mirror of https://github.com/PurpleI2P/i2pd.git
I2P: End-to-End encrypted and anonymous Internet
https://i2pd.website/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
392 lines
11 KiB
392 lines
11 KiB
/* |
|
* Copyright (c) 2013-2023, The PurpleI2P Project |
|
* |
|
* This file is part of Purple i2pd project and licensed under BSD3 |
|
* |
|
* See full license text in LICENSE file at top of project tree |
|
*/ |
|
|
|
#ifndef CRYPTO_H__ |
|
#define CRYPTO_H__ |
|
|
|
#include <inttypes.h> |
|
#include <string> |
|
#include <vector> |
|
#include <openssl/bn.h> |
|
#include <openssl/dh.h> |
|
#include <openssl/aes.h> |
|
#include <openssl/dsa.h> |
|
#include <openssl/ecdsa.h> |
|
#include <openssl/rsa.h> |
|
#include <openssl/sha.h> |
|
#include <openssl/evp.h> |
|
#include <openssl/rand.h> |
|
#include <openssl/engine.h> |
|
#include <openssl/opensslv.h> |
|
|
|
#include "Base.h" |
|
#include "Tag.h" |
|
#include "CPU.h" |
|
|
|
// recognize openssl version and features |
|
#if (defined(LIBRESSL_VERSION_NUMBER) && (LIBRESSL_VERSION_NUMBER >= 0x3050200fL)) // LibreSSL 3.5.2 and above |
|
# define LEGACY_OPENSSL 0 |
|
#elif ((OPENSSL_VERSION_NUMBER < 0x010100000) || defined(LIBRESSL_VERSION_NUMBER)) // 1.0.2 and below or LibreSSL |
|
# define LEGACY_OPENSSL 1 |
|
# define X509_getm_notBefore X509_get_notBefore |
|
# define X509_getm_notAfter X509_get_notAfter |
|
#else |
|
# define LEGACY_OPENSSL 0 |
|
# if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1 |
|
# define OPENSSL_HKDF 1 |
|
# if (OPENSSL_VERSION_NUMBER < 0x030200000) // 3.2.0, regression in EVP_DigestSign |
|
# define OPENSSL_EDDSA 1 |
|
# endif |
|
# define OPENSSL_X25519 1 |
|
# if (OPENSSL_VERSION_NUMBER != 0x030000000) // 3.0.0, regression in SipHash |
|
# define OPENSSL_SIPHASH 1 |
|
# endif |
|
# endif |
|
# if !defined OPENSSL_NO_CHACHA && !defined OPENSSL_NO_POLY1305 // some builds might not include them |
|
# define OPENSSL_AEAD_CHACHA20_POLY1305 1 |
|
# endif |
|
#endif |
|
|
|
namespace i2p |
|
{ |
|
namespace crypto |
|
{ |
|
bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len); |
|
|
|
// DSA |
|
DSA * CreateDSA (); |
|
|
|
// RSA |
|
const BIGNUM * GetRSAE (); |
|
|
|
// x25519 |
|
class X25519Keys |
|
{ |
|
public: |
|
|
|
X25519Keys (); |
|
X25519Keys (const uint8_t * priv, const uint8_t * pub); // if pub is null, derive from priv |
|
~X25519Keys (); |
|
|
|
void GenerateKeys (); |
|
const uint8_t * GetPublicKey () const { return m_PublicKey; }; |
|
void GetPrivateKey (uint8_t * priv) const; |
|
void SetPrivateKey (const uint8_t * priv, bool calculatePublic = false); |
|
bool Agree (const uint8_t * pub, uint8_t * shared); |
|
|
|
bool IsElligatorIneligible () const { return m_IsElligatorIneligible; } |
|
void SetElligatorIneligible () { m_IsElligatorIneligible = true; } |
|
|
|
private: |
|
|
|
uint8_t m_PublicKey[32]; |
|
#if OPENSSL_X25519 |
|
EVP_PKEY_CTX * m_Ctx; |
|
EVP_PKEY * m_Pkey; |
|
#else |
|
BN_CTX * m_Ctx; |
|
uint8_t m_PrivateKey[32]; |
|
#endif |
|
bool m_IsElligatorIneligible = false; // true if definitely ineligible |
|
}; |
|
|
|
// ElGamal |
|
void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted |
|
bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data |
|
void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub); |
|
|
|
// ECIES |
|
void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted); // 222 bytes data, 514 bytes encrypted |
|
bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data); // 514 bytes encrypted, 222 data |
|
void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub); |
|
|
|
// AES |
|
struct ChipherBlock |
|
{ |
|
uint8_t buf[16]; |
|
|
|
void operator^=(const ChipherBlock& other) // XOR |
|
{ |
|
if (!(((size_t)buf | (size_t)other.buf) & 0x03)) // multiple of 4 ? |
|
{ |
|
for (int i = 0; i < 4; i++) |
|
reinterpret_cast<uint32_t *>(buf)[i] ^= reinterpret_cast<const uint32_t *>(other.buf)[i]; |
|
} |
|
else |
|
{ |
|
for (int i = 0; i < 16; i++) |
|
buf[i] ^= other.buf[i]; |
|
} |
|
} |
|
}; |
|
|
|
typedef i2p::data::Tag<32> AESKey; |
|
|
|
template<size_t sz> |
|
class AESAlignedBuffer // 16 bytes alignment |
|
{ |
|
public: |
|
|
|
AESAlignedBuffer () |
|
{ |
|
m_Buf = m_UnalignedBuffer; |
|
uint8_t rem = ((size_t)m_Buf) & 0x0f; |
|
if (rem) |
|
m_Buf += (16 - rem); |
|
} |
|
|
|
operator uint8_t * () { return m_Buf; }; |
|
operator const uint8_t * () const { return m_Buf; }; |
|
ChipherBlock * GetChipherBlock () { return (ChipherBlock *)m_Buf; }; |
|
const ChipherBlock * GetChipherBlock () const { return (const ChipherBlock *)m_Buf; }; |
|
|
|
private: |
|
|
|
uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment |
|
uint8_t * m_Buf; |
|
}; |
|
|
|
|
|
#if SUPPORTS_AES |
|
class ECBCryptoAESNI |
|
{ |
|
public: |
|
|
|
uint8_t * GetKeySchedule () { return m_KeySchedule; }; |
|
|
|
protected: |
|
|
|
void ExpandKey (const AESKey& key); |
|
|
|
private: |
|
|
|
AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes |
|
}; |
|
#endif |
|
|
|
#if SUPPORTS_AES |
|
class ECBEncryption: public ECBCryptoAESNI |
|
#else |
|
class ECBEncryption |
|
#endif |
|
{ |
|
public: |
|
|
|
void SetKey (const AESKey& key); |
|
|
|
void Encrypt(const ChipherBlock * in, ChipherBlock * out); |
|
|
|
private: |
|
AES_KEY m_Key; |
|
}; |
|
|
|
#if SUPPORTS_AES |
|
class ECBDecryption: public ECBCryptoAESNI |
|
#else |
|
class ECBDecryption |
|
#endif |
|
{ |
|
public: |
|
|
|
void SetKey (const AESKey& key); |
|
void Decrypt (const ChipherBlock * in, ChipherBlock * out); |
|
private: |
|
AES_KEY m_Key; |
|
}; |
|
|
|
class CBCEncryption |
|
{ |
|
public: |
|
|
|
CBCEncryption () { memset ((uint8_t *)m_LastBlock, 0, 16); }; |
|
|
|
void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes |
|
void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_LastBlock, iv, 16); }; // 16 bytes |
|
void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_LastBlock, 16); }; |
|
|
|
void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out); |
|
void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out); |
|
void Encrypt (const uint8_t * in, uint8_t * out); // one block |
|
|
|
ECBEncryption & ECB() { return m_ECBEncryption; } |
|
|
|
private: |
|
|
|
AESAlignedBuffer<16> m_LastBlock; |
|
|
|
ECBEncryption m_ECBEncryption; |
|
}; |
|
|
|
class CBCDecryption |
|
{ |
|
public: |
|
|
|
CBCDecryption () { memset ((uint8_t *)m_IV, 0, 16); }; |
|
|
|
void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes |
|
void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_IV, iv, 16); }; // 16 bytes |
|
void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_IV, 16); }; |
|
|
|
void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out); |
|
void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out); |
|
void Decrypt (const uint8_t * in, uint8_t * out); // one block |
|
|
|
ECBDecryption & ECB() { return m_ECBDecryption; } |
|
|
|
private: |
|
|
|
AESAlignedBuffer<16> m_IV; |
|
ECBDecryption m_ECBDecryption; |
|
}; |
|
|
|
class TunnelEncryption // with double IV encryption |
|
{ |
|
public: |
|
|
|
void SetKeys (const AESKey& layerKey, const AESKey& ivKey) |
|
{ |
|
m_LayerEncryption.SetKey (layerKey); |
|
m_IVEncryption.SetKey (ivKey); |
|
} |
|
|
|
void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data) |
|
|
|
private: |
|
|
|
ECBEncryption m_IVEncryption; |
|
CBCEncryption m_LayerEncryption; |
|
}; |
|
|
|
class TunnelDecryption // with double IV encryption |
|
{ |
|
public: |
|
|
|
void SetKeys (const AESKey& layerKey, const AESKey& ivKey) |
|
{ |
|
m_LayerDecryption.SetKey (layerKey); |
|
m_IVDecryption.SetKey (ivKey); |
|
} |
|
|
|
void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data) |
|
|
|
private: |
|
|
|
ECBDecryption m_IVDecryption; |
|
CBCDecryption m_LayerDecryption; |
|
}; |
|
|
|
// AEAD/ChaCha20/Poly1305 |
|
bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt); // msgLen is len without tag |
|
|
|
void AEADChaCha20Poly1305Encrypt (const std::vector<std::pair<uint8_t *, size_t> >& bufs, const uint8_t * key, const uint8_t * nonce, uint8_t * mac); // encrypt multiple buffers with zero ad |
|
|
|
// ChaCha20 |
|
void ChaCha20 (const uint8_t * msg, size_t msgLen, const uint8_t * key, const uint8_t * nonce, uint8_t * out); |
|
|
|
// HKDF |
|
|
|
void HKDF (const uint8_t * salt, const uint8_t * key, size_t keyLen, const std::string& info, uint8_t * out, size_t outLen = 64); // salt - 32, out - 32 or 64, info <= 32 |
|
|
|
// Noise |
|
|
|
struct NoiseSymmetricState |
|
{ |
|
uint8_t m_H[32] /*h*/, m_CK[64] /*[ck, k]*/; |
|
|
|
void MixHash (const uint8_t * buf, size_t len); |
|
void MixHash (const std::vector<std::pair<uint8_t *, size_t> >& bufs); |
|
void MixKey (const uint8_t * sharedSecret); |
|
}; |
|
|
|
void InitNoiseNState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_N (tunnels, router) |
|
void InitNoiseXKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (NTCP2) |
|
void InitNoiseXKState1 (NoiseSymmetricState& state, const uint8_t * pub); // Noise_XK (SSU2) |
|
void InitNoiseIKState (NoiseSymmetricState& state, const uint8_t * pub); // Noise_IK (ratchets) |
|
|
|
// init and terminate |
|
void InitCrypto (bool precomputation, bool aesni, bool force); |
|
void TerminateCrypto (); |
|
} |
|
} |
|
|
|
// take care about openssl below 1.1.0 |
|
#if LEGACY_OPENSSL |
|
// define getters and setters introduced in 1.1.0 |
|
inline int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g) |
|
{ |
|
if (d->p) BN_free (d->p); |
|
if (d->q) BN_free (d->q); |
|
if (d->g) BN_free (d->g); |
|
d->p = p; d->q = q; d->g = g; return 1; |
|
} |
|
inline int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key) |
|
{ |
|
if (d->pub_key) BN_free (d->pub_key); |
|
if (d->priv_key) BN_free (d->priv_key); |
|
d->pub_key = pub_key; d->priv_key = priv_key; return 1; |
|
} |
|
inline void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key) |
|
{ *pub_key = d->pub_key; *priv_key = d->priv_key; } |
|
inline int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) |
|
{ |
|
if (sig->r) BN_free (sig->r); |
|
if (sig->s) BN_free (sig->s); |
|
sig->r = r; sig->s = s; return 1; |
|
} |
|
inline void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) |
|
{ *pr = sig->r; *ps = sig->s; } |
|
|
|
inline int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) |
|
{ |
|
if (sig->r) BN_free (sig->r); |
|
if (sig->s) BN_free (sig->s); |
|
sig->r = r; sig->s = s; return 1; |
|
} |
|
inline void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) |
|
{ *pr = sig->r; *ps = sig->s; } |
|
|
|
inline int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) |
|
{ |
|
if (r->n) BN_free (r->n); |
|
if (r->e) BN_free (r->e); |
|
if (r->d) BN_free (r->d); |
|
r->n = n; r->e = e; r->d = d; return 1; |
|
} |
|
inline void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) |
|
{ *n = r->n; *e = r->e; *d = r->d; } |
|
|
|
inline int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) |
|
{ |
|
if (dh->p) BN_free (dh->p); |
|
if (dh->q) BN_free (dh->q); |
|
if (dh->g) BN_free (dh->g); |
|
dh->p = p; dh->q = q; dh->g = g; return 1; |
|
} |
|
inline int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) |
|
{ |
|
if (dh->pub_key) BN_free (dh->pub_key); |
|
if (dh->priv_key) BN_free (dh->priv_key); |
|
dh->pub_key = pub_key; dh->priv_key = priv_key; return 1; |
|
} |
|
inline void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key) |
|
{ *pub_key = dh->pub_key; *priv_key = dh->priv_key; } |
|
|
|
inline RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey) |
|
{ return pkey->pkey.rsa; } |
|
|
|
inline EVP_MD_CTX *EVP_MD_CTX_new () |
|
{ return EVP_MD_CTX_create(); } |
|
inline void EVP_MD_CTX_free (EVP_MD_CTX *ctx) |
|
{ EVP_MD_CTX_destroy (ctx); } |
|
|
|
// ssl |
|
#define TLS_method TLSv1_method |
|
|
|
#endif |
|
|
|
#endif
|
|
|