I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

872 lines
26 KiB

/*
* Copyright (c) 2013-2024, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include <string.h>
#include <string>
#include <vector>
#include <mutex>
#include <memory>
#include <openssl/dh.h>
#include <openssl/md5.h>
#include <openssl/crypto.h>
#include "TunnelBase.h"
#include <openssl/ssl.h>
#if OPENSSL_HKDF
#include <openssl/kdf.h>
#endif
#include "CPU.h"
#include "Crypto.h"
#include "Ed25519.h"
#include "I2PEndian.h"
#include "Log.h"
namespace i2p
{
namespace crypto
{
const uint8_t elgp_[256]=
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xC9, 0x0F, 0xDA, 0xA2, 0x21, 0x68, 0xC2, 0x34,
0xC4, 0xC6, 0x62, 0x8B, 0x80, 0xDC, 0x1C, 0xD1, 0x29, 0x02, 0x4E, 0x08, 0x8A, 0x67, 0xCC, 0x74,
0x02, 0x0B, 0xBE, 0xA6, 0x3B, 0x13, 0x9B, 0x22, 0x51, 0x4A, 0x08, 0x79, 0x8E, 0x34, 0x04, 0xDD,
0xEF, 0x95, 0x19, 0xB3, 0xCD, 0x3A, 0x43, 0x1B, 0x30, 0x2B, 0x0A, 0x6D, 0xF2, 0x5F, 0x14, 0x37,
0x4F, 0xE1, 0x35, 0x6D, 0x6D, 0x51, 0xC2, 0x45, 0xE4, 0x85, 0xB5, 0x76, 0x62, 0x5E, 0x7E, 0xC6,
0xF4, 0x4C, 0x42, 0xE9, 0xA6, 0x37, 0xED, 0x6B, 0x0B, 0xFF, 0x5C, 0xB6, 0xF4, 0x06, 0xB7, 0xED,
0xEE, 0x38, 0x6B, 0xFB, 0x5A, 0x89, 0x9F, 0xA5, 0xAE, 0x9F, 0x24, 0x11, 0x7C, 0x4B, 0x1F, 0xE6,
0x49, 0x28, 0x66, 0x51, 0xEC, 0xE4, 0x5B, 0x3D, 0xC2, 0x00, 0x7C, 0xB8, 0xA1, 0x63, 0xBF, 0x05,
0x98, 0xDA, 0x48, 0x36, 0x1C, 0x55, 0xD3, 0x9A, 0x69, 0x16, 0x3F, 0xA8, 0xFD, 0x24, 0xCF, 0x5F,
0x83, 0x65, 0x5D, 0x23, 0xDC, 0xA3, 0xAD, 0x96, 0x1C, 0x62, 0xF3, 0x56, 0x20, 0x85, 0x52, 0xBB,
0x9E, 0xD5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6D, 0x67, 0x0C, 0x35, 0x4E, 0x4A, 0xBC, 0x98, 0x04,
0xF1, 0x74, 0x6C, 0x08, 0xCA, 0x18, 0x21, 0x7C, 0x32, 0x90, 0x5E, 0x46, 0x2E, 0x36, 0xCE, 0x3B,
0xE3, 0x9E, 0x77, 0x2C, 0x18, 0x0E, 0x86, 0x03, 0x9B, 0x27, 0x83, 0xA2, 0xEC, 0x07, 0xA2, 0x8F,
0xB5, 0xC5, 0x5D, 0xF0, 0x6F, 0x4C, 0x52, 0xC9, 0xDE, 0x2B, 0xCB, 0xF6, 0x95, 0x58, 0x17, 0x18,
0x39, 0x95, 0x49, 0x7C, 0xEA, 0x95, 0x6A, 0xE5, 0x15, 0xD2, 0x26, 0x18, 0x98, 0xFA, 0x05, 0x10,
0x15, 0x72, 0x8E, 0x5A, 0x8A, 0xAC, 0xAA, 0x68, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};
const int elgg_ = 2;
const uint8_t dsap_[128]=
{
0x9c, 0x05, 0xb2, 0xaa, 0x96, 0x0d, 0x9b, 0x97, 0xb8, 0x93, 0x19, 0x63, 0xc9, 0xcc, 0x9e, 0x8c,
0x30, 0x26, 0xe9, 0xb8, 0xed, 0x92, 0xfa, 0xd0, 0xa6, 0x9c, 0xc8, 0x86, 0xd5, 0xbf, 0x80, 0x15,
0xfc, 0xad, 0xae, 0x31, 0xa0, 0xad, 0x18, 0xfa, 0xb3, 0xf0, 0x1b, 0x00, 0xa3, 0x58, 0xde, 0x23,
0x76, 0x55, 0xc4, 0x96, 0x4a, 0xfa, 0xa2, 0xb3, 0x37, 0xe9, 0x6a, 0xd3, 0x16, 0xb9, 0xfb, 0x1c,
0xc5, 0x64, 0xb5, 0xae, 0xc5, 0xb6, 0x9a, 0x9f, 0xf6, 0xc3, 0xe4, 0x54, 0x87, 0x07, 0xfe, 0xf8,
0x50, 0x3d, 0x91, 0xdd, 0x86, 0x02, 0xe8, 0x67, 0xe6, 0xd3, 0x5d, 0x22, 0x35, 0xc1, 0x86, 0x9c,
0xe2, 0x47, 0x9c, 0x3b, 0x9d, 0x54, 0x01, 0xde, 0x04, 0xe0, 0x72, 0x7f, 0xb3, 0x3d, 0x65, 0x11,
0x28, 0x5d, 0x4c, 0xf2, 0x95, 0x38, 0xd9, 0xe3, 0xb6, 0x05, 0x1f, 0x5b, 0x22, 0xcc, 0x1c, 0x93
};
const uint8_t dsaq_[20]=
{
0xa5, 0xdf, 0xc2, 0x8f, 0xef, 0x4c, 0xa1, 0xe2, 0x86, 0x74, 0x4c, 0xd8, 0xee, 0xd9, 0xd2, 0x9d,
0x68, 0x40, 0x46, 0xb7
};
const uint8_t dsag_[128]=
{
0x0c, 0x1f, 0x4d, 0x27, 0xd4, 0x00, 0x93, 0xb4, 0x29, 0xe9, 0x62, 0xd7, 0x22, 0x38, 0x24, 0xe0,
0xbb, 0xc4, 0x7e, 0x7c, 0x83, 0x2a, 0x39, 0x23, 0x6f, 0xc6, 0x83, 0xaf, 0x84, 0x88, 0x95, 0x81,
0x07, 0x5f, 0xf9, 0x08, 0x2e, 0xd3, 0x23, 0x53, 0xd4, 0x37, 0x4d, 0x73, 0x01, 0xcd, 0xa1, 0xd2,
0x3c, 0x43, 0x1f, 0x46, 0x98, 0x59, 0x9d, 0xda, 0x02, 0x45, 0x18, 0x24, 0xff, 0x36, 0x97, 0x52,
0x59, 0x36, 0x47, 0xcc, 0x3d, 0xdc, 0x19, 0x7d, 0xe9, 0x85, 0xe4, 0x3d, 0x13, 0x6c, 0xdc, 0xfc,
0x6b, 0xd5, 0x40, 0x9c, 0xd2, 0xf4, 0x50, 0x82, 0x11, 0x42, 0xa5, 0xe6, 0xf8, 0xeb, 0x1c, 0x3a,
0xb5, 0xd0, 0x48, 0x4b, 0x81, 0x29, 0xfc, 0xf1, 0x7b, 0xce, 0x4f, 0x7f, 0x33, 0x32, 0x1c, 0x3c,
0xb3, 0xdb, 0xb1, 0x4a, 0x90, 0x5e, 0x7b, 0x2b, 0x3e, 0x93, 0xbe, 0x47, 0x08, 0xcb, 0xcc, 0x82
};
const int rsae_ = 65537;
struct CryptoConstants
{
// DH/ElGamal
BIGNUM * elgp;
BIGNUM * elgg;
// DSA
BIGNUM * dsap;
BIGNUM * dsaq;
BIGNUM * dsag;
// RSA
BIGNUM * rsae;
CryptoConstants (const uint8_t * elgp_, int elgg_, const uint8_t * dsap_,
const uint8_t * dsaq_, const uint8_t * dsag_, int rsae_)
{
elgp = BN_new ();
BN_bin2bn (elgp_, 256, elgp);
elgg = BN_new ();
BN_set_word (elgg, elgg_);
dsap = BN_new ();
BN_bin2bn (dsap_, 128, dsap);
dsaq = BN_new ();
BN_bin2bn (dsaq_, 20, dsaq);
dsag = BN_new ();
BN_bin2bn (dsag_, 128, dsag);
rsae = BN_new ();
BN_set_word (rsae, rsae_);
}
~CryptoConstants ()
{
BN_free (elgp); BN_free (elgg); BN_free (dsap); BN_free (dsaq); BN_free (dsag); BN_free (rsae);
}
};
static const CryptoConstants& GetCryptoConstants ()
{
static CryptoConstants cryptoConstants (elgp_, elgg_, dsap_, dsaq_, dsag_, rsae_);
return cryptoConstants;
}
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len)
{
int offset = len - BN_num_bytes (bn);
if (offset < 0) return false;
BN_bn2bin (bn, buf + offset);
memset (buf, 0, offset);
return true;
}
// RSA
#define rsae GetCryptoConstants ().rsae
const BIGNUM * GetRSAE ()
{
return rsae;
}
// DSA
#define dsap GetCryptoConstants ().dsap
#define dsaq GetCryptoConstants ().dsaq
#define dsag GetCryptoConstants ().dsag
DSA * CreateDSA ()
{
DSA * dsa = DSA_new ();
DSA_set0_pqg (dsa, BN_dup (dsap), BN_dup (dsaq), BN_dup (dsag));
DSA_set0_key (dsa, NULL, NULL);
return dsa;
}
// DH/ElGamal
#if !IS_X86_64
const int ELGAMAL_SHORT_EXPONENT_NUM_BITS = 226;
const int ELGAMAL_SHORT_EXPONENT_NUM_BYTES = ELGAMAL_SHORT_EXPONENT_NUM_BITS/8+1;
#endif
const int ELGAMAL_FULL_EXPONENT_NUM_BITS = 2048;
const int ELGAMAL_FULL_EXPONENT_NUM_BYTES = ELGAMAL_FULL_EXPONENT_NUM_BITS/8;
#define elgp GetCryptoConstants ().elgp
#define elgg GetCryptoConstants ().elgg
static BN_MONT_CTX * g_MontCtx = nullptr;
static void PrecalculateElggTable (BIGNUM * table[][255], int len) // table is len's array of array of 255 bignums
{
if (len <= 0) return;
BN_CTX * ctx = BN_CTX_new ();
g_MontCtx = BN_MONT_CTX_new ();
BN_MONT_CTX_set (g_MontCtx, elgp, ctx);
auto montCtx = BN_MONT_CTX_new ();
BN_MONT_CTX_copy (montCtx, g_MontCtx);
for (int i = 0; i < len; i++)
{
table[i][0] = BN_new ();
if (!i)
BN_to_montgomery (table[0][0], elgg, montCtx, ctx);
else
BN_mod_mul_montgomery (table[i][0], table[i-1][254], table[i-1][0], montCtx, ctx);
for (int j = 1; j < 255; j++)
{
table[i][j] = BN_new ();
BN_mod_mul_montgomery (table[i][j], table[i][j-1], table[i][0], montCtx, ctx);
}
}
BN_MONT_CTX_free (montCtx);
BN_CTX_free (ctx);
}
static void DestroyElggTable (BIGNUM * table[][255], int len)
{
for (int i = 0; i < len; i++)
for (int j = 0; j < 255; j++)
{
BN_free (table[i][j]);
table[i][j] = nullptr;
}
BN_MONT_CTX_free (g_MontCtx);
}
static BIGNUM * ElggPow (const uint8_t * exp, int len, BIGNUM * table[][255], BN_CTX * ctx)
// exp is in Big Endian
{
if (len <= 0) return nullptr;
auto montCtx = BN_MONT_CTX_new ();
BN_MONT_CTX_copy (montCtx, g_MontCtx);
BIGNUM * res = nullptr;
for (int i = 0; i < len; i++)
{
if (res)
{
if (exp[i])
BN_mod_mul_montgomery (res, res, table[len-1-i][exp[i]-1], montCtx, ctx);
}
else if (exp[i])
res = BN_dup (table[len-i-1][exp[i]-1]);
}
if (res)
BN_from_montgomery (res, res, montCtx, ctx);
BN_MONT_CTX_free (montCtx);
return res;
}
static BIGNUM * ElggPow (const BIGNUM * exp, BIGNUM * table[][255], BN_CTX * ctx)
{
auto len = BN_num_bytes (exp);
uint8_t * buf = new uint8_t[len];
BN_bn2bin (exp, buf);
auto ret = ElggPow (buf, len, table, ctx);
delete[] buf;
return ret;
}
static BIGNUM * (* g_ElggTable)[255] = nullptr;
// x25519
X25519Keys::X25519Keys ()
{
m_Ctx = EVP_PKEY_CTX_new_id (NID_X25519, NULL);
m_Pkey = nullptr;
}
X25519Keys::X25519Keys (const uint8_t * priv, const uint8_t * pub)
{
m_Pkey = EVP_PKEY_new_raw_private_key (EVP_PKEY_X25519, NULL, priv, 32);
m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL);
if (pub)
memcpy (m_PublicKey, pub, 32); // TODO: verify against m_Pkey
else
{
size_t len = 32;
EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len);
}
}
X25519Keys::~X25519Keys ()
{
EVP_PKEY_CTX_free (m_Ctx);
if (m_Pkey) EVP_PKEY_free (m_Pkey);
}
void X25519Keys::GenerateKeys ()
{
if (m_Pkey)
{
EVP_PKEY_free (m_Pkey);
m_Pkey = nullptr;
}
EVP_PKEY_keygen_init (m_Ctx);
EVP_PKEY_keygen (m_Ctx, &m_Pkey);
EVP_PKEY_CTX_free (m_Ctx);
m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL); // TODO: do we really need to re-create m_Ctx?
size_t len = 32;
EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len);
}
bool X25519Keys::Agree (const uint8_t * pub, uint8_t * shared)
{
if (!pub || (pub[31] & 0x80)) return false; // not x25519 key
EVP_PKEY_derive_init (m_Ctx);
auto pkey = EVP_PKEY_new_raw_public_key (EVP_PKEY_X25519, NULL, pub, 32);
if (!pkey) return false;
EVP_PKEY_derive_set_peer (m_Ctx, pkey);
size_t len = 32;
EVP_PKEY_derive (m_Ctx, shared, &len);
EVP_PKEY_free (pkey);
return true;
}
void X25519Keys::GetPrivateKey (uint8_t * priv) const
{
size_t len = 32;
EVP_PKEY_get_raw_private_key (m_Pkey, priv, &len);
}
void X25519Keys::SetPrivateKey (const uint8_t * priv, bool calculatePublic)
{
if (m_Ctx) EVP_PKEY_CTX_free (m_Ctx);
if (m_Pkey) EVP_PKEY_free (m_Pkey);
m_Pkey = EVP_PKEY_new_raw_private_key (EVP_PKEY_X25519, NULL, priv, 32);
m_Ctx = EVP_PKEY_CTX_new (m_Pkey, NULL);
if (calculatePublic)
{
size_t len = 32;
EVP_PKEY_get_raw_public_key (m_Pkey, m_PublicKey, &len);
}
}
// ElGamal
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted)
{
BN_CTX * ctx = BN_CTX_new ();
BN_CTX_start (ctx);
// everything, but a, because a might come from table
BIGNUM * k = BN_CTX_get (ctx);
BIGNUM * y = BN_CTX_get (ctx);
BIGNUM * b1 = BN_CTX_get (ctx);
BIGNUM * b = BN_CTX_get (ctx);
// select random k
#if IS_X86_64
BN_rand (k, ELGAMAL_FULL_EXPONENT_NUM_BITS, -1, 1); // full exponent for x64
#else
BN_rand (k, ELGAMAL_SHORT_EXPONENT_NUM_BITS, -1, 1); // short exponent of 226 bits
#endif
// calculate a
BIGNUM * a;
if (g_ElggTable)
a = ElggPow (k, g_ElggTable, ctx);
else
{
a = BN_new ();
BN_mod_exp (a, elgg, k, elgp, ctx);
}
// restore y from key
BN_bin2bn (key, 256, y);
// calculate b1
BN_mod_exp (b1, y, k, elgp, ctx);
// create m
uint8_t m[255];
m[0] = 0xFF;
memcpy (m+33, data, 222);
SHA256 (m+33, 222, m+1);
// calculate b = b1*m mod p
BN_bin2bn (m, 255, b);
BN_mod_mul (b, b1, b, elgp, ctx);
// copy a and b
encrypted[0] = 0;
bn2buf (a, encrypted + 1, 256);
encrypted[257] = 0;
bn2buf (b, encrypted + 258, 256);
BN_free (a);
BN_CTX_end (ctx);
BN_CTX_free (ctx);
}
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data)
{
BN_CTX * ctx = BN_CTX_new ();
BN_CTX_start (ctx);
BIGNUM * x = BN_CTX_get (ctx), * a = BN_CTX_get (ctx), * b = BN_CTX_get (ctx);
BN_bin2bn (key, 256, x);
BN_sub (x, elgp, x); BN_sub_word (x, 1); // x = elgp - x- 1
BN_bin2bn (encrypted + 1, 256, a);
BN_bin2bn (encrypted + 258, 256, b);
// m = b*(a^x mod p) mod p
BN_mod_exp (x, a, x, elgp, ctx);
BN_mod_mul (b, b, x, elgp, ctx);
uint8_t m[255];
bn2buf (b, m, 255);
BN_CTX_end (ctx);
BN_CTX_free (ctx);
uint8_t hash[32];
SHA256 (m + 33, 222, hash);
if (memcmp (m + 1, hash, 32))
{
LogPrint (eLogError, "ElGamal decrypt hash doesn't match");
return false;
}
memcpy (data, m + 33, 222);
return true;
}
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub)
{
#if IS_X86 || defined(_MSC_VER)
RAND_bytes (priv, 256);
#else
// lower 226 bits (28 bytes and 2 bits) only. short exponent
auto numBytes = (ELGAMAL_SHORT_EXPONENT_NUM_BITS)/8 + 1; // 29
auto numZeroBytes = 256 - numBytes;
RAND_bytes (priv + numZeroBytes, numBytes);
memset (priv, 0, numZeroBytes);
priv[numZeroBytes] &= 0x03;
#endif
BN_CTX * ctx = BN_CTX_new ();
BIGNUM * p = BN_new ();
BN_bin2bn (priv, 256, p);
BN_mod_exp (p, elgg, p, elgp, ctx);
bn2buf (p, pub, 256);
BN_free (p);
BN_CTX_free (ctx);
}
// ECIES
void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted)
{
BN_CTX * ctx = BN_CTX_new ();
BN_CTX_start (ctx);
BIGNUM * q = BN_CTX_get (ctx);
EC_GROUP_get_order(curve, q, ctx);
int len = BN_num_bytes (q);
BIGNUM * k = BN_CTX_get (ctx);
BN_rand_range (k, q); // 0 < k < q
// point for shared secret
auto p = EC_POINT_new (curve);
EC_POINT_mul (curve, p, k, nullptr, nullptr, ctx);
BIGNUM * x = BN_CTX_get (ctx), * y = BN_CTX_get (ctx);
EC_POINT_get_affine_coordinates_GFp (curve, p, x, y, nullptr);
encrypted[0] = 0;
bn2buf (x, encrypted + 1, len);
bn2buf (y, encrypted + 1 + len, len);
RAND_bytes (encrypted + 1 + 2*len, 256 - 2*len);
// encryption key and iv
EC_POINT_mul (curve, p, nullptr, key, k, ctx);
EC_POINT_get_affine_coordinates_GFp (curve, p, x, y, nullptr);
uint8_t keyBuf[64], iv[64], shared[32];
bn2buf (x, keyBuf, len);
bn2buf (y, iv, len);
SHA256 (keyBuf, len, shared);
// create buffer
uint8_t m[256];
m[0] = 0xFF; m[255] = 0xFF;
memcpy (m+33, data, 222);
SHA256 (m+33, 222, m+1);
// encrypt
CBCEncryption encryption;
encryption.SetKey (shared);
encryption.SetIV (iv);
encrypted[257] = 0;
encryption.Encrypt (m, 256, encrypted + 258);
EC_POINT_free (p);
BN_CTX_end (ctx);
BN_CTX_free (ctx);
}
bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data)
{
bool ret = true;
BN_CTX * ctx = BN_CTX_new ();
BN_CTX_start (ctx);
BIGNUM * q = BN_CTX_get (ctx);
EC_GROUP_get_order(curve, q, ctx);
int len = BN_num_bytes (q);
// point for shared secret
BIGNUM * x = BN_CTX_get (ctx), * y = BN_CTX_get (ctx);
BN_bin2bn (encrypted + 1, len, x);
BN_bin2bn (encrypted + 1 + len, len, y);
auto p = EC_POINT_new (curve);
if (EC_POINT_set_affine_coordinates_GFp (curve, p, x, y, nullptr))
{
auto s = EC_POINT_new (curve);
EC_POINT_mul (curve, s, nullptr, p, key, ctx);
EC_POINT_get_affine_coordinates_GFp (curve, s, x, y, nullptr);
EC_POINT_free (s);
uint8_t keyBuf[64], iv[64], shared[32];
bn2buf (x, keyBuf, len);
bn2buf (y, iv, len);
SHA256 (keyBuf, len, shared);
// decrypt
uint8_t m[256];
CBCDecryption decryption;
decryption.SetKey (shared);
decryption.SetIV (iv);
decryption.Decrypt (encrypted + 258, 256, m);
// verify and copy
uint8_t hash[32];
SHA256 (m + 33, 222, hash);
if (!memcmp (m + 1, hash, 32))
memcpy (data, m + 33, 222);
else
{
LogPrint (eLogError, "ECIES decrypt hash doesn't match");
ret = false;
}
}
else
{
LogPrint (eLogError, "ECIES decrypt point is invalid");
ret = false;
}
EC_POINT_free (p);
BN_CTX_end (ctx);
BN_CTX_free (ctx);
return ret;
}
void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub)
{
BN_CTX * ctx = BN_CTX_new ();
BIGNUM * q = BN_new ();
EC_GROUP_get_order(curve, q, ctx);
priv = BN_new ();
BN_rand_range (priv, q);
pub = EC_POINT_new (curve);
EC_POINT_mul (curve, pub, priv, nullptr, nullptr, ctx);
BN_free (q);
BN_CTX_free (ctx);
}
// AES
ECBEncryption::ECBEncryption ()
{
m_Ctx = EVP_CIPHER_CTX_new ();
}
ECBEncryption::~ECBEncryption ()
{
if (m_Ctx)
EVP_CIPHER_CTX_free (m_Ctx);
}
void ECBEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
EVP_EncryptInit_ex (m_Ctx, EVP_aes_256_ecb(), NULL, m_Key, NULL);
EVP_CIPHER_CTX_set_padding (m_Ctx, 0);
int len;
EVP_EncryptUpdate (m_Ctx, out, &len, in, 16);
EVP_EncryptFinal_ex (m_Ctx, out + len, &len);
}
ECBDecryption::ECBDecryption ()
{
m_Ctx = EVP_CIPHER_CTX_new ();
}
ECBDecryption::~ECBDecryption ()
{
if (m_Ctx)
EVP_CIPHER_CTX_free (m_Ctx);
}
void ECBDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
EVP_DecryptInit_ex (m_Ctx, EVP_aes_256_ecb(), NULL, m_Key, NULL);
EVP_CIPHER_CTX_set_padding (m_Ctx, 0);
int len;
EVP_DecryptUpdate (m_Ctx, out, &len, in, 16);
EVP_DecryptFinal_ex (m_Ctx, out + len, &len);
}
CBCEncryption::CBCEncryption ()
{
m_Ctx = EVP_CIPHER_CTX_new ();
//memset ((uint8_t *)m_LastBlock, 0, 16);
}
CBCEncryption::~CBCEncryption ()
{
if (m_Ctx)
EVP_CIPHER_CTX_free (m_Ctx);
}
void CBCEncryption::Encrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
// len/16
EVP_EncryptInit_ex (m_Ctx, EVP_aes_256_cbc(), NULL, m_Key, m_IV);
EVP_CIPHER_CTX_set_padding (m_Ctx, 0);
int l;
EVP_EncryptUpdate (m_Ctx, out, &l, in, len);
EVP_EncryptFinal_ex (m_Ctx, out + l, &l);
}
CBCDecryption::CBCDecryption ()
{
m_Ctx = EVP_CIPHER_CTX_new ();
//memset ((uint8_t *)m_IV, 0, 16);
}
CBCDecryption::~CBCDecryption ()
{
if (m_Ctx)
EVP_CIPHER_CTX_free (m_Ctx);
}
void CBCDecryption::Decrypt (const uint8_t * in, std::size_t len, uint8_t * out)
{
// len/16
EVP_DecryptInit_ex (m_Ctx, EVP_aes_256_cbc(), NULL, m_Key, m_IV);
EVP_CIPHER_CTX_set_padding (m_Ctx, 0);
int l;
EVP_DecryptUpdate (m_Ctx, out, &l, in, len);
EVP_DecryptFinal_ex (m_Ctx, out + l, &l);
}
void TunnelEncryption::Encrypt (const uint8_t * in, uint8_t * out)
{
m_IVEncryption.Encrypt (in, out); // iv
m_LayerEncryption.SetIV (out);
m_LayerEncryption.Encrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVEncryption.Encrypt (out, out); // double iv
}
void TunnelDecryption::Decrypt (const uint8_t * in, uint8_t * out)
{
m_IVDecryption.Decrypt (in, out); // iv
m_LayerDecryption.SetIV (out);
m_LayerDecryption.Decrypt (in + 16, i2p::tunnel::TUNNEL_DATA_ENCRYPTED_SIZE, out + 16); // data
m_IVDecryption.Decrypt (out, out); // double iv
}
// AEAD/ChaCha20/Poly1305
bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt)
{
if (len < msgLen) return false;
if (encrypt && len < msgLen + 16) return false;
bool ret = true;
int outlen = 0;
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
if (encrypt)
{
EVP_EncryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0);
EVP_EncryptInit_ex(ctx, NULL, NULL, key, nonce);
EVP_EncryptUpdate(ctx, NULL, &outlen, ad, adLen);
EVP_EncryptUpdate(ctx, buf, &outlen, msg, msgLen);
EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, buf + msgLen);
}
else
{
#if defined(LIBRESSL_VERSION_NUMBER) && LIBRESSL_VERSION_NUMBER < 0x4000000fL
std::vector<uint8_t> m(msgLen + 16);
if (msg == buf)
{
// we have to use different buffers otherwise verification fails
memcpy (m.data (), msg, msgLen + 16);
msg = m.data ();
}
#endif
EVP_DecryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, 16, (uint8_t *)(msg + msgLen));
EVP_DecryptInit_ex(ctx, NULL, NULL, key, nonce);
EVP_DecryptUpdate(ctx, NULL, &outlen, ad, adLen);
EVP_DecryptUpdate(ctx, buf, &outlen, msg, msgLen);
ret = EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen) > 0;
}
EVP_CIPHER_CTX_free (ctx);
return ret;
}
void AEADChaCha20Poly1305Encrypt (const std::vector<std::pair<uint8_t *, size_t> >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac)
{
if (bufs.empty ()) return;
int outlen = 0;
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
EVP_EncryptInit_ex(ctx, EVP_chacha20_poly1305(), 0, 0, 0);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, 12, 0);
EVP_EncryptInit_ex(ctx, NULL, NULL, key, nonce);
for (const auto& it: bufs)
EVP_EncryptUpdate(ctx, it.first, &outlen, it.first, it.second);
EVP_EncryptFinal_ex(ctx, NULL, &outlen);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, mac);
EVP_CIPHER_CTX_free (ctx);
}
void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out)
{
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
uint32_t iv[4];
iv[0] = htole32 (1); memcpy (iv + 1, nonce, 12); // counter | nonce
EVP_EncryptInit_ex(ctx, EVP_chacha20 (), NULL, key, (const uint8_t *)iv);
int outlen = 0;
EVP_EncryptUpdate(ctx, out, &outlen, msg, msgLen);
EVP_EncryptFinal_ex(ctx, NULL, &outlen);
EVP_CIPHER_CTX_free (ctx);
}
void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info,
uint8_t * out, size_t outLen)
{
#if OPENSSL_HKDF
EVP_PKEY_CTX * pctx = EVP_PKEY_CTX_new_id (EVP_PKEY_HKDF, nullptr);
EVP_PKEY_derive_init (pctx);
EVP_PKEY_CTX_set_hkdf_md (pctx, EVP_sha256());
if (key && keyLen)
{
EVP_PKEY_CTX_set1_hkdf_salt (pctx, salt, 32);
EVP_PKEY_CTX_set1_hkdf_key (pctx, key, keyLen);
}
else
{
// zerolen
EVP_PKEY_CTX_hkdf_mode (pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY);
uint8_t tempKey[32]; unsigned int len;
HMAC(EVP_sha256(), salt, 32, nullptr, 0, tempKey, &len);
EVP_PKEY_CTX_set1_hkdf_key (pctx, tempKey, len);
}
if (info.length () > 0)
EVP_PKEY_CTX_add1_hkdf_info (pctx, (const uint8_t *)info.c_str (), info.length ());
EVP_PKEY_derive (pctx, out, &outLen);
EVP_PKEY_CTX_free (pctx);
#else
uint8_t prk[32]; unsigned int len;
HMAC(EVP_sha256(), salt, 32, key, keyLen, prk, &len);
auto l = info.length ();
memcpy (out, info.c_str (), l); out[l] = 0x01;
HMAC(EVP_sha256(), prk, 32, out, l + 1, out, &len);
if (outLen > 32) // 64
{
memcpy (out + 32, info.c_str (), l); out[l + 32] = 0x02;
HMAC(EVP_sha256(), prk, 32, out, l + 33, out + 32, &len);
}
#endif
}
// Noise
void NoiseSymmetricState::MixHash (const uint8_t * buf, size_t len)
{
SHA256_CTX ctx;
SHA256_Init (&ctx);
SHA256_Update (&ctx, m_H, 32);
SHA256_Update (&ctx, buf, len);
SHA256_Final (m_H, &ctx);
}
void NoiseSymmetricState::MixHash (const std::vector<std::pair<uint8_t *, size_t> >& bufs)
{
SHA256_CTX ctx;
SHA256_Init (&ctx);
SHA256_Update (&ctx, m_H, 32);
for (const auto& it: bufs)
SHA256_Update (&ctx, it.first, it.second);
SHA256_Final (m_H, &ctx);
}
void NoiseSymmetricState::MixKey (const uint8_t * sharedSecret)
{
HKDF (m_CK, sharedSecret, 32, "", m_CK);
// new ck is m_CK[0:31], key is m_CK[32:63]
}
static void InitNoiseState (NoiseSymmetricState& state, const uint8_t * ck,
const uint8_t * hh, const uint8_t * pub)
{
// pub is Bob's public static key, hh = SHA256(h)
memcpy (state.m_CK, ck, 32);
SHA256_CTX ctx;
SHA256_Init (&ctx);
SHA256_Update (&ctx, hh, 32);
SHA256_Update (&ctx, pub, 32);
SHA256_Final (state.m_H, &ctx); // h = MixHash(pub) = SHA256(hh || pub)
}
void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub)
{
static const char protocolName[] = "Noise_N_25519_ChaChaPoly_SHA256"; // 31 chars
static const uint8_t hh[32] =
{
0x69, 0x4d, 0x52, 0x44, 0x5a, 0x27, 0xd9, 0xad, 0xfa, 0xd2, 0x9c, 0x76, 0x32, 0x39, 0x5d, 0xc1,
0xe4, 0x35, 0x4c, 0x69, 0xb4, 0xf9, 0x2e, 0xac, 0x8a, 0x1e, 0xe4, 0x6a, 0x9e, 0xd2, 0x15, 0x54
}; // hh = SHA256(protocol_name || 0)
InitNoiseState (state, (const uint8_t *)protocolName, hh, pub); // ck = protocol_name || 0
}
void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub)
{
static const uint8_t protocolNameHash[32] =
{
0x72, 0xe8, 0x42, 0xc5, 0x45, 0xe1, 0x80, 0x80, 0xd3, 0x9c, 0x44, 0x93, 0xbb, 0x91, 0xd7, 0xed,
0xf2, 0x28, 0x98, 0x17, 0x71, 0x21, 0x8c, 0x1f, 0x62, 0x4e, 0x20, 0x6f, 0x28, 0xd3, 0x2f, 0x71
}; // SHA256 ("Noise_XKaesobfse+hs2+hs3_25519_ChaChaPoly_SHA256")
static const uint8_t hh[32] =
{
0x49, 0xff, 0x48, 0x3f, 0xc4, 0x04, 0xb9, 0xb2, 0x6b, 0x11, 0x94, 0x36, 0x72, 0xff, 0x05, 0xb5,
0x61, 0x27, 0x03, 0x31, 0xba, 0x89, 0xb8, 0xfc, 0x33, 0x15, 0x93, 0x87, 0x57, 0xdd, 0x3d, 0x1e
}; // SHA256 (protocolNameHash)
InitNoiseState (state, protocolNameHash, hh, pub);
}
void InitNoiseXKState1 (NoiseSymmetricState& state, const uint8_t * pub)
{
static const uint8_t protocolNameHash[32] =
{
0xb1, 0x37, 0x22, 0x81, 0x74, 0x23, 0xa8, 0xfd, 0xf4, 0x2d, 0xf2, 0xe6, 0x0e, 0xd1, 0xed, 0xf4,
0x1b, 0x93, 0x07, 0x1d, 0xb1, 0xec, 0x24, 0xa3, 0x67, 0xf7, 0x84, 0xec, 0x27, 0x0d, 0x81, 0x32
}; // SHA256 ("Noise_XKchaobfse+hs1+hs2+hs3_25519_ChaChaPoly_SHA256")
static const uint8_t hh[32] =
{
0xdc, 0x85, 0xe6, 0xaf, 0x7b, 0x02, 0x65, 0x0c, 0xf1, 0xf9, 0x0d, 0x71, 0xfb, 0xc6, 0xd4, 0x53,
0xa7, 0xcf, 0x6d, 0xbf, 0xbd, 0x52, 0x5e, 0xa5, 0xb5, 0x79, 0x1c, 0x47, 0xb3, 0x5e, 0xbc, 0x33
}; // SHA256 (protocolNameHash)
InitNoiseState (state, protocolNameHash, hh, pub);
}
void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub)
{
static const uint8_t protocolNameHash[32] =
{
0x4c, 0xaf, 0x11, 0xef, 0x2c, 0x8e, 0x36, 0x56, 0x4c, 0x53, 0xe8, 0x88, 0x85, 0x06, 0x4d, 0xba,
0xac, 0xbe, 0x00, 0x54, 0xad, 0x17, 0x8f, 0x80, 0x79, 0xa6, 0x46, 0x82, 0x7e, 0x6e, 0xe4, 0x0c
}; // SHA256("Noise_IKelg2+hs2_25519_ChaChaPoly_SHA256"), 40 bytes
static const uint8_t hh[32] =
{
0x9c, 0xcf, 0x85, 0x2c, 0xc9, 0x3b, 0xb9, 0x50, 0x44, 0x41, 0xe9, 0x50, 0xe0, 0x1d, 0x52, 0x32,
0x2e, 0x0d, 0x47, 0xad, 0xd1, 0xe9, 0xa5, 0x55, 0xf7, 0x55, 0xb5, 0x69, 0xae, 0x18, 0x3b, 0x5c
}; // SHA256 (protocolNameHash)
InitNoiseState (state, protocolNameHash, hh, pub);
}
// init and terminate
/* std::vector <std::unique_ptr<std::mutex> > m_OpenSSLMutexes;
static void OpensslLockingCallback(int mode, int type, const char * file, int line)
{
if (type > 0 && (size_t)type < m_OpenSSLMutexes.size ())
{
if (mode & CRYPTO_LOCK)
m_OpenSSLMutexes[type]->lock ();
else
m_OpenSSLMutexes[type]->unlock ();
}
}*/
void InitCrypto (bool precomputation)
{
/* auto numLocks = CRYPTO_num_locks();
for (int i = 0; i < numLocks; i++)
m_OpenSSLMutexes.emplace_back (new std::mutex);
CRYPTO_set_locking_callback (OpensslLockingCallback);*/
if (precomputation)
{
#if IS_X86_64
g_ElggTable = new BIGNUM * [ELGAMAL_FULL_EXPONENT_NUM_BYTES][255];
PrecalculateElggTable (g_ElggTable, ELGAMAL_FULL_EXPONENT_NUM_BYTES);
#else
g_ElggTable = new BIGNUM * [ELGAMAL_SHORT_EXPONENT_NUM_BYTES][255];
PrecalculateElggTable (g_ElggTable, ELGAMAL_SHORT_EXPONENT_NUM_BYTES);
#endif
}
}
void TerminateCrypto ()
{
if (g_ElggTable)
{
DestroyElggTable (g_ElggTable,
#if IS_X86_64
ELGAMAL_FULL_EXPONENT_NUM_BYTES
#else
ELGAMAL_SHORT_EXPONENT_NUM_BYTES
#endif
);
delete[] g_ElggTable; g_ElggTable = nullptr;
}
/* CRYPTO_set_locking_callback (nullptr);
m_OpenSSLMutexes.clear ();*/
}
}
}