mirror of https://github.com/PurpleI2P/i2pd.git
I2P: End-to-End encrypted and anonymous Internet
https://i2pd.website/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
612 lines
18 KiB
612 lines
18 KiB
/* |
|
* Copyright (c) 2013-2023, The PurpleI2P Project |
|
* |
|
* This file is part of Purple i2pd project and licensed under BSD3 |
|
* |
|
* See full license text in LICENSE file at top of project tree |
|
*/ |
|
|
|
#include <openssl/sha.h> |
|
#include "Log.h" |
|
#include "Crypto.h" |
|
#include "Ed25519.h" |
|
|
|
namespace i2p |
|
{ |
|
namespace crypto |
|
{ |
|
Ed25519::Ed25519 () |
|
{ |
|
BN_CTX * ctx = BN_CTX_new (); |
|
BIGNUM * tmp = BN_new (); |
|
|
|
q = BN_new (); |
|
// 2^255-19 |
|
BN_set_bit (q, 255); // 2^255 |
|
BN_sub_word (q, 19); |
|
|
|
l = BN_new (); |
|
// 2^252 + 27742317777372353535851937790883648493 |
|
BN_set_bit (l, 252); |
|
two_252_2 = BN_dup (l); |
|
BN_dec2bn (&tmp, "27742317777372353535851937790883648493"); |
|
BN_add (l, l, tmp); |
|
BN_sub_word (two_252_2, 2); // 2^252 - 2 |
|
|
|
// -121665*inv(121666) |
|
d = BN_new (); |
|
BN_set_word (tmp, 121666); |
|
BN_mod_inverse (tmp, tmp, q, ctx); |
|
BN_set_word (d, 121665); |
|
BN_set_negative (d, 1); |
|
BN_mod_mul (d, d, tmp, q, ctx); |
|
|
|
// 2^((q-1)/4) |
|
I = BN_new (); |
|
BN_free (tmp); |
|
tmp = BN_dup (q); |
|
BN_sub_word (tmp, 1); |
|
BN_div_word (tmp, 4); |
|
BN_set_word (I, 2); |
|
BN_mod_exp (I, I, tmp, q, ctx); |
|
BN_free (tmp); |
|
|
|
// 4*inv(5) |
|
BIGNUM * By = BN_new (); |
|
BN_set_word (By, 5); |
|
BN_mod_inverse (By, By, q, ctx); |
|
BN_mul_word (By, 4); |
|
BIGNUM * Bx = RecoverX (By, ctx); |
|
BN_mod (Bx, Bx, q, ctx); // % q |
|
BN_mod (By, By, q, ctx); // % q |
|
|
|
// precalculate Bi256 table |
|
Bi256Carry = { Bx, By }; // B |
|
for (int i = 0; i < 32; i++) |
|
{ |
|
Bi256[i][0] = Bi256Carry; // first point |
|
for (int j = 1; j < 128; j++) |
|
Bi256[i][j] = Sum (Bi256[i][j-1], Bi256[i][0], ctx); // (256+j+1)^i*B |
|
Bi256Carry = Bi256[i][127]; |
|
for (int j = 0; j < 128; j++) // add first point 128 more times |
|
Bi256Carry = Sum (Bi256Carry, Bi256[i][0], ctx); |
|
} |
|
|
|
BN_CTX_free (ctx); |
|
} |
|
|
|
Ed25519::Ed25519 (const Ed25519& other): q (BN_dup (other.q)), l (BN_dup (other.l)), |
|
d (BN_dup (other.d)), I (BN_dup (other.I)), two_252_2 (BN_dup (other.two_252_2)), |
|
Bi256Carry (other.Bi256Carry) |
|
{ |
|
for (int i = 0; i < 32; i++) |
|
for (int j = 0; j < 128; j++) |
|
Bi256[i][j] = other.Bi256[i][j]; |
|
} |
|
|
|
Ed25519::~Ed25519 () |
|
{ |
|
BN_free (q); |
|
BN_free (l); |
|
BN_free (d); |
|
BN_free (I); |
|
BN_free (two_252_2); |
|
} |
|
|
|
|
|
EDDSAPoint Ed25519::GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const |
|
{ |
|
return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian |
|
} |
|
|
|
EDDSAPoint Ed25519::DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
return DecodePoint (buf, ctx); |
|
} |
|
|
|
void Ed25519::EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
EncodePoint (Normalize (publicKey, ctx), buf); |
|
} |
|
|
|
bool Ed25519::Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature) const |
|
{ |
|
BN_CTX * ctx = BN_CTX_new (); |
|
BIGNUM * h = DecodeBN<64> (digest); |
|
// signature 0..31 - R, 32..63 - S |
|
// B*S = R + PK*h => R = B*S - PK*h |
|
// we don't decode R, but encode (B*S - PK*h) |
|
auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S; |
|
BN_mod (h, h, l, ctx); // public key is multiple of B, but B%l = 0 |
|
auto PKh = Mul (publicKey, h, ctx); // PK*h |
|
uint8_t diff[32]; |
|
EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded |
|
bool passed = !memcmp (signature, diff, 32); // R |
|
BN_free (h); |
|
BN_CTX_free (ctx); |
|
if (!passed) |
|
LogPrint (eLogError, "25519 signature verification failed"); |
|
|
|
#ifdef VERIFY_ALWAYS_SUCCEEDS |
|
passed = true; |
|
#endif |
|
|
|
return passed; |
|
} |
|
|
|
void Ed25519::Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded, |
|
const uint8_t * buf, size_t len, uint8_t * signature) const |
|
{ |
|
BN_CTX * bnCtx = BN_CTX_new (); |
|
// calculate r |
|
SHA512_CTX ctx; |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key |
|
SHA512_Update (&ctx, buf, len); // data |
|
uint8_t digest[64]; |
|
SHA512_Final (digest, &ctx); |
|
BIGNUM * r = DecodeBN<32> (digest); // DecodeBN<64> (digest); // for test vectors |
|
// calculate R |
|
uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf |
|
EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors |
|
// calculate S |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R |
|
SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key |
|
SHA512_Update (&ctx, buf, len); // data |
|
SHA512_Final (digest, &ctx); |
|
BIGNUM * h = DecodeBN<64> (digest); |
|
// S = (r + h*a) % l |
|
BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (expandedPrivateKey); // left half of expanded key |
|
BN_mod_mul (h, h, a, l, bnCtx); // %l |
|
BN_mod_add (h, h, r, l, bnCtx); // %l |
|
memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2); |
|
EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S |
|
BN_free (r); BN_free (h); BN_free (a); |
|
BN_CTX_free (bnCtx); |
|
} |
|
|
|
void Ed25519::SignRedDSA (const uint8_t * privateKey, const uint8_t * publicKeyEncoded, |
|
const uint8_t * buf, size_t len, uint8_t * signature) const |
|
{ |
|
BN_CTX * bnCtx = BN_CTX_new (); |
|
// T = 80 random bytes |
|
uint8_t T[80]; |
|
RAND_bytes (T, 80); |
|
// calculate r = H*(T || publickey || data) |
|
SHA512_CTX ctx; |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, T, 80); |
|
SHA512_Update (&ctx, publicKeyEncoded, 32); |
|
SHA512_Update (&ctx, buf, len); // data |
|
uint8_t digest[64]; |
|
SHA512_Final (digest, &ctx); |
|
BIGNUM * r = DecodeBN<64> (digest); |
|
BN_mod (r, r, l, bnCtx); // % l |
|
EncodeBN (r, digest, 32); |
|
// calculate R |
|
uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf |
|
EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); |
|
// calculate S |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R |
|
SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key |
|
SHA512_Update (&ctx, buf, len); // data |
|
SHA512_Final (digest, &ctx); |
|
BIGNUM * h = DecodeBN<64> (digest); |
|
// S = (r + h*a) % l |
|
BIGNUM * a = DecodeBN<EDDSA25519_PRIVATE_KEY_LENGTH> (privateKey); |
|
BN_mod_mul (h, h, a, l, bnCtx); // %l |
|
BN_mod_add (h, h, r, l, bnCtx); // %l |
|
memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2); |
|
EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S |
|
BN_free (r); BN_free (h); BN_free (a); |
|
BN_CTX_free (bnCtx); |
|
} |
|
|
|
EDDSAPoint Ed25519::Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const |
|
{ |
|
// x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2) |
|
// y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2) |
|
// z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2) |
|
// t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2) |
|
BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new (); |
|
|
|
BN_mul (x3, p1.x, p2.x, ctx); // A = x1*x2 |
|
BN_mul (y3, p1.y, p2.y, ctx); // B = y1*y2 |
|
|
|
BN_CTX_start (ctx); |
|
BIGNUM * t1 = p1.t, * t2 = p2.t; |
|
if (!t1) { t1 = BN_CTX_get (ctx); BN_mul (t1, p1.x, p1.y, ctx); } |
|
if (!t2) { t2 = BN_CTX_get (ctx); BN_mul (t2, p2.x, p2.y, ctx); } |
|
BN_mul (t3, t1, t2, ctx); |
|
BN_mul (t3, t3, d, ctx); // C = d*t1*t2 |
|
|
|
if (p1.z) |
|
{ |
|
if (p2.z) |
|
BN_mul (z3, p1.z, p2.z, ctx); // D = z1*z2 |
|
else |
|
BN_copy (z3, p1.z); // D = z1 |
|
} |
|
else |
|
{ |
|
if (p2.z) |
|
BN_copy (z3, p2.z); // D = z2 |
|
else |
|
BN_one (z3); // D = 1 |
|
} |
|
|
|
BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx); |
|
BN_add (E, p1.x, p1.y); |
|
BN_add (F, p2.x, p2.y); |
|
BN_mul (E, E, F, ctx); // (x1 + y1)*(x2 + y2) |
|
BN_sub (E, E, x3); |
|
BN_sub (E, E, y3); // E = (x1 + y1)*(x2 + y2) - A - B |
|
BN_sub (F, z3, t3); // F = D - C |
|
BN_add (G, z3, t3); // G = D + C |
|
BN_add (H, y3, x3); // H = B + A |
|
|
|
BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F |
|
BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H |
|
BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G |
|
BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H |
|
|
|
BN_CTX_end (ctx); |
|
|
|
return EDDSAPoint {x3, y3, z3, t3}; |
|
} |
|
|
|
void Ed25519::Double (EDDSAPoint& p, BN_CTX * ctx) const |
|
{ |
|
BN_CTX_start (ctx); |
|
BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * z2 = BN_CTX_get (ctx), * t2 = BN_CTX_get (ctx); |
|
|
|
BN_sqr (x2, p.x, ctx); // x2 = A = x^2 |
|
BN_sqr (y2, p.y, ctx); // y2 = B = y^2 |
|
if (p.t) |
|
BN_sqr (t2, p.t, ctx); // t2 = t^2 |
|
else |
|
{ |
|
BN_mul (t2, p.x, p.y, ctx); // t = x*y |
|
BN_sqr (t2, t2, ctx); // t2 = t^2 |
|
} |
|
BN_mul (t2, t2, d, ctx); // t2 = C = d*t^2 |
|
if (p.z) |
|
BN_sqr (z2, p.z, ctx); // z2 = D = z^2 |
|
else |
|
BN_one (z2); // z2 = 1 |
|
|
|
BIGNUM * E = BN_CTX_get (ctx), * F = BN_CTX_get (ctx), * G = BN_CTX_get (ctx), * H = BN_CTX_get (ctx); |
|
// E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy |
|
BN_mul (E, p.x, p.y, ctx); |
|
BN_lshift1 (E, E); // E =2*x*y |
|
BN_sub (F, z2, t2); // F = D - C |
|
BN_add (G, z2, t2); // G = D + C |
|
BN_add (H, y2, x2); // H = B + A |
|
|
|
BN_mod_mul (p.x, E, F, q, ctx); // x2 = E*F |
|
BN_mod_mul (p.y, G, H, q, ctx); // y2 = G*H |
|
if (!p.z) p.z = BN_new (); |
|
BN_mod_mul (p.z, F, G, q, ctx); // z2 = F*G |
|
if (!p.t) p.t = BN_new (); |
|
BN_mod_mul (p.t, E, H, q, ctx); // t2 = E*H |
|
|
|
BN_CTX_end (ctx); |
|
} |
|
|
|
EDDSAPoint Ed25519::Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * zero = BN_new (), * one = BN_new (); |
|
BN_zero (zero); BN_one (one); |
|
EDDSAPoint res {zero, one}; |
|
if (!BN_is_zero (e)) |
|
{ |
|
int bitCount = BN_num_bits (e); |
|
for (int i = bitCount - 1; i >= 0; i--) |
|
{ |
|
Double (res, ctx); |
|
if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx); |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
EDDSAPoint Ed25519::MulB (const uint8_t * e, BN_CTX * ctx) const // B*e, e is 32 bytes Little Endian |
|
{ |
|
BIGNUM * zero = BN_new (), * one = BN_new (); |
|
BN_zero (zero); BN_one (one); |
|
EDDSAPoint res {zero, one}; |
|
bool carry = false; |
|
for (int i = 0; i < 32; i++) |
|
{ |
|
uint8_t x = e[i]; |
|
if (carry) |
|
{ |
|
if (x < 255) |
|
{ |
|
x++; |
|
carry = false; |
|
} |
|
else |
|
x = 0; |
|
} |
|
if (x > 0) |
|
{ |
|
if (x <= 128) |
|
res = Sum (res, Bi256[i][x-1], ctx); |
|
else |
|
{ |
|
res = Sum (res, -Bi256[i][255-x], ctx); // -Bi[256-x] |
|
carry = true; |
|
} |
|
} |
|
} |
|
if (carry) res = Sum (res, Bi256Carry, ctx); |
|
return res; |
|
} |
|
|
|
EDDSAPoint Ed25519::Normalize (const EDDSAPoint& p, BN_CTX * ctx) const |
|
{ |
|
if (p.z) |
|
{ |
|
BIGNUM * x = BN_new (), * y = BN_new (); |
|
BN_mod_inverse (y, p.z, q, ctx); |
|
BN_mod_mul (x, p.x, y, q, ctx); // x = x/z |
|
BN_mod_mul (y, p.y, y, q, ctx); // y = y/z |
|
return EDDSAPoint{x, y}; |
|
} |
|
else |
|
return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)}; |
|
} |
|
|
|
bool Ed25519::IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const |
|
{ |
|
BN_CTX_start (ctx); |
|
BIGNUM * x2 = BN_CTX_get (ctx), * y2 = BN_CTX_get (ctx), * tmp = BN_CTX_get (ctx); |
|
BN_sqr (x2, p.x, ctx); // x^2 |
|
BN_sqr (y2, p.y, ctx); // y^2 |
|
// y^2 - x^2 - 1 - d*x^2*y^2 |
|
BN_mul (tmp, d, x2, ctx); |
|
BN_mul (tmp, tmp, y2, ctx); |
|
BN_sub (tmp, y2, tmp); |
|
BN_sub (tmp, tmp, x2); |
|
BN_sub_word (tmp, 1); |
|
BN_mod (tmp, tmp, q, ctx); // % q |
|
bool ret = BN_is_zero (tmp); |
|
BN_CTX_end (ctx); |
|
return ret; |
|
} |
|
|
|
BIGNUM * Ed25519::RecoverX (const BIGNUM * y, BN_CTX * ctx) const |
|
{ |
|
BN_CTX_start (ctx); |
|
BIGNUM * y2 = BN_CTX_get (ctx), * xx = BN_CTX_get (ctx); |
|
BN_sqr (y2, y, ctx); // y^2 |
|
// xx = (y^2 -1)*inv(d*y^2 +1) |
|
BN_mul (xx, d, y2, ctx); |
|
BN_add_word (xx, 1); |
|
BN_mod_inverse (xx, xx, q, ctx); |
|
BN_sub_word (y2, 1); |
|
BN_mul (xx, y2, xx, ctx); |
|
// x = srqt(xx) = xx^(2^252-2) |
|
BIGNUM * x = BN_new (); |
|
BN_mod_exp (x, xx, two_252_2, q, ctx); |
|
// check (x^2 -xx) % q |
|
BN_sqr (y2, x, ctx); |
|
BN_mod_sub (y2, y2, xx, q, ctx); |
|
if (!BN_is_zero (y2)) |
|
BN_mod_mul (x, x, I, q, ctx); |
|
if (BN_is_odd (x)) |
|
BN_sub (x, q, x); |
|
BN_CTX_end (ctx); |
|
return x; |
|
} |
|
|
|
EDDSAPoint Ed25519::DecodePoint (const uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
// buf is 32 bytes Little Endian, convert it to Big Endian |
|
uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH]; |
|
for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes |
|
{ |
|
buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i]; |
|
buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i]; |
|
} |
|
bool isHighestBitSet = buf1[0] & 0x80; |
|
if (isHighestBitSet) |
|
buf1[0] &= 0x7f; // clear highest bit |
|
BIGNUM * y = BN_new (); |
|
BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y); |
|
BIGNUM * x = RecoverX (y, ctx); |
|
if ((bool)BN_is_bit_set (x, 0) != isHighestBitSet) |
|
BN_sub (x, q, x); // x = q - x |
|
BIGNUM * z = BN_new (), * t = BN_new (); |
|
BN_one (z); BN_mod_mul (t, x, y, q, ctx); // pre-calculate t |
|
EDDSAPoint p {x, y, z, t}; |
|
if (!IsOnCurve (p, ctx)) |
|
LogPrint (eLogError, "Decoded point is not on 25519"); |
|
return p; |
|
} |
|
|
|
void Ed25519::EncodePoint (const EDDSAPoint& p, uint8_t * buf) const |
|
{ |
|
EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH); |
|
if (BN_is_bit_set (p.x, 0)) // highest bit |
|
buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit |
|
} |
|
|
|
template<int len> |
|
BIGNUM * Ed25519::DecodeBN (const uint8_t * buf) const |
|
{ |
|
// buf is Little Endian convert it to Big Endian |
|
uint8_t buf1[len]; |
|
for (size_t i = 0; i < len/2; i++) // invert bytes |
|
{ |
|
buf1[i] = buf[len -1 - i]; |
|
buf1[len -1 - i] = buf[i]; |
|
} |
|
BIGNUM * res = BN_new (); |
|
BN_bin2bn (buf1, len, res); |
|
return res; |
|
} |
|
|
|
void Ed25519::EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const |
|
{ |
|
bn2buf (bn, buf, len); |
|
// To Little Endian |
|
for (size_t i = 0; i < len/2; i++) // invert bytes |
|
{ |
|
uint8_t tmp = buf[i]; |
|
buf[i] = buf[len -1 - i]; |
|
buf[len -1 - i] = tmp; |
|
} |
|
} |
|
|
|
#if !OPENSSL_X25519 |
|
BIGNUM * Ed25519::ScalarMul (const BIGNUM * u, const BIGNUM * k, BN_CTX * ctx) const |
|
{ |
|
BN_CTX_start (ctx); |
|
auto x1 = BN_CTX_get (ctx); BN_copy (x1, u); |
|
auto x2 = BN_CTX_get (ctx); BN_one (x2); |
|
auto z2 = BN_CTX_get (ctx); BN_zero (z2); |
|
auto x3 = BN_CTX_get (ctx); BN_copy (x3, u); |
|
auto z3 = BN_CTX_get (ctx); BN_one (z3); |
|
auto c121666 = BN_CTX_get (ctx); BN_set_word (c121666, 121666); |
|
auto tmp0 = BN_CTX_get (ctx); auto tmp1 = BN_CTX_get (ctx); |
|
unsigned int swap = 0; |
|
auto bits = BN_num_bits (k); |
|
while(bits) |
|
{ |
|
--bits; |
|
auto k_t = BN_is_bit_set(k, bits) ? 1 : 0; |
|
swap ^= k_t; |
|
if (swap) |
|
{ |
|
std::swap (x2, x3); |
|
std::swap (z2, z3); |
|
} |
|
swap = k_t; |
|
BN_mod_sub(tmp0, x3, z3, q, ctx); |
|
BN_mod_sub(tmp1, x2, z2, q, ctx); |
|
BN_mod_add(x2, x2, z2, q, ctx); |
|
BN_mod_add(z2, x3, z3, q, ctx); |
|
BN_mod_mul(z3, tmp0, x2, q, ctx); |
|
BN_mod_mul(z2, z2, tmp1, q, ctx); |
|
BN_mod_sqr(tmp0, tmp1, q, ctx); |
|
BN_mod_sqr(tmp1, x2, q, ctx); |
|
BN_mod_add(x3, z3, z2, q, ctx); |
|
BN_mod_sub(z2, z3, z2, q, ctx); |
|
BN_mod_mul(x2, tmp1, tmp0, q, ctx); |
|
BN_mod_sub(tmp1, tmp1, tmp0, q, ctx); |
|
BN_mod_sqr(z2, z2, q, ctx); |
|
BN_mod_mul(z3, tmp1, c121666, q, ctx); |
|
BN_mod_sqr(x3, x3, q, ctx); |
|
BN_mod_add(tmp0, tmp0, z3, q, ctx); |
|
BN_mod_mul(z3, x1, z2, q, ctx); |
|
BN_mod_mul(z2, tmp1, tmp0, q, ctx); |
|
} |
|
if (swap) |
|
{ |
|
std::swap (x2, x3); |
|
std::swap (z2, z3); |
|
} |
|
BN_mod_inverse (z2, z2, q, ctx); |
|
BIGNUM * res = BN_new (); // not from ctx |
|
BN_mod_mul(res, x2, z2, q, ctx); |
|
BN_CTX_end (ctx); |
|
return res; |
|
} |
|
|
|
void Ed25519::ScalarMul (const uint8_t * p, const uint8_t * e, uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * p1 = DecodeBN<32> (p); |
|
uint8_t k[32]; |
|
memcpy (k, e, 32); |
|
k[0] &= 248; k[31] &= 127; k[31] |= 64; |
|
BIGNUM * n = DecodeBN<32> (k); |
|
BIGNUM * q1 = ScalarMul (p1, n, ctx); |
|
EncodeBN (q1, buf, 32); |
|
BN_free (p1); BN_free (n); BN_free (q1); |
|
} |
|
|
|
void Ed25519::ScalarMulB (const uint8_t * e, uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
BIGNUM *p1 = BN_new (); BN_set_word (p1, 9); |
|
uint8_t k[32]; |
|
memcpy (k, e, 32); |
|
k[0] &= 248; k[31] &= 127; k[31] |= 64; |
|
BIGNUM * n = DecodeBN<32> (k); |
|
BIGNUM * q1 = ScalarMul (p1, n, ctx); |
|
EncodeBN (q1, buf, 32); |
|
BN_free (p1); BN_free (n); BN_free (q1); |
|
} |
|
#endif |
|
|
|
void Ed25519::BlindPublicKey (const uint8_t * pub, const uint8_t * seed, uint8_t * blinded) |
|
{ |
|
BN_CTX * ctx = BN_CTX_new (); |
|
// calculate alpha = seed mod l |
|
BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian |
|
BN_mod (alpha, alpha, l, ctx); // % l |
|
uint8_t priv[32]; |
|
EncodeBN (alpha, priv, 32); // back to Little Endian |
|
BN_free (alpha); |
|
// A' = BLIND_PUBKEY(A, alpha) = A + DERIVE_PUBLIC(alpha) |
|
auto A1 = Sum (DecodePublicKey (pub, ctx), MulB (priv, ctx), ctx); // pub + B*alpha |
|
EncodePublicKey (A1, blinded, ctx); |
|
BN_CTX_free (ctx); |
|
} |
|
|
|
void Ed25519::BlindPrivateKey (const uint8_t * priv, const uint8_t * seed, uint8_t * blindedPriv, uint8_t * blindedPub) |
|
{ |
|
BN_CTX * ctx = BN_CTX_new (); |
|
// calculate alpha = seed mod l |
|
BIGNUM * alpha = DecodeBN<64> (seed); // seed is in Little Endian |
|
BN_mod (alpha, alpha, l, ctx); // % l |
|
BIGNUM * p = DecodeBN<32> (priv); // priv is in Little Endian |
|
BN_add (alpha, alpha, p); // alpha = alpha + priv |
|
// a' = BLIND_PRIVKEY(a, alpha) = (a + alpha) mod L |
|
BN_mod (alpha, alpha, l, ctx); // % l |
|
EncodeBN (alpha, blindedPriv, 32); |
|
// A' = DERIVE_PUBLIC(a') |
|
auto A1 = MulB (blindedPriv, ctx); |
|
EncodePublicKey (A1, blindedPub, ctx); |
|
BN_free (alpha); BN_free (p); |
|
BN_CTX_free (ctx); |
|
} |
|
|
|
void Ed25519::ExpandPrivateKey (const uint8_t * key, uint8_t * expandedKey) |
|
{ |
|
SHA512 (key, EDDSA25519_PRIVATE_KEY_LENGTH, expandedKey); |
|
expandedKey[0] &= 0xF8; // drop last 3 bits |
|
expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x3F; // drop first 2 bits |
|
expandedKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit |
|
} |
|
|
|
void Ed25519::CreateRedDSAPrivateKey (uint8_t * priv) |
|
{ |
|
uint8_t seed[32]; |
|
RAND_bytes (seed, 32); |
|
BIGNUM * p = DecodeBN<32> (seed); |
|
BN_CTX * ctx = BN_CTX_new (); |
|
BN_mod (p, p, l, ctx); // % l |
|
EncodeBN (p, priv, 32); |
|
BN_CTX_free (ctx); |
|
BN_free (p); |
|
} |
|
|
|
static std::unique_ptr<Ed25519> g_Ed25519; |
|
std::unique_ptr<Ed25519>& GetEd25519 () |
|
{ |
|
if (!g_Ed25519) |
|
{ |
|
auto c = new Ed25519(); |
|
if (!g_Ed25519) // make sure it was not created already |
|
g_Ed25519.reset (c); |
|
else |
|
delete c; |
|
} |
|
return g_Ed25519; |
|
} |
|
} |
|
}
|
|
|