I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

548 lines
17 KiB

#include <time.h>
#include <stdio.h>
#include <cryptopp/sha.h>
#include <cryptopp/osrng.h>
#include <cryptopp/dsa.h>
#include "base64.h"
#include "CryptoConst.h"
#include "RouterContext.h"
#include "Identity.h"
#include "I2PEndian.h"
namespace i2p
{
namespace data
{
Identity& Identity::operator=(const Keys& keys)
{
// copy public and signing keys together
memcpy (publicKey, keys.publicKey, sizeof (publicKey) + sizeof (signingKey));
memset (&certificate, 0, sizeof (certificate));
return *this;
}
size_t Identity::FromBuffer (const uint8_t * buf, size_t len)
{
memcpy (publicKey, buf, DEFAULT_IDENTITY_SIZE);
return DEFAULT_IDENTITY_SIZE;
}
IdentHash Identity::Hash () const
{
IdentHash hash;
CryptoPP::SHA256().CalculateDigest(hash, publicKey, DEFAULT_IDENTITY_SIZE);
return hash;
}
IdentityEx::IdentityEx ():
m_Verifier (nullptr), m_ExtendedLen (0), m_ExtendedBuffer (nullptr)
{
}
IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type)
{
memcpy (m_StandardIdentity.publicKey, publicKey, sizeof (m_StandardIdentity.publicKey));
if (type != SIGNING_KEY_TYPE_DSA_SHA1)
{
size_t excessLen = 0;
uint8_t * excessBuf = nullptr;
switch (type)
{
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
{
size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64
memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
{
size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96
memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
{
memcpy (m_StandardIdentity.signingKey, signingKey, 128);
excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128
excessBuf = new uint8_t[excessLen];
memcpy (excessBuf, signingKey + 128, excessLen);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
{
memcpy (m_StandardIdentity.signingKey, signingKey, 128);
excessLen = i2p::crypto::RSASHA2562048_KEY_LENGTH - 128; // 128 = 256 - 128
excessBuf = new uint8_t[excessLen];
memcpy (excessBuf, signingKey + 128, excessLen);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
{
memcpy (m_StandardIdentity.signingKey, signingKey, 128);
excessLen = i2p::crypto::RSASHA3843072_KEY_LENGTH - 128; // 256 = 384 - 128
excessBuf = new uint8_t[excessLen];
memcpy (excessBuf, signingKey + 128, excessLen);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
{
memcpy (m_StandardIdentity.signingKey, signingKey, 128);
excessLen = i2p::crypto::RSASHA5124096_KEY_LENGTH - 128; // 384 = 512 - 128
excessBuf = new uint8_t[excessLen];
memcpy (excessBuf, signingKey + 128, excessLen);
break;
}
default:
LogPrint ("Signing key type ", (int)type, " is not supported");
}
m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length
// fill certificate
m_StandardIdentity.certificate.type = CERTIFICATE_TYPE_KEY;
m_StandardIdentity.certificate.length = htobe16 (m_ExtendedLen);
// fill extended buffer
m_ExtendedBuffer = new uint8_t[m_ExtendedLen];
*(uint16_t *)m_ExtendedBuffer = htobe16 (type);
*(uint16_t *)(m_ExtendedBuffer + 2) = htobe16 (CRYPTO_KEY_TYPE_ELGAMAL);
if (excessLen && excessBuf)
{
memcpy (m_ExtendedBuffer + 4, excessBuf, excessLen);
delete[] excessBuf;
}
// calculate ident hash
uint8_t * buf = new uint8_t[GetFullLen ()];
ToBuffer (buf, GetFullLen ());
CryptoPP::SHA256().CalculateDigest(m_IdentHash, buf, GetFullLen ());
delete[] buf;
}
else // DSA-SHA1
{
memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey));
memset (&m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate));
m_IdentHash = m_StandardIdentity.Hash ();
m_ExtendedLen = 0;
m_ExtendedBuffer = nullptr;
}
CreateVerifier ();
}
IdentityEx::IdentityEx (const uint8_t * buf, size_t len):
m_Verifier (nullptr), m_ExtendedLen (0), m_ExtendedBuffer (nullptr)
{
FromBuffer (buf, len);
}
IdentityEx::IdentityEx (const IdentityEx& other):
m_Verifier (nullptr), m_ExtendedBuffer (nullptr)
{
*this = other;
}
IdentityEx::~IdentityEx ()
{
delete m_Verifier;
delete[] m_ExtendedBuffer;
}
IdentityEx& IdentityEx::operator=(const IdentityEx& other)
{
memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
m_IdentHash = other.m_IdentHash;
delete[] m_ExtendedBuffer;
m_ExtendedLen = other.m_ExtendedLen;
if (m_ExtendedLen > 0)
{
m_ExtendedBuffer = new uint8_t[m_ExtendedLen];
memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen);
}
else
m_ExtendedBuffer = nullptr;
delete m_Verifier;
m_Verifier = nullptr;
return *this;
}
IdentityEx& IdentityEx::operator=(const Identity& standard)
{
m_StandardIdentity = standard;
m_IdentHash = m_StandardIdentity.Hash ();
delete[] m_ExtendedBuffer;
m_ExtendedBuffer = nullptr;
m_ExtendedLen = 0;
delete m_Verifier;
m_Verifier = nullptr;
return *this;
}
size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len)
{
if (len < DEFAULT_IDENTITY_SIZE)
{
LogPrint (eLogError, "Identity buffer length ", len, " is too small");
return 0;
}
memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE);
delete[] m_ExtendedBuffer;
if (m_StandardIdentity.certificate.length)
{
m_ExtendedLen = be16toh (m_StandardIdentity.certificate.length);
if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len)
{
m_ExtendedBuffer = new uint8_t[m_ExtendedLen];
memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen);
}
else
{
LogPrint (eLogError, "Certificate length ", m_ExtendedLen, " exceeds buffer length ", len - DEFAULT_IDENTITY_SIZE);
return 0;
}
}
else
{
m_ExtendedLen = 0;
m_ExtendedBuffer = nullptr;
}
CryptoPP::SHA256().CalculateDigest(m_IdentHash, buf, GetFullLen ());
delete m_Verifier;
m_Verifier = nullptr;
return GetFullLen ();
}
size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const
{
memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
if (m_ExtendedLen > 0 && m_ExtendedBuffer)
memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen);
return GetFullLen ();
}
size_t IdentityEx::FromBase64(const std::string& s)
{
uint8_t buf[1024];
auto len = Base64ToByteStream (s.c_str(), s.length(), buf, 1024);
return FromBuffer (buf, len);
}
std::string IdentityEx::ToBase64 () const
{
uint8_t buf[1024];
char str[1536];
size_t l = ToBuffer (buf, 1024);
size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, 1536);
str[l1] = 0;
return std::string (str);
}
size_t IdentityEx::GetSigningPublicKeyLen () const
{
if (!m_Verifier) CreateVerifier ();
if (m_Verifier)
return m_Verifier->GetPublicKeyLen ();
return 128;
}
size_t IdentityEx::GetSigningPrivateKeyLen () const
{
if (!m_Verifier) CreateVerifier ();
if (m_Verifier)
return m_Verifier->GetPrivateKeyLen ();
return GetSignatureLen ()/2;
}
size_t IdentityEx::GetSignatureLen () const
{
if (!m_Verifier) CreateVerifier ();
if (m_Verifier)
return m_Verifier->GetSignatureLen ();
return 40;
}
bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
if (!m_Verifier) CreateVerifier ();
if (m_Verifier)
return m_Verifier->Verify (buf, len, signature);
return false;
}
SigningKeyType IdentityEx::GetSigningKeyType () const
{
if (m_StandardIdentity.certificate.type == CERTIFICATE_TYPE_KEY && m_ExtendedBuffer)
return bufbe16toh (m_ExtendedBuffer); // signing key
return SIGNING_KEY_TYPE_DSA_SHA1;
}
CryptoKeyType IdentityEx::GetCryptoKeyType () const
{
if (m_StandardIdentity.certificate.type == CERTIFICATE_TYPE_KEY && m_ExtendedBuffer)
return bufbe16toh (m_ExtendedBuffer + 2); // crypto key
return CRYPTO_KEY_TYPE_ELGAMAL;
}
void IdentityEx::CreateVerifier () const
{
auto keyType = GetSigningKeyType ();
switch (keyType)
{
case SIGNING_KEY_TYPE_DSA_SHA1:
m_Verifier = new i2p::crypto::DSAVerifier (m_StandardIdentity.signingKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
{
size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64
m_Verifier = new i2p::crypto::ECDSAP256Verifier (m_StandardIdentity.signingKey + padding);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
{
size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96
m_Verifier = new i2p::crypto::ECDSAP384Verifier (m_StandardIdentity.signingKey + padding);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
{
uint8_t signingKey[i2p::crypto::ECDSAP521_KEY_LENGTH];
memcpy (signingKey, m_StandardIdentity.signingKey, 128);
size_t excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132- 128
memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types
m_Verifier = new i2p::crypto::ECDSAP521Verifier (signingKey);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
{
uint8_t signingKey[i2p::crypto::RSASHA2562048_KEY_LENGTH];
memcpy (signingKey, m_StandardIdentity.signingKey, 128);
size_t excessLen = i2p::crypto::RSASHA2562048_KEY_LENGTH - 128; // 128 = 256- 128
memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types
m_Verifier = new i2p::crypto:: RSASHA2562048Verifier (signingKey);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
{
uint8_t signingKey[i2p::crypto::RSASHA3843072_KEY_LENGTH];
memcpy (signingKey, m_StandardIdentity.signingKey, 128);
size_t excessLen = i2p::crypto::RSASHA3843072_KEY_LENGTH - 128; // 256 = 384- 128
memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types
m_Verifier = new i2p::crypto:: RSASHA3843072Verifier (signingKey);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
{
uint8_t signingKey[i2p::crypto::RSASHA5124096_KEY_LENGTH];
memcpy (signingKey, m_StandardIdentity.signingKey, 128);
size_t excessLen = i2p::crypto::RSASHA5124096_KEY_LENGTH - 128; // 384 = 512- 128
memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types
m_Verifier = new i2p::crypto:: RSASHA5124096Verifier (signingKey);
break;
}
default:
LogPrint ("Signing key type ", (int)keyType, " is not supported");
}
}
void IdentityEx::DropVerifier ()
{
auto verifier = m_Verifier;
m_Verifier = nullptr; // TODO: make this atomic
delete verifier;
}
PrivateKeys& PrivateKeys::operator=(const Keys& keys)
{
m_Public = Identity (keys);
memcpy (m_PrivateKey, keys.privateKey, 256); // 256
memcpy (m_SigningPrivateKey, keys.signingPrivateKey, m_Public.GetSigningPrivateKeyLen ());
delete m_Signer;
m_Signer = nullptr;
CreateSigner ();
return *this;
}
PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other)
{
m_Public = other.m_Public;
memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256
memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, m_Public.GetSigningPrivateKeyLen ());
delete m_Signer;
m_Signer = nullptr;
CreateSigner ();
return *this;
}
size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len)
{
size_t ret = m_Public.FromBuffer (buf, len);
memcpy (m_PrivateKey, buf + ret, 256); // private key always 256
ret += 256;
size_t signingPrivateKeySize = m_Public.GetSigningPrivateKeyLen ();
memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize);
ret += signingPrivateKeySize;
delete m_Signer;
m_Signer = nullptr;
CreateSigner ();
return ret;
}
size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const
{
size_t ret = m_Public.ToBuffer (buf, len);
memcpy (buf + ret, m_PrivateKey, 256); // private key always 256
ret += 256;
size_t signingPrivateKeySize = m_Public.GetSigningPrivateKeyLen ();
memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize);
ret += signingPrivateKeySize;
return ret;
}
size_t PrivateKeys::FromBase64(const std::string& s)
{
uint8_t * buf = new uint8_t[s.length ()];
size_t l = i2p::data::Base64ToByteStream (s.c_str (), s.length (), buf, s.length ());
size_t ret = FromBuffer (buf, l);
delete[] buf;
return ret;
}
std::string PrivateKeys::ToBase64 () const
{
uint8_t * buf = new uint8_t[GetFullLen ()];
char * str = new char[GetFullLen ()*2];
size_t l = ToBuffer (buf, GetFullLen ());
size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, GetFullLen ()*2);
str[l1] = 0;
delete[] buf;
std::string ret(str);
delete[] str;
return ret;
}
void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
if (m_Signer)
m_Signer->Sign (i2p::context.GetRandomNumberGenerator (), buf, len, signature);
}
void PrivateKeys::CreateSigner ()
{
switch (m_Public.GetSigningKeyType ())
{
case SIGNING_KEY_TYPE_DSA_SHA1:
m_Signer = new i2p::crypto::DSASigner (m_SigningPrivateKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
m_Signer = new i2p::crypto::ECDSAP256Signer (m_SigningPrivateKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
m_Signer = new i2p::crypto::ECDSAP384Signer (m_SigningPrivateKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
m_Signer = new i2p::crypto::ECDSAP521Signer (m_SigningPrivateKey);
break;
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
m_Signer = new i2p::crypto::RSASHA2562048Signer (m_SigningPrivateKey);
break;
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
m_Signer = new i2p::crypto::RSASHA3843072Signer (m_SigningPrivateKey);
break;
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
m_Signer = new i2p::crypto::RSASHA5124096Signer (m_SigningPrivateKey);
break;
default:
LogPrint ("Signing key type ", (int)m_Public.GetSigningKeyType (), " is not supported");
}
}
PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type)
{
if (type != SIGNING_KEY_TYPE_DSA_SHA1)
{
PrivateKeys keys;
auto& rnd = i2p::context.GetRandomNumberGenerator ();
// signature
uint8_t signingPublicKey[512]; // signing public key is 512 bytes max
switch (type)
{
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
i2p::crypto::CreateECDSAP256RandomKeys (rnd, keys.m_SigningPrivateKey, signingPublicKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
i2p::crypto::CreateECDSAP384RandomKeys (rnd, keys.m_SigningPrivateKey, signingPublicKey);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
i2p::crypto::CreateECDSAP521RandomKeys (rnd, keys.m_SigningPrivateKey, signingPublicKey);
break;
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
i2p::crypto::CreateRSARandomKeys (rnd, i2p::crypto::RSASHA2562048_KEY_LENGTH, keys.m_SigningPrivateKey, signingPublicKey);
break;
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
i2p::crypto::CreateRSARandomKeys (rnd, i2p::crypto::RSASHA3843072_KEY_LENGTH, keys.m_SigningPrivateKey, signingPublicKey);
break;
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
i2p::crypto::CreateRSARandomKeys (rnd, i2p::crypto::RSASHA5124096_KEY_LENGTH, keys.m_SigningPrivateKey, signingPublicKey);
break;
default:
LogPrint ("Signing key type ", (int)type, " is not supported. Create DSA-SHA1");
return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1
}
// encryption
uint8_t publicKey[256];
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(rnd, keys.m_PrivateKey, publicKey);
// identity
keys.m_Public = IdentityEx (publicKey, signingPublicKey, type);
keys.CreateSigner ();
return keys;
}
return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1
}
Keys CreateRandomKeys ()
{
Keys keys;
auto& rnd = i2p::context.GetRandomNumberGenerator ();
// encryption
CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg);
dh.GenerateKeyPair(rnd, keys.privateKey, keys.publicKey);
// signing
i2p::crypto::CreateDSARandomKeys (rnd, keys.signingPrivateKey, keys.signingKey);
return keys;
}
IdentHash CreateRoutingKey (const IdentHash& ident)
{
uint8_t buf[41]; // ident + yyyymmdd
memcpy (buf, (const uint8_t *)ident, 32);
time_t t = time (nullptr);
struct tm tm;
#ifdef _WIN32
gmtime_s(&tm, &t);
sprintf_s((char *)(buf + 32), 9, "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday);
#else
gmtime_r(&t, &tm);
sprintf((char *)(buf + 32), "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday);
#endif
IdentHash key;
CryptoPP::SHA256().CalculateDigest((uint8_t *)key, buf, 40);
return key;
}
XORMetric operator^(const IdentHash& key1, const IdentHash& key2)
{
XORMetric m;
const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL ();
m.metric_ll[0] = hash1[0] ^ hash2[0];
m.metric_ll[1] = hash1[1] ^ hash2[1];
m.metric_ll[2] = hash1[2] ^ hash2[2];
m.metric_ll[3] = hash1[3] ^ hash2[3];
return m;
}
}
}