I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

872 lines
25 KiB

/*
* Copyright (c) 2013-2021, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include "Log.h"
#include "Crypto.h"
#include "RouterContext.h"
#include "I2NPProtocol.h"
#include "NetDb.hpp"
#include "Transports.h"
#include "Config.h"
#include "HTTP.h"
#include "util.h"
using namespace i2p::data;
namespace i2p
{
namespace transport
{
template<typename Keys>
EphemeralKeysSupplier<Keys>::EphemeralKeysSupplier (int size):
m_QueueSize (size), m_IsRunning (false), m_Thread (nullptr)
{
}
template<typename Keys>
EphemeralKeysSupplier<Keys>::~EphemeralKeysSupplier ()
{
Stop ();
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Start ()
{
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&EphemeralKeysSupplier<Keys>::Run, this));
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Stop ()
{
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_IsRunning = false;
m_Acquired.notify_one ();
}
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = 0;
}
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Run ()
{
i2p::util::SetThreadName("Ephemerals");
while (m_IsRunning)
{
int num, total = 0;
while ((num = m_QueueSize - (int)m_Queue.size ()) > 0 && total < 10)
{
CreateEphemeralKeys (num);
total += num;
}
if (total >= 10)
{
LogPrint (eLogWarning, "Transports: ", total, " ephemeral keys generated at the time");
std::this_thread::sleep_for (std::chrono::seconds(1)); // take a break
}
else
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
if (!m_IsRunning) break;
m_Acquired.wait (l); // wait for element gets acquired
}
}
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::CreateEphemeralKeys (int num)
{
if (num > 0)
{
for (int i = 0; i < num; i++)
{
auto pair = std::make_shared<Keys> ();
pair->GenerateKeys ();
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Queue.push (pair);
}
}
}
template<typename Keys>
std::shared_ptr<Keys> EphemeralKeysSupplier<Keys>::Acquire ()
{
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
if (!m_Queue.empty ())
{
auto pair = m_Queue.front ();
m_Queue.pop ();
m_Acquired.notify_one ();
return pair;
}
}
// queue is empty, create new
auto pair = std::make_shared<Keys> ();
pair->GenerateKeys ();
return pair;
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Return (std::shared_ptr<Keys> pair)
{
if (pair)
{
std::unique_lock<std::mutex>l(m_AcquiredMutex);
if ((int)m_Queue.size () < 2*m_QueueSize)
m_Queue.push (pair);
}
else
LogPrint(eLogError, "Transports: return null DHKeys");
}
Transports transports;
Transports::Transports ():
m_IsOnline (true), m_IsRunning (false), m_IsNAT (true), m_CheckReserved(true), m_Thread (nullptr),
m_Service (nullptr), m_Work (nullptr), m_PeerCleanupTimer (nullptr), m_PeerTestTimer (nullptr),
m_SSUServer (nullptr), m_NTCP2Server (nullptr),
m_X25519KeysPairSupplier (15), // 15 pre-generated keys
m_TotalSentBytes(0), m_TotalReceivedBytes(0), m_TotalTransitTransmittedBytes (0),
m_InBandwidth (0), m_OutBandwidth (0), m_TransitBandwidth(0),
m_LastInBandwidthUpdateBytes (0), m_LastOutBandwidthUpdateBytes (0),
m_LastTransitBandwidthUpdateBytes (0), m_LastBandwidthUpdateTime (0)
{
}
Transports::~Transports ()
{
Stop ();
if (m_Service)
{
delete m_PeerCleanupTimer; m_PeerCleanupTimer = nullptr;
delete m_PeerTestTimer; m_PeerTestTimer = nullptr;
delete m_Work; m_Work = nullptr;
delete m_Service; m_Service = nullptr;
}
}
void Transports::Start (bool enableNTCP2, bool enableSSU)
{
if (!m_Service)
{
m_Service = new boost::asio::io_service ();
m_Work = new boost::asio::io_service::work (*m_Service);
m_PeerCleanupTimer = new boost::asio::deadline_timer (*m_Service);
m_PeerTestTimer = new boost::asio::deadline_timer (*m_Service);
}
i2p::config::GetOption("nat", m_IsNAT);
m_X25519KeysPairSupplier.Start ();
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&Transports::Run, this));
std::string ntcp2proxy; i2p::config::GetOption("ntcp2.proxy", ntcp2proxy);
i2p::http::URL proxyurl;
// create NTCP2. TODO: move to acceptor
if (enableNTCP2 || i2p::context.SupportsMesh ())
{
if(!ntcp2proxy.empty() && enableNTCP2)
{
if(proxyurl.parse(ntcp2proxy))
{
if(proxyurl.schema == "socks" || proxyurl.schema == "http")
{
m_NTCP2Server = new NTCP2Server ();
NTCP2Server::ProxyType proxytype = NTCP2Server::eSocksProxy;
if (proxyurl.schema == "http")
proxytype = NTCP2Server::eHTTPProxy;
m_NTCP2Server->UseProxy(proxytype, proxyurl.host, proxyurl.port, proxyurl.user, proxyurl.pass);
i2p::context.SetStatus (eRouterStatusProxy);
}
else
LogPrint(eLogError, "Transports: unsupported NTCP2 proxy URL ", ntcp2proxy);
}
else
LogPrint(eLogError, "Transports: invalid NTCP2 proxy url ", ntcp2proxy);
}
else
m_NTCP2Server = new NTCP2Server ();
}
// create SSU server
int ssuPort = 0;
if (enableSSU)
{
auto& addresses = context.GetRouterInfo ().GetAddresses ();
for (const auto& address: addresses)
{
if (!address) continue;
if (address->transportStyle == RouterInfo::eTransportSSU)
{
ssuPort = address->port;
m_SSUServer = new SSUServer (address->port);
break;
}
}
}
// bind to interfaces
bool ipv4; i2p::config::GetOption("ipv4", ipv4);
if (ipv4)
{
std::string address; i2p::config::GetOption("address4", address);
if (!address.empty ())
{
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (address, ec);
if (!ec)
{
if (m_NTCP2Server) m_NTCP2Server->SetLocalAddress (addr);
if (m_SSUServer) m_SSUServer->SetLocalAddress (addr);
}
}
}
bool ipv6; i2p::config::GetOption("ipv6", ipv6);
if (ipv6)
{
std::string address; i2p::config::GetOption("address6", address);
if (!address.empty ())
{
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (address, ec);
if (!ec)
{
if (m_NTCP2Server) m_NTCP2Server->SetLocalAddress (addr);
if (m_SSUServer) m_SSUServer->SetLocalAddress (addr);
}
}
}
bool ygg; i2p::config::GetOption("meshnets.yggdrasil", ygg);
if (ygg)
{
std::string address; i2p::config::GetOption("meshnets.yggaddress", address);
if (!address.empty ())
{
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (address, ec);
if (!ec && m_NTCP2Server && i2p::util::net::IsYggdrasilAddress (addr))
m_NTCP2Server->SetLocalAddress (addr);
}
}
// start servers
if (m_NTCP2Server) m_NTCP2Server->Start ();
if (m_SSUServer)
{
LogPrint (eLogInfo, "Transports: Start listening UDP port ", ssuPort);
try
{
m_SSUServer->Start ();
}
catch (std::exception& ex )
{
LogPrint(eLogError, "Transports: Failed to bind to UDP port", ssuPort);
m_SSUServer->Stop ();
delete m_SSUServer;
m_SSUServer = nullptr;
}
if (m_SSUServer) DetectExternalIP ();
}
m_PeerCleanupTimer->expires_from_now (boost::posix_time::seconds(5*SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer->async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
if (m_IsNAT)
{
m_PeerTestTimer->expires_from_now (boost::posix_time::minutes(PEER_TEST_INTERVAL));
m_PeerTestTimer->async_wait (std::bind (&Transports::HandlePeerTestTimer, this, std::placeholders::_1));
}
}
void Transports::Stop ()
{
if (m_PeerCleanupTimer) m_PeerCleanupTimer->cancel ();
if (m_PeerTestTimer) m_PeerTestTimer->cancel ();
m_Peers.clear ();
if (m_SSUServer)
{
m_SSUServer->Stop ();
delete m_SSUServer;
m_SSUServer = nullptr;
}
if (m_NTCP2Server)
{
m_NTCP2Server->Stop ();
delete m_NTCP2Server;
m_NTCP2Server = nullptr;
}
m_X25519KeysPairSupplier.Stop ();
m_IsRunning = false;
if (m_Service) m_Service->stop ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = nullptr;
}
}
void Transports::Run ()
{
i2p::util::SetThreadName("Transports");
while (m_IsRunning && m_Service)
{
try
{
m_Service->run ();
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Transports: runtime exception: ", ex.what ());
}
}
}
void Transports::UpdateBandwidth ()
{
uint64_t ts = i2p::util::GetMillisecondsSinceEpoch ();
if (m_LastBandwidthUpdateTime > 0)
{
auto delta = ts - m_LastBandwidthUpdateTime;
if (delta > 0)
{
m_InBandwidth = (m_TotalReceivedBytes - m_LastInBandwidthUpdateBytes)*1000/delta; // per second
m_OutBandwidth = (m_TotalSentBytes - m_LastOutBandwidthUpdateBytes)*1000/delta; // per second
m_TransitBandwidth = (m_TotalTransitTransmittedBytes - m_LastTransitBandwidthUpdateBytes)*1000/delta;
}
}
m_LastBandwidthUpdateTime = ts;
m_LastInBandwidthUpdateBytes = m_TotalReceivedBytes;
m_LastOutBandwidthUpdateBytes = m_TotalSentBytes;
m_LastTransitBandwidthUpdateBytes = m_TotalTransitTransmittedBytes;
}
bool Transports::IsBandwidthExceeded () const
{
auto limit = i2p::context.GetBandwidthLimit() * 1024; // convert to bytes
auto bw = std::max (m_InBandwidth, m_OutBandwidth);
return bw > limit;
}
bool Transports::IsTransitBandwidthExceeded () const
{
auto limit = i2p::context.GetTransitBandwidthLimit() * 1024; // convert to bytes
return m_TransitBandwidth > limit;
}
void Transports::SendMessage (const i2p::data::IdentHash& ident, std::shared_ptr<i2p::I2NPMessage> msg)
{
if (m_IsOnline)
SendMessages (ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > {msg });
}
void Transports::SendMessages (const i2p::data::IdentHash& ident, const std::vector<std::shared_ptr<i2p::I2NPMessage> >& msgs)
{
m_Service->post (std::bind (&Transports::PostMessages, this, ident, msgs));
}
void Transports::PostMessages (i2p::data::IdentHash ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > msgs)
{
if (ident == i2p::context.GetRouterInfo ().GetIdentHash ())
{
// we send it to ourself
for (auto& it: msgs)
m_LoopbackHandler.PutNextMessage (it);
m_LoopbackHandler.Flush ();
return;
}
if(RoutesRestricted() && !IsRestrictedPeer(ident)) return;
auto it = m_Peers.find (ident);
if (it == m_Peers.end ())
{
bool connected = false;
try
{
auto r = netdb.FindRouter (ident);
if (!r || r->IsUnreachable () || !r->IsReachableFrom (i2p::context.GetRouterInfo ())) return;
{
std::unique_lock<std::mutex> l(m_PeersMutex);
it = m_Peers.insert (std::pair<i2p::data::IdentHash, Peer>(ident, { 0, r, {},
i2p::util::GetSecondsSinceEpoch (), {} })).first;
}
connected = ConnectToPeer (ident, it->second);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Transports: PostMessages exception:", ex.what ());
}
if (!connected) return;
}
if (!it->second.sessions.empty ())
it->second.sessions.front ()->SendI2NPMessages (msgs);
else
{
if (it->second.delayedMessages.size () < MAX_NUM_DELAYED_MESSAGES)
{
for (auto& it1: msgs)
it->second.delayedMessages.push_back (it1);
}
else
{
LogPrint (eLogWarning, "Transports: delayed messages queue size to ",
ident.ToBase64 (), " exceeds ", MAX_NUM_DELAYED_MESSAGES);
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (it);
}
}
}
bool Transports::ConnectToPeer (const i2p::data::IdentHash& ident, Peer& peer)
{
if (!peer.router) // reconnect
peer.router = netdb.FindRouter (ident); // try to get new one from netdb
if (peer.router) // we have RI already
{
if (peer.numAttempts < 2) // NTCP2, 0 - ipv6, 1- ipv4
{
if (m_NTCP2Server) // we support NTCP2
{
std::shared_ptr<const RouterInfo::Address> address;
if (!peer.numAttempts) // NTCP2 ipv6
{
if (context.GetRouterInfo ().IsNTCP2V6 () && peer.router->IsNTCP2V6 ())
{
address = peer.router->GetPublishedNTCP2V6Address ();
if (address && m_CheckReserved && i2p::util::net::IsInReservedRange(address->host))
address = nullptr;
}
peer.numAttempts++;
}
if (!address && peer.numAttempts == 1) // NTCP2 ipv4
{
if (context.GetRouterInfo ().IsNTCP2 (true) && peer.router->IsNTCP2 (true) && !peer.router->IsUnreachable ())
{
address = peer.router->GetPublishedNTCP2V4Address ();
if (address && m_CheckReserved && i2p::util::net::IsInReservedRange(address->host))
address = nullptr;
}
peer.numAttempts++;
}
if (address)
{
auto s = std::make_shared<NTCP2Session> (*m_NTCP2Server, peer.router, address);
if( m_NTCP2Server->UsingProxy())
m_NTCP2Server->ConnectWithProxy(s);
else
m_NTCP2Server->Connect (s);
return true;
}
}
else
peer.numAttempts = 2; // switch to SSU
}
if (peer.numAttempts == 2 || peer.numAttempts == 3) // SSU
{
if (m_SSUServer)
{
std::shared_ptr<const RouterInfo::Address> address;
if (peer.numAttempts == 2) // SSU ipv6
{
if (context.GetRouterInfo ().IsSSUV6 () && peer.router->IsSSUV6 ())
{
address = peer.router->GetSSUV6Address ();
if (address && m_CheckReserved && i2p::util::net::IsInReservedRange(address->host))
address = nullptr;
}
peer.numAttempts++;
}
if (!address && peer.numAttempts == 3) // SSU ipv4
{
if (context.GetRouterInfo ().IsSSU (true) && peer.router->IsSSU (true))
{
address = peer.router->GetSSUAddress (true);
if (address && m_CheckReserved && i2p::util::net::IsInReservedRange(address->host))
address = nullptr;
}
peer.numAttempts++;
}
if (address && address->IsReachableSSU ())
{
if (m_SSUServer->CreateSession (peer.router, address))
return true;
}
}
else
peer.numAttempts += 2; // switch to Mesh
}
if (peer.numAttempts == 4) // Mesh
{
peer.numAttempts++;
if (m_NTCP2Server && context.GetRouterInfo ().IsMesh () && peer.router->IsMesh ())
{
auto address = peer.router->GetYggdrasilAddress ();
if (address)
{
auto s = std::make_shared<NTCP2Session> (*m_NTCP2Server, peer.router, address);
m_NTCP2Server->Connect (s);
return true;
}
}
}
LogPrint (eLogInfo, "Transports: No compatble NTCP2 or SSU addresses available");
i2p::data::netdb.SetUnreachable (ident, true); // we are here because all connection attempts failed
peer.Done ();
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (ident);
return false;
}
else // otherwise request RI
{
LogPrint (eLogInfo, "Transports: RouterInfo for ", ident.ToBase64 (), " not found, requested");
i2p::data::netdb.RequestDestination (ident, std::bind (
&Transports::RequestComplete, this, std::placeholders::_1, ident));
}
return true;
}
void Transports::RequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident)
{
m_Service->post (std::bind (&Transports::HandleRequestComplete, this, r, ident));
}
void Transports::HandleRequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, i2p::data::IdentHash ident)
{
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
if (r)
{
LogPrint (eLogDebug, "Transports: RouterInfo for ", ident.ToBase64 (), " found, Trying to connect");
it->second.router = r;
ConnectToPeer (ident, it->second);
}
else
{
LogPrint (eLogWarning, "Transports: RouterInfo not found, Failed to send messages");
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (it);
}
}
}
void Transports::DetectExternalIP ()
{
if (RoutesRestricted())
{
LogPrint(eLogInfo, "Transports: restricted routes enabled, not detecting ip");
i2p::context.SetStatus (eRouterStatusOK);
return;
}
if (m_SSUServer)
PeerTest ();
else
LogPrint (eLogError, "Transports: Can't detect external IP. SSU is not available");
}
void Transports::PeerTest (bool ipv4, bool ipv6)
{
if (RoutesRestricted() || !m_SSUServer) return;
if (ipv4 && i2p::context.SupportsV4 ())
{
LogPrint (eLogInfo, "Transports: Started peer test ipv4");
std::set<i2p::data::IdentHash> excluded;
bool statusChanged = false;
for (int i = 0; i < 5; i++)
{
auto router = i2p::data::netdb.GetRandomPeerTestRouter (true, excluded); // v4
if (router)
{
auto addr = router->GetSSUAddress (true); // ipv4
if (addr && !i2p::util::net::IsInReservedRange(addr->host))
{
if (!statusChanged)
{
statusChanged = true;
i2p::context.SetStatus (eRouterStatusTesting); // first time only
}
m_SSUServer->CreateSession (router, addr, true); // peer test v4
}
excluded.insert (router->GetIdentHash ());
}
}
if (!statusChanged)
LogPrint (eLogWarning, "Transports: Can't find routers for peer test ipv4");
}
if (ipv6 && i2p::context.SupportsV6 ())
{
LogPrint (eLogInfo, "Transports: Started peer test ipv6");
std::set<i2p::data::IdentHash> excluded;
bool statusChanged = false;
for (int i = 0; i < 5; i++)
{
auto router = i2p::data::netdb.GetRandomPeerTestRouter (false, excluded); // v6
if (router)
{
auto addr = router->GetSSUV6Address ();
if (addr && !i2p::util::net::IsInReservedRange(addr->host))
{
if (!statusChanged)
{
statusChanged = true;
i2p::context.SetStatusV6 (eRouterStatusTesting); // first time only
}
m_SSUServer->CreateSession (router, addr, true); // peer test v6
}
excluded.insert (router->GetIdentHash ());
}
}
if (!statusChanged)
LogPrint (eLogWarning, "Transports: Can't find routers for peer test ipv6");
}
}
std::shared_ptr<i2p::crypto::X25519Keys> Transports::GetNextX25519KeysPair ()
{
return m_X25519KeysPairSupplier.Acquire ();
}
void Transports::ReuseX25519KeysPair (std::shared_ptr<i2p::crypto::X25519Keys> pair)
{
m_X25519KeysPairSupplier.Return (pair);
}
void Transports::PeerConnected (std::shared_ptr<TransportSession> session)
{
m_Service->post([session, this]()
{
auto remoteIdentity = session->GetRemoteIdentity ();
if (!remoteIdentity) return;
auto ident = remoteIdentity->GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
it->second.router = nullptr; // we don't need RouterInfo after successive connect
bool sendDatabaseStore = true;
if (it->second.delayedMessages.size () > 0)
{
// check if first message is our DatabaseStore (publishing)
auto firstMsg = it->second.delayedMessages[0];
if (firstMsg && firstMsg->GetTypeID () == eI2NPDatabaseStore &&
i2p::data::IdentHash(firstMsg->GetPayload () + DATABASE_STORE_KEY_OFFSET) == i2p::context.GetIdentHash ())
sendDatabaseStore = false; // we have it in the list already
}
if (sendDatabaseStore)
session->SendLocalRouterInfo ();
else
session->SetTerminationTimeout (10); // most likely it's publishing, no follow-up messages expected, set timeout to 10 seconds
it->second.sessions.push_back (session);
session->SendI2NPMessages (it->second.delayedMessages);
it->second.delayedMessages.clear ();
}
else // incoming connection
{
if(RoutesRestricted() && ! IsRestrictedPeer(ident)) {
// not trusted
LogPrint(eLogWarning, "Transports: closing untrusted inbound connection from ", ident.ToBase64());
session->Done();
return;
}
session->SendI2NPMessages ({ CreateDatabaseStoreMsg () }); // send DatabaseStore
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.insert (std::make_pair (ident, Peer{ 0, nullptr, { session }, i2p::util::GetSecondsSinceEpoch (), {} }));
}
});
}
void Transports::PeerDisconnected (std::shared_ptr<TransportSession> session)
{
m_Service->post([session, this]()
{
auto remoteIdentity = session->GetRemoteIdentity ();
if (!remoteIdentity) return;
auto ident = remoteIdentity->GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
auto before = it->second.sessions.size ();
it->second.sessions.remove (session);
if (it->second.sessions.empty ())
{
if (it->second.delayedMessages.size () > 0)
{
if (before > 0) // we had an active session before
it->second.numAttempts = 0; // start over
ConnectToPeer (ident, it->second);
}
else
{
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (it);
}
}
}
});
}
bool Transports::IsConnected (const i2p::data::IdentHash& ident) const
{
std::unique_lock<std::mutex> l(m_PeersMutex);
auto it = m_Peers.find (ident);
return it != m_Peers.end ();
}
void Transports::HandlePeerCleanupTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
auto ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_Peers.begin (); it != m_Peers.end (); )
{
if (it->second.sessions.empty () && ts > it->second.creationTime + SESSION_CREATION_TIMEOUT)
{
LogPrint (eLogWarning, "Transports: Session to peer ", it->first.ToBase64 (), " has not been created in ", SESSION_CREATION_TIMEOUT, " seconds");
auto profile = i2p::data::GetRouterProfile(it->first);
if (profile)
{
profile->TunnelNonReplied();
}
std::unique_lock<std::mutex> l(m_PeersMutex);
it = m_Peers.erase (it);
}
else
++it;
}
UpdateBandwidth (); // TODO: use separate timer(s) for it
bool ipv4Testing = i2p::context.GetStatus () == eRouterStatusTesting;
bool ipv6Testing = i2p::context.GetStatusV6 () == eRouterStatusTesting;
// if still testing, repeat peer test
if (ipv4Testing || ipv6Testing)
PeerTest (ipv4Testing, ipv6Testing);
m_PeerCleanupTimer->expires_from_now (boost::posix_time::seconds(3*SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer->async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
}
}
void Transports::HandlePeerTestTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
PeerTest ();
m_PeerTestTimer->expires_from_now (boost::posix_time::minutes(PEER_TEST_INTERVAL));
m_PeerTestTimer->async_wait (std::bind (&Transports::HandlePeerTestTimer, this, std::placeholders::_1));
}
}
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRandomPeer () const
{
if (m_Peers.empty ()) return nullptr;
i2p::data::IdentHash ident;
{
std::unique_lock<std::mutex> l(m_PeersMutex);
auto it = m_Peers.begin ();
std::advance (it, rand () % m_Peers.size ());
if (it == m_Peers.end () || it->second.router) return nullptr; // not connected
ident = it->first;
}
return i2p::data::netdb.FindRouter (ident);
}
void Transports::RestrictRoutesToFamilies(std::set<std::string> families)
{
std::lock_guard<std::mutex> lock(m_FamilyMutex);
m_TrustedFamilies.clear();
for ( const auto& fam : families )
m_TrustedFamilies.push_back(fam);
}
void Transports::RestrictRoutesToRouters(std::set<i2p::data::IdentHash> routers)
{
std::unique_lock<std::mutex> lock(m_TrustedRoutersMutex);
m_TrustedRouters.clear();
for (const auto & ri : routers )
m_TrustedRouters.push_back(ri);
}
bool Transports::RoutesRestricted() const {
std::unique_lock<std::mutex> famlock(m_FamilyMutex);
std::unique_lock<std::mutex> routerslock(m_TrustedRoutersMutex);
return m_TrustedFamilies.size() > 0 || m_TrustedRouters.size() > 0;
}
/** XXX: if routes are not restricted this dies */
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRestrictedPeer() const
{
{
std::lock_guard<std::mutex> l(m_FamilyMutex);
std::string fam;
auto sz = m_TrustedFamilies.size();
if(sz > 1)
{
auto it = m_TrustedFamilies.begin ();
std::advance(it, rand() % sz);
fam = *it;
boost::to_lower(fam);
}
else if (sz == 1)
{
fam = m_TrustedFamilies[0];
}
if (fam.size())
return i2p::data::netdb.GetRandomRouterInFamily(fam);
}
{
std::unique_lock<std::mutex> l(m_TrustedRoutersMutex);
auto sz = m_TrustedRouters.size();
if (sz)
{
if(sz == 1)
return i2p::data::netdb.FindRouter(m_TrustedRouters[0]);
auto it = m_TrustedRouters.begin();
std::advance(it, rand() % sz);
return i2p::data::netdb.FindRouter(*it);
}
}
return nullptr;
}
bool Transports::IsRestrictedPeer(const i2p::data::IdentHash & ih) const
{
{
std::unique_lock<std::mutex> l(m_TrustedRoutersMutex);
for (const auto & r : m_TrustedRouters )
if ( r == ih ) return true;
}
{
std::unique_lock<std::mutex> l(m_FamilyMutex);
auto ri = i2p::data::netdb.FindRouter(ih);
for (const auto & fam : m_TrustedFamilies)
if(ri->IsFamily(fam)) return true;
}
return false;
}
void Transports::SetOnline (bool online)
{
if (m_IsOnline != online)
{
m_IsOnline = online;
if (online)
PeerTest ();
else
i2p::context.SetError (eRouterErrorOffline);
}
}
}
}