1
0
mirror of https://github.com/PurpleI2P/i2pd.git synced 2025-01-08 22:57:52 +00:00
i2pd/libi2pd/Crypto.h

256 lines
6.5 KiB
C++

/*
* Copyright (c) 2013-2024, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#ifndef CRYPTO_H__
#define CRYPTO_H__
#include <inttypes.h>
#include <string>
#include <vector>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/aes.h>
#include <openssl/dsa.h>
#include <openssl/ecdsa.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/evp.h>
#include <openssl/rand.h>
#include <openssl/opensslv.h>
#include "Base.h"
#include "Tag.h"
// recognize openssl version and features
#if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1
# define OPENSSL_HKDF 1
# define OPENSSL_EDDSA 1
# if (!defined(LIBRESSL_VERSION_NUMBER) && (OPENSSL_VERSION_NUMBER != 0x030000000)) // 3.0.0, regression in SipHash, not implemented in LibreSSL
# define OPENSSL_SIPHASH 1
# endif
#endif
namespace i2p
{
namespace crypto
{
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len);
// DSA
DSA * CreateDSA ();
// RSA
const BIGNUM * GetRSAE ();
// x25519
class X25519Keys
{
public:
X25519Keys ();
X25519Keys (const uint8_t * priv, const uint8_t * pub); // if pub is null, derive from priv
~X25519Keys ();
void GenerateKeys ();
const uint8_t * GetPublicKey () const { return m_PublicKey; };
void GetPrivateKey (uint8_t * priv) const;
void SetPrivateKey (const uint8_t * priv, bool calculatePublic = false);
bool Agree (const uint8_t * pub, uint8_t * shared);
bool IsElligatorIneligible () const { return m_IsElligatorIneligible; }
void SetElligatorIneligible () { m_IsElligatorIneligible = true; }
private:
uint8_t m_PublicKey[32];
EVP_PKEY_CTX * m_Ctx;
EVP_PKEY * m_Pkey;
bool m_IsElligatorIneligible = false; // true if definitely ineligible
};
// ElGamal
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub);
// ECIES
void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted
bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data
void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub);
// AES
typedef i2p::data::Tag<32> AESKey;
class ECBEncryption
{
public:
ECBEncryption ();
~ECBEncryption ();
void SetKey (const uint8_t * key) { m_Key = key; };
void Encrypt(const uint8_t * in, uint8_t * out);
private:
AESKey m_Key;
EVP_CIPHER_CTX * m_Ctx;
};
class ECBDecryption
{
public:
ECBDecryption ();
~ECBDecryption ();
void SetKey (const uint8_t * key) { m_Key = key; };
void Decrypt (const uint8_t * in, uint8_t * out);
private:
AESKey m_Key;
EVP_CIPHER_CTX * m_Ctx;
};
class CBCEncryption
{
public:
CBCEncryption ();
~CBCEncryption ();
void SetKey (const uint8_t * key) { m_Key = key; }; // 32 bytes
void Encrypt (const uint8_t * in, size_t len, const uint8_t * iv, uint8_t * out);
private:
AESKey m_Key;
EVP_CIPHER_CTX * m_Ctx;
};
class CBCDecryption
{
public:
CBCDecryption ();
~CBCDecryption ();
void SetKey (const uint8_t * key) { m_Key = key; }; // 32 bytes
void Decrypt (const uint8_t * in, size_t len, const uint8_t * iv, uint8_t * out);
private:
AESKey m_Key;
EVP_CIPHER_CTX * m_Ctx;
};
class TunnelEncryption // with double IV encryption
{
public:
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerEncryption.SetKey (layerKey);
m_IVEncryption.SetKey (ivKey);
}
void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
private:
ECBEncryption m_IVEncryption;
CBCEncryption m_LayerEncryption;
};
class TunnelDecryption // with double IV encryption
{
public:
void SetKeys (const AESKey& layerKey, const AESKey& ivKey)
{
m_LayerDecryption.SetKey (layerKey);
m_IVDecryption.SetKey (ivKey);
}
void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data)
private:
ECBDecryption m_IVDecryption;
CBCDecryption m_LayerDecryption;
};
// AEAD/ChaCha20/Poly1305
class AEADChaCha20Poly1305Encryptor
{
public:
AEADChaCha20Poly1305Encryptor ();
~AEADChaCha20Poly1305Encryptor ();
bool Encrypt (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen,
const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len); // msgLen is len without tag
void Encrypt (const std::vector<std::pair<uint8_t *, size_t> >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac); // encrypt multiple buffers with zero ad
private:
EVP_CIPHER_CTX * m_Ctx;
};
class AEADChaCha20Poly1305Decryptor
{
public:
AEADChaCha20Poly1305Decryptor ();
~AEADChaCha20Poly1305Decryptor ();
bool Decrypt (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen,
const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len); // msgLen is len without tag
private:
EVP_CIPHER_CTX * m_Ctx;
};
bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen,
const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt); // msgLen is len without tag
// ChaCha20
void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out);
// HKDF
void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info, uint8_t * out, size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32
// Noise
struct NoiseSymmetricState
{
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/;
void MixHash (const uint8_t * buf, size_t len);
void MixHash (const std::vector<std::pair<uint8_t *, size_t> >& bufs);
void MixKey (const uint8_t * sharedSecret);
};
void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_N (tunnels, router)
void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (NTCP2)
void InitNoiseXKState1 (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (SSU2)
void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_IK (ratchets)
// init and terminate
void InitCrypto (bool precomputation);
void TerminateCrypto ();
}
}
#endif