I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

442 lines
14 KiB

#include <memory>
#include "Log.h"
#include "Signature.h"
namespace i2p
{
namespace crypto
{
class Ed25519
{
public:
Ed25519 ()
{
BN_CTX * ctx = BN_CTX_new ();
BIGNUM * two = BN_new (), * tmp = BN_new ();
BN_set_word (two, 2);
q = BN_new ();
// 2^255-19
BN_set_word (tmp, 255);
BN_exp (q, two, tmp, ctx);
BN_sub_word (q, 19);
l = BN_new ();
// 2^252 + 27742317777372353535851937790883648493
BN_set_word (tmp, 252);
BN_exp (l, two, tmp, ctx);
two_252_2 = BN_dup (l);
BN_dec2bn (&tmp, "27742317777372353535851937790883648493");
BN_add (l, l, tmp);
BN_sub_word (two_252_2, 2); // 2^252 - 2
// -121665*inv(121666)
d = BN_new ();
BN_set_word (tmp, 121666);
BN_mod_inverse (tmp, tmp, q, ctx);
BN_set_word (d, 121665);
BN_set_negative (d, 1);
BN_mul (d, d, tmp, ctx);
// 2^((q-1)/4)
I = BN_new ();
BN_free (tmp);
tmp = BN_dup (q);
BN_sub_word (tmp, 1);
BN_div_word (tmp, 4);
BN_mod_exp (I, two, tmp, q, ctx);
// 4*inv(5)
BIGNUM * By = BN_new ();
BN_set_word (By, 5);
BN_mod_inverse (By, By, q, ctx);
BN_mul_word (By, 4);
BIGNUM * Bx = RecoverX (By, ctx);
BN_mod (Bx, Bx, q, ctx); // % q
BN_mod (By, By, q, ctx); // % q
B = {Bx, By};
BN_free (two);
BN_free (tmp);
// precalculate Bi16 table
Bi16[0][0] = { BN_dup (Bx), BN_dup (By) };
for (int i = 0; i < 64; i++)
{
if (i) Bi16[i][0] = Sum (Bi16[i-1][14], Bi16[i-1][0], ctx);
for (int j = 1; j < 15; j++)
Bi16[i][j] = Sum (Bi16[i][j-1], Bi16[i][0], ctx); // (16+j+1)^i*B
}
BN_CTX_free (ctx);
}
~Ed25519 ()
{
BN_free (q);
BN_free (l);
BN_free (d);
BN_free (I);
BN_free (two_252_2);
}
EDDSAPoint GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const
{
return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian
}
EDDSAPoint DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const
{
return DecodePoint (buf, ctx);
}
void EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const
{
EncodePoint (Normalize (publicKey, ctx), buf);
}
bool Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature, BN_CTX * ctx) const
{
BIGNUM * h = DecodeBN (digest, 64);
// signature 0..31 - R, 32..63 - S
// B*S = R + PK*h => R = B*S - PK*h
// we don't decode R, but encode (B*S - PK*h)
auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S;
auto PKh = Mul (publicKey, h, ctx); // PK*h
uint8_t diff[32];
EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded
bool passed = !memcmp (signature, diff, 32); // R
BN_free (h);
if (!passed)
LogPrint (eLogError, "25519 signature verification failed");
return passed;
}
void Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded, const uint8_t * buf, size_t len,
uint8_t * signature, BN_CTX * bnCtx) const
{
// calculate r
SHA512_CTX ctx;
SHA512_Init (&ctx);
SHA512_Update (&ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key
SHA512_Update (&ctx, buf, len); // data
uint8_t digest[64];
SHA512_Final (digest, &ctx);
BIGNUM * r = DecodeBN (digest, 32); // DecodeBN (digest, 64); // for test vectors
// calculate R
uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors
// calculate S
SHA512_Init (&ctx);
SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
SHA512_Update (&ctx, buf, len); // data
SHA512_Final (digest, &ctx);
BIGNUM * s = DecodeBN (digest, 64);
// S = (r + s*a) % l
BIGNUM * a = DecodeBN (expandedPrivateKey, EDDSA25519_PRIVATE_KEY_LENGTH); // left half of expanded key
BN_mul (s, s, a, bnCtx);
BN_add (s, s, r);
BN_mod (s, s, l, bnCtx); // % l
memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2);
EncodeBN (s, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S
BN_free (r); BN_free (s); BN_free (a);
}
private:
EDDSAPoint Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const
{
// x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2)
// y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2)
// z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2)
// t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2)
BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new ();
BIGNUM * z1 = p1.z, * t1 = p1.t;
if (!z1) { z1 = BN_new (); BN_one (z1); }
if (!t1) { t1 = BN_new (); BN_mul (t1, p1.x, p1.y, ctx); }
BIGNUM * z2 = p2.z, * t2 = p2.t;
if (!z2) { z2 = BN_new (); BN_one (z2); }
if (!t2) { t2 = BN_new (); BN_mul (t2, p2.x, p2.y, ctx); }
BIGNUM * A = BN_new (), * B = BN_new (), * C = BN_new (), * D = BN_new ();
BN_mul (A, p1.x, p2.x, ctx); // A = x1*x2
BN_mul (B, p1.y, p2.y, ctx); // B = y1*y2
BN_mul (C, t1, t2, ctx);
BN_mul (C, C, d, ctx); // C = d*t1*t2
BN_mul (D, z1, z2, ctx); // D = z1*z2
BIGNUM * E = BN_new (), * F = BN_new (), * G = BN_new (), * H = BN_new ();
BN_add (x3, p1.x, p1.y);
BN_add (y3, p2.x, p2.y);
BN_mul (E, x3, y3, ctx); // (x1 + y1)*(x2 + y2)
BN_sub (E, E, A);
BN_sub (E, E, B); // E = (x1 + y1)*(x2 + y2) - A - B
BN_sub (F, D, C); // F = D - C
BN_add (G, D, C); // G = D + C
BN_add (H, B, A); // H = B + A
BN_free (A); BN_free (B); BN_free (C); BN_free (D);
if (!p1.z) BN_free (z1);
if (!p1.t) BN_free (t1);
if (!p2.z) BN_free (z2);
if (!p2.t) BN_free (t2);
BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F
BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H
BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G
BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H
BN_free (E); BN_free (F); BN_free (G); BN_free (H);
return EDDSAPoint {x3, y3, z3, t3};
}
EDDSAPoint Double (const EDDSAPoint& p, BN_CTX * ctx) const
{
BIGNUM * x2 = BN_new (), * y2 = BN_new (), * z2 = BN_new (), * t2 = BN_new ();
BIGNUM * z = p.z, * t = p.t;
if (!z) { z = BN_new (); BN_one (z); }
BN_sqr (z, z, ctx); // z^2 (D)
if (!t) { t = BN_new (); BN_mul (t, p.x, p.y, ctx); }
BN_sqr (t, t, ctx);
BN_mul (t, t, d, ctx); // d*t^2 (C)
BIGNUM * A = BN_new (), * B = BN_new ();
BN_sqr (A, p.x, ctx); // A = x^2
BN_sqr (B, p.y, ctx); // B = y^2
BIGNUM * E = BN_new (), * F = BN_new (), * G = BN_new (), * H = BN_new ();
// E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy
BN_mul (E, p.x, p.y, ctx);
BN_mul_word (E, 2); // E =2*x*y
BN_sub (F, z, t); // F = D - C = z - t
BN_add (G, z, t); // G = D + C = z + t
BN_add (H, B, A); // H = B + A
BN_free (A); BN_free (B);
if (!p.z) BN_free (z);
if (!p.t) BN_free (t);
BN_mod_mul (x2, E, F, q, ctx); // x2 = E*F
BN_mod_mul (y2, G, H, q, ctx); // y2 = G*H
BN_mod_mul (z2, F, G, q, ctx); // z2 = F*G
BN_mod_mul (t2, E, H, q, ctx); // t2 = E*H
BN_free (E); BN_free (F); BN_free (G); BN_free (H);
return EDDSAPoint {x2, y2, z2, t2};
}
EDDSAPoint Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const
{
BIGNUM * zero = BN_new (), * one = BN_new ();
BN_zero (zero); BN_one (one);
EDDSAPoint res {zero, one};
if (!BN_is_zero (e))
{
int bitCount = BN_num_bits (e);
for (int i = bitCount - 1; i >= 0; i--)
{
res = Double (res, ctx);
if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx);
}
}
return res;
}
EDDSAPoint MulB (const uint8_t * e, BN_CTX * ctx) const // B*e. e is 32 bytes Little Endian
{
BIGNUM * zero = BN_new (), * one = BN_new ();
BN_zero (zero); BN_one (one);
EDDSAPoint res {zero, one};
for (int i = 0; i < 32; i++)
{
uint8_t x = e[i] & 0x0F; // 4 low bits
if (x > 0)
res = Sum (res, Bi16[i*2][x-1], ctx);
x = e[i] >> 4; // 4 high bits
if (x > 0)
res = Sum (res, Bi16[i*2+1][x-1], ctx);
}
return res;
}
EDDSAPoint Normalize (const EDDSAPoint& p, BN_CTX * ctx) const
{
if (p.z)
{
BIGNUM * x = BN_new (), * y = BN_new ();
BN_mod_inverse (y, p.z, q, ctx);
BN_mod_mul (x, p.x, y, q, ctx); // x = x/z
BN_mod_mul (y, p.y, y, q, ctx); // y = y/z
return EDDSAPoint{x, y};
}
else
return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)};
}
bool IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const
{
BIGNUM * x2 = BN_new ();
BN_sqr (x2, p.x, ctx); // x^2
BIGNUM * y2 = BN_new ();
BN_sqr (y2, p.y, ctx); // y^2
// y^2 - x^2 - 1 - d*x^2*y^2
BIGNUM * tmp = BN_new ();
BN_mul (tmp, d, x2, ctx);
BN_mul (tmp, tmp, y2, ctx);
BN_sub (tmp, y2, tmp);
BN_sub (tmp, tmp, x2);
BN_sub_word (tmp, 1);
BN_mod (tmp, tmp, q, ctx); // % q
bool ret = BN_is_zero (tmp);
BN_free (x2);
BN_free (y2);
BN_free (tmp);
return ret;
}
BIGNUM * RecoverX (const BIGNUM * y, BN_CTX * ctx) const
{
BIGNUM * y2 = BN_new ();
BN_sqr (y2, y, ctx); // y^2
// xx = (y^2 -1)*inv(d*y^2 +1)
BIGNUM * xx = BN_new ();
BN_mul (xx, d, y2, ctx);
BN_add_word (xx, 1);
BN_mod_inverse (xx, xx, q, ctx);
BN_sub_word (y2, 1);
BN_mul (xx, y2, xx, ctx);
// x = srqt(xx) = xx^(2^252-2)
BIGNUM * x = BN_new ();
BN_mod_exp (x, xx, two_252_2, q, ctx);
// check (x^2 -xx) % q
BN_sqr (y2, x, ctx);
BN_mod_sub (y2, y2, xx, q, ctx);
if (!BN_is_zero (y2))
BN_mod_mul (x, x, I, q, ctx);
if (BN_is_odd (x))
BN_sub (x, q, x);
BN_free (y2);
BN_free (xx);
return x;
}
EDDSAPoint DecodePoint (const uint8_t * buf, BN_CTX * ctx) const
{
// buf is 32 bytes Little Endian, convert it to Big Endian
uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH];
for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes
{
buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i];
buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i];
}
bool isHighestBitSet = buf1[0] & 0x80;
if (isHighestBitSet)
buf1[0] &= 0x7f; // clear highest bit
BIGNUM * y = BN_new ();
BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y);
auto x = RecoverX (y, ctx);
if (BN_is_bit_set (x, 0) != isHighestBitSet)
BN_sub (x, q, x); // x = q - x
EDDSAPoint p {x, y};
if (!IsOnCurve (p, ctx))
LogPrint (eLogError, "Decoded point is not on 25519");
return p;
}
void EncodePoint (const EDDSAPoint& p, uint8_t * buf) const
{
EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH);
if (BN_is_bit_set (p.x, 0)) // highest bit
buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit
}
BIGNUM * DecodeBN (const uint8_t * buf, size_t len) const
{
// buf is Little Endian convert it to Big Endian
uint8_t buf1[len];
for (size_t i = 0; i < len/2; i++) // invert bytes
{
buf1[i] = buf[len -1 - i];
buf1[len -1 - i] = buf[i];
}
BIGNUM * res = BN_new ();
BN_bin2bn (buf1, len, res);
return res;
}
void EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const
{
bn2buf (bn, buf, len);
// To Little Endian
for (size_t i = 0; i < len/2; i++) // invert bytes
{
uint8_t tmp = buf[i];
buf[i] = buf[len -1 - i];
buf[len -1 - i] = tmp;
}
}
private:
BIGNUM * q, * l, * d, * I;
EDDSAPoint B; // base point
// transient values
BIGNUM * two_252_2; // 2^252-2
EDDSAPoint Bi16[64][15]; // per 4-bits, Bi16[i][j] = (16+j+1)^i*B, we don't store zeroes
};
static std::unique_ptr<Ed25519> g_Ed25519;
std::unique_ptr<Ed25519>& GetEd25519 ()
{
if (!g_Ed25519)
g_Ed25519.reset (new Ed25519 ());
return g_Ed25519;
}
EDDSA25519Verifier::EDDSA25519Verifier (const uint8_t * signingKey):
m_Ctx (BN_CTX_new ()),
m_PublicKey (GetEd25519 ()->DecodePublicKey (signingKey, m_Ctx))
{
memcpy (m_PublicKeyEncoded, signingKey, EDDSA25519_PUBLIC_KEY_LENGTH);
}
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
SHA512_CTX ctx;
SHA512_Init (&ctx);
SHA512_Update (&ctx, signature, EDDSA25519_SIGNATURE_LENGTH/2); // R
SHA512_Update (&ctx, m_PublicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key
SHA512_Update (&ctx, buf, len); // data
uint8_t digest[64];
SHA512_Final (digest, &ctx);
return GetEd25519 ()->Verify (m_PublicKey, digest, signature, m_Ctx);
}
EDDSA25519Signer::EDDSA25519Signer (const uint8_t * signingPrivateKey):
m_Ctx (BN_CTX_new ())
{
// expand key
SHA512 (signingPrivateKey, EDDSA25519_PRIVATE_KEY_LENGTH, m_ExpandedPrivateKey);
m_ExpandedPrivateKey[0] &= 0xF8; // drop last 3 bits
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x1F; // drop first 3 bits
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit
// generate and encode public key
auto publicKey = GetEd25519 ()->GeneratePublicKey (m_ExpandedPrivateKey, m_Ctx);
GetEd25519 ()->EncodePublicKey (publicKey, m_PublicKeyEncoded, m_Ctx);
}
void EDDSA25519Signer::Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
GetEd25519 ()->Sign (m_ExpandedPrivateKey, m_PublicKeyEncoded, buf, len, signature, m_Ctx);
}
}
}