (const ChipherBlock *)in, (ChipherBlock *)out);
}
void CBCDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
"movups (%[iv]), %%xmm1 \n"
"movups (%[in]), %%xmm0 \n"
"movups %%xmm0, (%[iv]) \n"
DecryptAES256(sched)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
:
: [iv]"r"((uint8_t *)m_IV), [sched]"r"(m_ECBDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out)
: "%xmm0", "%xmm1", "memory"
);
#else
Decrypt (1, (const ChipherBlock *)in, (ChipherBlock *)out);
#endif
}
void TunnelEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
// encrypt IV
"movups (%[in]), %%xmm0 \n"
EncryptAES256(sched_iv)
"movaps %%xmm0, %%xmm1 \n"
// double IV encryption
EncryptAES256(sched_iv)
"movups %%xmm0, (%[out]) \n"
// encrypt data, IV is xmm1
"1: \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"movups (%[in]), %%xmm0 \n"
"pxor %%xmm1, %%xmm0 \n"
EncryptAES256(sched_l)
"movaps %%xmm0, %%xmm1 \n"
"movups %%xmm0, (%[out]) \n"
"dec %[num] \n"
"jnz 1b \n"
:
: [sched_iv]"r"(m_IVEncryption.GetKeySchedule ()), [sched_l]"r"(m_LayerEncryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
: "%xmm0", "%xmm1", "cc", "memory"
);
#else
m_IVEncryption.Encrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
m_LayerEncryption.SetIV (out);
m_LayerEncryption.Encrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVEncryption.Encrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
#endif
}
void TunnelDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
#ifdef AESNI
__asm__
(
// decrypt IV
"movups (%[in]), %%xmm0 \n"
DecryptAES256(sched_iv)
"movaps %%xmm0, %%xmm1 \n"
// double IV encryption
DecryptAES256(sched_iv)
"movups %%xmm0, (%[out]) \n"
// decrypt data, IV is xmm1
"1: \n"
"add $16, %[in] \n"
"add $16, %[out] \n"
"movups (%[in]), %%xmm0 \n"
"movaps %%xmm0, %%xmm2 \n"
DecryptAES256(sched_l)
"pxor %%xmm1, %%xmm0 \n"
"movups %%xmm0, (%[out]) \n"
"movaps %%xmm2, %%xmm1 \n"
"dec %[num] \n"
"jnz 1b \n"
:
: [sched_iv]"r"(m_IVDecryption.GetKeySchedule ()), [sched_l]"r"(m_LayerDecryption.GetKeySchedule ()),
[in]"r"(in), [out]"r"(out), [num]"r"(63) // 63 blocks = 1008 bytes
: "%xmm0", "%xmm1", "%xmm2", "cc", "memory"
);
#else
m_IVDecryption.Decrypt ((const ChipherBlock *)in, (ChipherBlock *)out); // iv
m_LayerDecryption.SetIV (out);
m_LayerDecryption.Decrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVDecryption.Decrypt ((ChipherBlock *)out, (ChipherBlock *)out); // double iv
#endif
}
/* std::vector <std::unique_ptr<std::mutex> > m_OpenSSLMutexes;
static void OpensslLockingCallback(int mode, int type, const char * file, int line)
{
if (type > 0 && (size_t)type < m_OpenSSLMutexes.size ())
{
if (mode & CRYPTO_LOCK)
m_OpenSSLMutexes[type]->lock ();
else
m_OpenSSLMutexes[type]->unlock ();
}
}*/
void InitCrypto (bool precomputation)
{
SSL_library_init ();
/* auto numLocks = CRYPTO_num_locks();
for (int i = 0; i < numLocks; i++)
m_OpenSSLMutexes.emplace_back (new std::mutex);
CRYPTO_set_locking_callback (OpensslLockingCallback);*/
if (precomputation)
{
#if defined(__x86_64__)
g_ElggTable = new BIGNUM * [ELGAMAL_FULL_EXPONENT_NUM_BYTES][255];
PrecalculateElggTable (g_ElggTable, ELGAMAL_FULL_EXPONENT_NUM_BYTES);
#else
g_ElggTable = new BIGNUM * [ELGAMAL_SHORT_EXPONENT_NUM_BYTES][255];
PrecalculateElggTable (g_ElggTable, ELGAMAL_SHORT_EXPONENT_NUM_BYTES);
#endif
}
}
void TerminateCrypto ()
{
if (g_ElggTable)
{
DestroyElggTable (g_ElggTable,
#if defined(__x86_64__)
ELGAMAL_FULL_EXPONENT_NUM_BYTES
#else
ELGAMAL_SHORT_EXPONENT_NUM_BYTES
#endif
);
delete[] g_ElggTable; g_ElggTable = nullptr;
}
/* CRYPTO_set_locking_callback (nullptr);
m_OpenSSLMutexes.clear ();*/
}
}
}