mirror of https://github.com/PurpleI2P/i2pd.git
I2P: End-to-End encrypted and anonymous Internet
https://i2pd.website/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
442 lines
14 KiB
442 lines
14 KiB
#include <memory> |
|
#include "Log.h" |
|
#include "Signature.h" |
|
|
|
namespace i2p |
|
{ |
|
namespace crypto |
|
{ |
|
class Ed25519 |
|
{ |
|
public: |
|
|
|
Ed25519 () |
|
{ |
|
BN_CTX * ctx = BN_CTX_new (); |
|
BIGNUM * two = BN_new (), * tmp = BN_new (); |
|
BN_set_word (two, 2); |
|
|
|
q = BN_new (); |
|
// 2^255-19 |
|
BN_set_word (tmp, 255); |
|
BN_exp (q, two, tmp, ctx); |
|
BN_sub_word (q, 19); |
|
|
|
l = BN_new (); |
|
// 2^252 + 27742317777372353535851937790883648493 |
|
BN_set_word (tmp, 252); |
|
BN_exp (l, two, tmp, ctx); |
|
two_252_2 = BN_dup (l); |
|
BN_dec2bn (&tmp, "27742317777372353535851937790883648493"); |
|
BN_add (l, l, tmp); |
|
BN_sub_word (two_252_2, 2); // 2^252 - 2 |
|
|
|
// -121665*inv(121666) |
|
d = BN_new (); |
|
BN_set_word (tmp, 121666); |
|
BN_mod_inverse (tmp, tmp, q, ctx); |
|
BN_set_word (d, 121665); |
|
BN_set_negative (d, 1); |
|
BN_mul (d, d, tmp, ctx); |
|
|
|
// 2^((q-1)/4) |
|
I = BN_new (); |
|
BN_free (tmp); |
|
tmp = BN_dup (q); |
|
BN_sub_word (tmp, 1); |
|
BN_div_word (tmp, 4); |
|
BN_mod_exp (I, two, tmp, q, ctx); |
|
|
|
// 4*inv(5) |
|
BIGNUM * By = BN_new (); |
|
BN_set_word (By, 5); |
|
BN_mod_inverse (By, By, q, ctx); |
|
BN_mul_word (By, 4); |
|
BIGNUM * Bx = RecoverX (By, ctx); |
|
BN_mod (Bx, Bx, q, ctx); // % q |
|
BN_mod (By, By, q, ctx); // % q |
|
B = {Bx, By}; |
|
|
|
BN_free (two); |
|
BN_free (tmp); |
|
|
|
// precalculate Bi16 table |
|
Bi16[0][0] = { BN_dup (Bx), BN_dup (By) }; |
|
for (int i = 0; i < 64; i++) |
|
{ |
|
if (i) Bi16[i][0] = Sum (Bi16[i-1][14], Bi16[i-1][0], ctx); |
|
for (int j = 1; j < 15; j++) |
|
Bi16[i][j] = Sum (Bi16[i][j-1], Bi16[i][0], ctx); // (16+j+1)^i*B |
|
} |
|
|
|
BN_CTX_free (ctx); |
|
} |
|
|
|
~Ed25519 () |
|
{ |
|
BN_free (q); |
|
BN_free (l); |
|
BN_free (d); |
|
BN_free (I); |
|
BN_free (two_252_2); |
|
} |
|
|
|
|
|
EDDSAPoint GeneratePublicKey (const uint8_t * expandedPrivateKey, BN_CTX * ctx) const |
|
{ |
|
return MulB (expandedPrivateKey, ctx); // left half of expanded key, considered as Little Endian |
|
} |
|
|
|
EDDSAPoint DecodePublicKey (const uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
return DecodePoint (buf, ctx); |
|
} |
|
|
|
void EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
EncodePoint (Normalize (publicKey, ctx), buf); |
|
} |
|
|
|
bool Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * h = DecodeBN (digest, 64); |
|
// signature 0..31 - R, 32..63 - S |
|
// B*S = R + PK*h => R = B*S - PK*h |
|
// we don't decode R, but encode (B*S - PK*h) |
|
auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S; |
|
BN_mod (h, h, l, ctx); // public key is multiple of B, but B%l = 0 |
|
auto PKh = Mul (publicKey, h, ctx); // PK*h |
|
uint8_t diff[32]; |
|
EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded |
|
bool passed = !memcmp (signature, diff, 32); // R |
|
BN_free (h); |
|
if (!passed) |
|
LogPrint (eLogError, "25519 signature verification failed"); |
|
return passed; |
|
} |
|
|
|
void Sign (const uint8_t * expandedPrivateKey, const uint8_t * publicKeyEncoded, const uint8_t * buf, size_t len, |
|
uint8_t * signature, BN_CTX * bnCtx) const |
|
{ |
|
// calculate r |
|
SHA512_CTX ctx; |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, expandedPrivateKey + EDDSA25519_PRIVATE_KEY_LENGTH, EDDSA25519_PRIVATE_KEY_LENGTH); // right half of expanded key |
|
SHA512_Update (&ctx, buf, len); // data |
|
uint8_t digest[64]; |
|
SHA512_Final (digest, &ctx); |
|
BIGNUM * r = DecodeBN (digest, 32); // DecodeBN (digest, 64); // for test vectors |
|
// calculate R |
|
uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf |
|
EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors |
|
// calculate S |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R |
|
SHA512_Update (&ctx, publicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key |
|
SHA512_Update (&ctx, buf, len); // data |
|
SHA512_Final (digest, &ctx); |
|
BIGNUM * h = DecodeBN (digest, 64); |
|
// S = (r + h*a) % l |
|
BIGNUM * a = DecodeBN (expandedPrivateKey, EDDSA25519_PRIVATE_KEY_LENGTH); // left half of expanded key |
|
BN_mod_mul (h, h, a, l, bnCtx); // %l |
|
BN_mod_add (h, h, r, l, bnCtx); // %l |
|
memcpy (signature, R, EDDSA25519_SIGNATURE_LENGTH/2); |
|
EncodeBN (h, signature + EDDSA25519_SIGNATURE_LENGTH/2, EDDSA25519_SIGNATURE_LENGTH/2); // S |
|
BN_free (r); BN_free (h); BN_free (a); |
|
} |
|
|
|
private: |
|
|
|
EDDSAPoint Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const |
|
{ |
|
// x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2) |
|
// y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2) |
|
// z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2) |
|
// t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2) |
|
BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new (); |
|
BIGNUM * z1 = p1.z, * t1 = p1.t; |
|
if (!z1) { z1 = BN_new (); BN_one (z1); } |
|
if (!t1) { t1 = BN_new (); BN_mul (t1, p1.x, p1.y, ctx); } |
|
|
|
BIGNUM * z2 = p2.z, * t2 = p2.t; |
|
if (!z2) { z2 = BN_new (); BN_one (z2); } |
|
if (!t2) { t2 = BN_new (); BN_mul (t2, p2.x, p2.y, ctx); } |
|
|
|
BIGNUM * A = BN_new (), * B = BN_new (), * C = BN_new (), * D = BN_new (); |
|
BN_mul (A, p1.x, p2.x, ctx); // A = x1*x2 |
|
BN_mul (B, p1.y, p2.y, ctx); // B = y1*y2 |
|
BN_mul (C, t1, t2, ctx); |
|
BN_mul (C, C, d, ctx); // C = d*t1*t2 |
|
BN_mul (D, z1, z2, ctx); // D = z1*z2 |
|
|
|
BIGNUM * E = BN_new (), * F = BN_new (), * G = BN_new (), * H = BN_new (); |
|
BN_add (x3, p1.x, p1.y); |
|
BN_add (y3, p2.x, p2.y); |
|
BN_mul (E, x3, y3, ctx); // (x1 + y1)*(x2 + y2) |
|
BN_sub (E, E, A); |
|
BN_sub (E, E, B); // E = (x1 + y1)*(x2 + y2) - A - B |
|
BN_sub (F, D, C); // F = D - C |
|
BN_add (G, D, C); // G = D + C |
|
BN_add (H, B, A); // H = B + A |
|
|
|
BN_free (A); BN_free (B); BN_free (C); BN_free (D); |
|
if (!p1.z) BN_free (z1); |
|
if (!p1.t) BN_free (t1); |
|
if (!p2.z) BN_free (z2); |
|
if (!p2.t) BN_free (t2); |
|
|
|
BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F |
|
BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H |
|
BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G |
|
BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H |
|
|
|
BN_free (E); BN_free (F); BN_free (G); BN_free (H); |
|
|
|
return EDDSAPoint {x3, y3, z3, t3}; |
|
} |
|
|
|
EDDSAPoint Double (const EDDSAPoint& p, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * x2 = BN_new (), * y2 = BN_new (), * z2 = BN_new (), * t2 = BN_new (); |
|
BIGNUM * z = p.z, * t = p.t; |
|
if (!z) { z = BN_new (); BN_one (z); } |
|
BN_sqr (z, z, ctx); // z^2 (D) |
|
if (!t) { t = BN_new (); BN_mul (t, p.x, p.y, ctx); } |
|
BN_sqr (t, t, ctx); |
|
BN_mul (t, t, d, ctx); // d*t^2 (C) |
|
|
|
BIGNUM * A = BN_new (), * B = BN_new (); |
|
BN_sqr (A, p.x, ctx); // A = x^2 |
|
BN_sqr (B, p.y, ctx); // B = y^2 |
|
|
|
BIGNUM * E = BN_new (), * F = BN_new (), * G = BN_new (), * H = BN_new (); |
|
// E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy |
|
BN_mul (E, p.x, p.y, ctx); |
|
BN_mul_word (E, 2); // E =2*x*y |
|
BN_sub (F, z, t); // F = D - C = z - t |
|
BN_add (G, z, t); // G = D + C = z + t |
|
BN_add (H, B, A); // H = B + A |
|
|
|
BN_free (A); BN_free (B); |
|
if (!p.z) BN_free (z); |
|
if (!p.t) BN_free (t); |
|
|
|
BN_mod_mul (x2, E, F, q, ctx); // x2 = E*F |
|
BN_mod_mul (y2, G, H, q, ctx); // y2 = G*H |
|
BN_mod_mul (z2, F, G, q, ctx); // z2 = F*G |
|
BN_mod_mul (t2, E, H, q, ctx); // t2 = E*H |
|
|
|
BN_free (E); BN_free (F); BN_free (G); BN_free (H); |
|
|
|
return EDDSAPoint {x2, y2, z2, t2}; |
|
} |
|
|
|
EDDSAPoint Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * zero = BN_new (), * one = BN_new (); |
|
BN_zero (zero); BN_one (one); |
|
EDDSAPoint res {zero, one}; |
|
if (!BN_is_zero (e)) |
|
{ |
|
int bitCount = BN_num_bits (e); |
|
for (int i = bitCount - 1; i >= 0; i--) |
|
{ |
|
res = Double (res, ctx); |
|
if (BN_is_bit_set (e, i)) res = Sum (res, p, ctx); |
|
} |
|
} |
|
return res; |
|
} |
|
|
|
EDDSAPoint MulB (const uint8_t * e, BN_CTX * ctx) const // B*e. e is 32 bytes Little Endian |
|
{ |
|
BIGNUM * zero = BN_new (), * one = BN_new (); |
|
BN_zero (zero); BN_one (one); |
|
EDDSAPoint res {zero, one}; |
|
for (int i = 0; i < 32; i++) |
|
{ |
|
uint8_t x = e[i] & 0x0F; // 4 low bits |
|
if (x > 0) |
|
res = Sum (res, Bi16[i*2][x-1], ctx); |
|
x = e[i] >> 4; // 4 high bits |
|
if (x > 0) |
|
res = Sum (res, Bi16[i*2+1][x-1], ctx); |
|
} |
|
return res; |
|
} |
|
|
|
EDDSAPoint Normalize (const EDDSAPoint& p, BN_CTX * ctx) const |
|
{ |
|
if (p.z) |
|
{ |
|
BIGNUM * x = BN_new (), * y = BN_new (); |
|
BN_mod_inverse (y, p.z, q, ctx); |
|
BN_mod_mul (x, p.x, y, q, ctx); // x = x/z |
|
BN_mod_mul (y, p.y, y, q, ctx); // y = y/z |
|
return EDDSAPoint{x, y}; |
|
} |
|
else |
|
return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)}; |
|
} |
|
|
|
bool IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * x2 = BN_new (); |
|
BN_sqr (x2, p.x, ctx); // x^2 |
|
BIGNUM * y2 = BN_new (); |
|
BN_sqr (y2, p.y, ctx); // y^2 |
|
// y^2 - x^2 - 1 - d*x^2*y^2 |
|
BIGNUM * tmp = BN_new (); |
|
BN_mul (tmp, d, x2, ctx); |
|
BN_mul (tmp, tmp, y2, ctx); |
|
BN_sub (tmp, y2, tmp); |
|
BN_sub (tmp, tmp, x2); |
|
BN_sub_word (tmp, 1); |
|
BN_mod (tmp, tmp, q, ctx); // % q |
|
bool ret = BN_is_zero (tmp); |
|
BN_free (x2); |
|
BN_free (y2); |
|
BN_free (tmp); |
|
return ret; |
|
} |
|
|
|
BIGNUM * RecoverX (const BIGNUM * y, BN_CTX * ctx) const |
|
{ |
|
BIGNUM * y2 = BN_new (); |
|
BN_sqr (y2, y, ctx); // y^2 |
|
// xx = (y^2 -1)*inv(d*y^2 +1) |
|
BIGNUM * xx = BN_new (); |
|
BN_mul (xx, d, y2, ctx); |
|
BN_add_word (xx, 1); |
|
BN_mod_inverse (xx, xx, q, ctx); |
|
BN_sub_word (y2, 1); |
|
BN_mul (xx, y2, xx, ctx); |
|
// x = srqt(xx) = xx^(2^252-2) |
|
BIGNUM * x = BN_new (); |
|
BN_mod_exp (x, xx, two_252_2, q, ctx); |
|
// check (x^2 -xx) % q |
|
BN_sqr (y2, x, ctx); |
|
BN_mod_sub (y2, y2, xx, q, ctx); |
|
if (!BN_is_zero (y2)) |
|
BN_mod_mul (x, x, I, q, ctx); |
|
if (BN_is_odd (x)) |
|
BN_sub (x, q, x); |
|
BN_free (y2); |
|
BN_free (xx); |
|
return x; |
|
} |
|
|
|
EDDSAPoint DecodePoint (const uint8_t * buf, BN_CTX * ctx) const |
|
{ |
|
// buf is 32 bytes Little Endian, convert it to Big Endian |
|
uint8_t buf1[EDDSA25519_PUBLIC_KEY_LENGTH]; |
|
for (size_t i = 0; i < EDDSA25519_PUBLIC_KEY_LENGTH/2; i++) // invert bytes |
|
{ |
|
buf1[i] = buf[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i]; |
|
buf1[EDDSA25519_PUBLIC_KEY_LENGTH -1 - i] = buf[i]; |
|
} |
|
bool isHighestBitSet = buf1[0] & 0x80; |
|
if (isHighestBitSet) |
|
buf1[0] &= 0x7f; // clear highest bit |
|
BIGNUM * y = BN_new (); |
|
BN_bin2bn (buf1, EDDSA25519_PUBLIC_KEY_LENGTH, y); |
|
auto x = RecoverX (y, ctx); |
|
if (BN_is_bit_set (x, 0) != isHighestBitSet) |
|
BN_sub (x, q, x); // x = q - x |
|
EDDSAPoint p {x, y}; |
|
if (!IsOnCurve (p, ctx)) |
|
LogPrint (eLogError, "Decoded point is not on 25519"); |
|
return p; |
|
} |
|
|
|
void EncodePoint (const EDDSAPoint& p, uint8_t * buf) const |
|
{ |
|
EncodeBN (p.y, buf,EDDSA25519_PUBLIC_KEY_LENGTH); |
|
if (BN_is_bit_set (p.x, 0)) // highest bit |
|
buf[EDDSA25519_PUBLIC_KEY_LENGTH - 1] |= 0x80; // set highest bit |
|
} |
|
|
|
BIGNUM * DecodeBN (const uint8_t * buf, size_t len) const |
|
{ |
|
// buf is Little Endian convert it to Big Endian |
|
uint8_t buf1[len]; |
|
for (size_t i = 0; i < len/2; i++) // invert bytes |
|
{ |
|
buf1[i] = buf[len -1 - i]; |
|
buf1[len -1 - i] = buf[i]; |
|
} |
|
BIGNUM * res = BN_new (); |
|
BN_bin2bn (buf1, len, res); |
|
return res; |
|
} |
|
|
|
void EncodeBN (const BIGNUM * bn, uint8_t * buf, size_t len) const |
|
{ |
|
bn2buf (bn, buf, len); |
|
// To Little Endian |
|
for (size_t i = 0; i < len/2; i++) // invert bytes |
|
{ |
|
uint8_t tmp = buf[i]; |
|
buf[i] = buf[len -1 - i]; |
|
buf[len -1 - i] = tmp; |
|
} |
|
} |
|
|
|
private: |
|
|
|
BIGNUM * q, * l, * d, * I; |
|
EDDSAPoint B; // base point |
|
// transient values |
|
BIGNUM * two_252_2; // 2^252-2 |
|
EDDSAPoint Bi16[64][15]; // per 4-bits, Bi16[i][j] = (16+j+1)^i*B, we don't store zeroes |
|
}; |
|
|
|
static std::unique_ptr<Ed25519> g_Ed25519; |
|
std::unique_ptr<Ed25519>& GetEd25519 () |
|
{ |
|
if (!g_Ed25519) |
|
g_Ed25519.reset (new Ed25519 ()); |
|
return g_Ed25519; |
|
} |
|
|
|
|
|
EDDSA25519Verifier::EDDSA25519Verifier (const uint8_t * signingKey): |
|
m_Ctx (BN_CTX_new ()), |
|
m_PublicKey (GetEd25519 ()->DecodePublicKey (signingKey, m_Ctx)) |
|
{ |
|
memcpy (m_PublicKeyEncoded, signingKey, EDDSA25519_PUBLIC_KEY_LENGTH); |
|
} |
|
|
|
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const |
|
{ |
|
SHA512_CTX ctx; |
|
SHA512_Init (&ctx); |
|
SHA512_Update (&ctx, signature, EDDSA25519_SIGNATURE_LENGTH/2); // R |
|
SHA512_Update (&ctx, m_PublicKeyEncoded, EDDSA25519_PUBLIC_KEY_LENGTH); // public key |
|
SHA512_Update (&ctx, buf, len); // data |
|
uint8_t digest[64]; |
|
SHA512_Final (digest, &ctx); |
|
return GetEd25519 ()->Verify (m_PublicKey, digest, signature, m_Ctx); |
|
} |
|
|
|
EDDSA25519Signer::EDDSA25519Signer (const uint8_t * signingPrivateKey): |
|
m_Ctx (BN_CTX_new ()) |
|
{ |
|
// expand key |
|
SHA512 (signingPrivateKey, EDDSA25519_PRIVATE_KEY_LENGTH, m_ExpandedPrivateKey); |
|
m_ExpandedPrivateKey[0] &= 0xF8; // drop last 3 bits |
|
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] &= 0x1F; // drop first 3 bits |
|
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit |
|
// generate and encode public key |
|
auto publicKey = GetEd25519 ()->GeneratePublicKey (m_ExpandedPrivateKey, m_Ctx); |
|
GetEd25519 ()->EncodePublicKey (publicKey, m_PublicKeyEncoded, m_Ctx); |
|
} |
|
|
|
void EDDSA25519Signer::Sign (const uint8_t * buf, int len, uint8_t * signature) const |
|
{ |
|
GetEd25519 ()->Sign (m_ExpandedPrivateKey, m_PublicKeyEncoded, buf, len, signature, m_Ctx); |
|
} |
|
} |
|
} |
|
|
|
|
|
|