I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1280 lines
39 KiB

/*
* Copyright (c) 2013-2024, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include "Log.h"
#include "Crypto.h"
#include "RouterContext.h"
#include "I2NPProtocol.h"
#include "NetDb.hpp"
#include "Transports.h"
#include "Config.h"
#include "HTTP.h"
#include "util.h"
using namespace i2p::data;
namespace i2p
{
namespace transport
{
template<typename Keys>
EphemeralKeysSupplier<Keys>::EphemeralKeysSupplier (int size):
m_QueueSize (size), m_IsRunning (false), m_Thread (nullptr)
{
}
template<typename Keys>
EphemeralKeysSupplier<Keys>::~EphemeralKeysSupplier ()
{
Stop ();
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Start ()
{
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&EphemeralKeysSupplier<Keys>::Run, this));
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Stop ()
{
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_IsRunning = false;
m_Acquired.notify_one ();
}
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = 0;
}
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Run ()
{
i2p::util::SetThreadName("Ephemerals");
while (m_IsRunning)
{
int num, total = 0;
while ((num = m_QueueSize - (int)m_Queue.size ()) > 0 && total < 10)
{
CreateEphemeralKeys (num);
total += num;
}
if (total >= 10)
{
LogPrint (eLogWarning, "Transports: ", total, " ephemeral keys generated at the time");
std::this_thread::sleep_for (std::chrono::seconds(1)); // take a break
}
else
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
if (!m_IsRunning) break;
m_Acquired.wait (l); // wait for element gets acquired
}
}
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::CreateEphemeralKeys (int num)
{
if (num > 0)
{
for (int i = 0; i < num; i++)
{
auto pair = std::make_shared<Keys> ();
pair->GenerateKeys ();
std::unique_lock<std::mutex> l(m_AcquiredMutex);
m_Queue.push (pair);
}
}
}
template<typename Keys>
std::shared_ptr<Keys> EphemeralKeysSupplier<Keys>::Acquire ()
{
{
std::unique_lock<std::mutex> l(m_AcquiredMutex);
if (!m_Queue.empty ())
{
auto pair = m_Queue.front ();
m_Queue.pop ();
m_Acquired.notify_one ();
return pair;
}
}
// queue is empty, create new
auto pair = std::make_shared<Keys> ();
pair->GenerateKeys ();
return pair;
}
template<typename Keys>
void EphemeralKeysSupplier<Keys>::Return (std::shared_ptr<Keys> pair)
{
if (pair)
{
std::unique_lock<std::mutex>l(m_AcquiredMutex);
if ((int)m_Queue.size () < 2*m_QueueSize)
m_Queue.push (pair);
}
else
LogPrint(eLogError, "Transports: Return null DHKeys");
}
Transports transports;
Transports::Transports ():
m_IsOnline (true), m_IsRunning (false), m_IsNAT (true), m_CheckReserved(true), m_Thread (nullptr),
m_Service (nullptr), m_Work (nullptr), m_PeerCleanupTimer (nullptr), m_PeerTestTimer (nullptr),
m_UpdateBandwidthTimer (nullptr), m_SSU2Server (nullptr), m_NTCP2Server (nullptr),
m_X25519KeysPairSupplier (15), // 15 pre-generated keys
m_TotalSentBytes (0), m_TotalReceivedBytes (0), m_TotalTransitTransmittedBytes (0),
m_InBandwidth (0), m_OutBandwidth (0), m_TransitBandwidth (0),
m_InBandwidth15s (0), m_OutBandwidth15s (0), m_TransitBandwidth15s (0),
m_InBandwidth5m (0), m_OutBandwidth5m (0), m_TransitBandwidth5m (0)
{
}
Transports::~Transports ()
{
Stop ();
if (m_Service)
{
delete m_PeerCleanupTimer; m_PeerCleanupTimer = nullptr;
delete m_PeerTestTimer; m_PeerTestTimer = nullptr;
delete m_UpdateBandwidthTimer; m_UpdateBandwidthTimer = nullptr;
delete m_Work; m_Work = nullptr;
delete m_Service; m_Service = nullptr;
}
}
void Transports::Start (bool enableNTCP2, bool enableSSU2)
{
if (!m_Service)
{
m_Service = new boost::asio::io_service ();
m_Work = new boost::asio::io_service::work (*m_Service);
m_PeerCleanupTimer = new boost::asio::deadline_timer (*m_Service);
m_PeerTestTimer = new boost::asio::deadline_timer (*m_Service);
m_UpdateBandwidthTimer = new boost::asio::deadline_timer (*m_Service);
}
bool ipv4; i2p::config::GetOption("ipv4", ipv4);
bool ipv6; i2p::config::GetOption("ipv6", ipv6);
i2p::config::GetOption("nat", m_IsNAT);
m_X25519KeysPairSupplier.Start ();
m_IsRunning = true;
m_Thread = new std::thread (std::bind (&Transports::Run, this));
std::string ntcp2proxy; i2p::config::GetOption("ntcp2.proxy", ntcp2proxy);
i2p::http::URL proxyurl;
// create NTCP2. TODO: move to acceptor
if (enableNTCP2 || i2p::context.SupportsMesh ())
{
if(!ntcp2proxy.empty() && enableNTCP2)
{
if(proxyurl.parse(ntcp2proxy))
{
if(proxyurl.schema == "socks" || proxyurl.schema == "http")
{
m_NTCP2Server = new NTCP2Server ();
NTCP2Server::ProxyType proxytype = NTCP2Server::eSocksProxy;
if (proxyurl.schema == "http")
proxytype = NTCP2Server::eHTTPProxy;
m_NTCP2Server->UseProxy(proxytype, proxyurl.host, proxyurl.port, proxyurl.user, proxyurl.pass);
i2p::context.SetStatus (eRouterStatusProxy);
if (ipv6)
i2p::context.SetStatusV6 (eRouterStatusProxy);
}
else
LogPrint(eLogCritical, "Transports: Unsupported NTCP2 proxy URL ", ntcp2proxy);
}
else
LogPrint(eLogCritical, "Transports: Invalid NTCP2 proxy URL ", ntcp2proxy);
}
else
m_NTCP2Server = new NTCP2Server ();
}
// create SSU2 server
if (enableSSU2)
{
m_SSU2Server = new SSU2Server ();
std::string ssu2proxy; i2p::config::GetOption("ssu2.proxy", ssu2proxy);
if (!ssu2proxy.empty())
{
if (proxyurl.parse (ssu2proxy) && proxyurl.schema == "socks")
{
if (m_SSU2Server->SetProxy (proxyurl.host, proxyurl.port))
{
i2p::context.SetStatus (eRouterStatusProxy);
if (ipv6)
i2p::context.SetStatusV6 (eRouterStatusProxy);
}
else
LogPrint(eLogCritical, "Transports: Can't set SSU2 proxy ", ssu2proxy);
}
else
LogPrint(eLogCritical, "Transports: Invalid SSU2 proxy URL ", ssu2proxy);
}
}
// bind to interfaces
if (ipv4)
{
std::string address; i2p::config::GetOption("address4", address);
if (!address.empty ())
{
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (address, ec);
if (!ec)
{
if (m_NTCP2Server) m_NTCP2Server->SetLocalAddress (addr);
if (m_SSU2Server) m_SSU2Server->SetLocalAddress (addr);
}
}
if (enableSSU2)
{
uint16_t mtu; i2p::config::GetOption ("ssu2.mtu4", mtu);
if (mtu)
{
if (mtu < (int)SSU2_MIN_PACKET_SIZE) mtu = SSU2_MIN_PACKET_SIZE;
if (mtu > (int)SSU2_MAX_PACKET_SIZE) mtu = SSU2_MAX_PACKET_SIZE;
i2p::context.SetMTU (mtu, true);
}
}
}
if (ipv6)
{
std::string address; i2p::config::GetOption("address6", address);
if (!address.empty ())
{
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (address, ec);
if (!ec)
{
if (m_NTCP2Server) m_NTCP2Server->SetLocalAddress (addr);
if (m_SSU2Server) m_SSU2Server->SetLocalAddress (addr);
}
}
if (enableSSU2)
{
uint16_t mtu; i2p::config::GetOption ("ssu2.mtu6", mtu);
if (mtu)
{
if (mtu < (int)SSU2_MIN_PACKET_SIZE) mtu = SSU2_MIN_PACKET_SIZE;
if (mtu > (int)SSU2_MAX_PACKET_SIZE) mtu = SSU2_MAX_PACKET_SIZE;
i2p::context.SetMTU (mtu, false);
}
}
}
bool ygg; i2p::config::GetOption("meshnets.yggdrasil", ygg);
if (ygg)
{
std::string address; i2p::config::GetOption("meshnets.yggaddress", address);
if (!address.empty ())
{
boost::system::error_code ec;
auto addr = boost::asio::ip::address::from_string (address, ec);
if (!ec && m_NTCP2Server && i2p::util::net::IsYggdrasilAddress (addr))
m_NTCP2Server->SetLocalAddress (addr);
}
}
// start servers
if (m_NTCP2Server) m_NTCP2Server->Start ();
if (m_SSU2Server) m_SSU2Server->Start ();
if (m_SSU2Server) DetectExternalIP ();
m_PeerCleanupTimer->expires_from_now (boost::posix_time::seconds(5 * SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer->async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
uint64_t ts = i2p::util::GetMillisecondsSinceEpoch();
for (int i = 0; i < TRAFFIC_SAMPLE_COUNT; i++)
{
m_TrafficSamples[i].Timestamp = ts - (TRAFFIC_SAMPLE_COUNT - i - 1) * 1000;
m_TrafficSamples[i].TotalReceivedBytes = 0;
m_TrafficSamples[i].TotalSentBytes = 0;
m_TrafficSamples[i].TotalTransitTransmittedBytes = 0;
}
m_TrafficSamplePtr = TRAFFIC_SAMPLE_COUNT - 1;
m_UpdateBandwidthTimer->expires_from_now (boost::posix_time::seconds(1));
m_UpdateBandwidthTimer->async_wait (std::bind (&Transports::HandleUpdateBandwidthTimer, this, std::placeholders::_1));
if (m_IsNAT)
{
m_PeerTestTimer->expires_from_now (boost::posix_time::minutes(PEER_TEST_INTERVAL));
m_PeerTestTimer->async_wait (std::bind (&Transports::HandlePeerTestTimer, this, std::placeholders::_1));
}
}
void Transports::Stop ()
{
if (m_PeerCleanupTimer) m_PeerCleanupTimer->cancel ();
if (m_PeerTestTimer) m_PeerTestTimer->cancel ();
m_Peers.clear ();
if (m_SSU2Server)
{
m_SSU2Server->Stop ();
delete m_SSU2Server;
m_SSU2Server = nullptr;
}
if (m_NTCP2Server)
{
m_NTCP2Server->Stop ();
delete m_NTCP2Server;
m_NTCP2Server = nullptr;
}
m_X25519KeysPairSupplier.Stop ();
m_IsRunning = false;
if (m_Service) m_Service->stop ();
if (m_Thread)
{
m_Thread->join ();
delete m_Thread;
m_Thread = nullptr;
}
}
void Transports::Run ()
{
i2p::util::SetThreadName("Transports");
while (m_IsRunning && m_Service)
{
try
{
m_Service->run ();
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Transports: Runtime exception: ", ex.what ());
}
}
}
void Transports::UpdateBandwidthValues(int interval, uint32_t& in, uint32_t& out, uint32_t& transit)
{
TrafficSample& sample1 = m_TrafficSamples[m_TrafficSamplePtr];
TrafficSample& sample2 = m_TrafficSamples[(TRAFFIC_SAMPLE_COUNT + m_TrafficSamplePtr - interval) % TRAFFIC_SAMPLE_COUNT];
auto delta = (int64_t)sample1.Timestamp - (int64_t)sample2.Timestamp;
if (delta <= 0)
{
LogPrint (eLogError, "Transports: Backward clock jump detected, got ", delta, " instead of ", interval * 1000);
return;
}
in = (sample1.TotalReceivedBytes - sample2.TotalReceivedBytes) * 1000 / delta;
out = (sample1.TotalSentBytes - sample2.TotalSentBytes) * 1000 / delta;
transit = (sample1.TotalTransitTransmittedBytes - sample2.TotalTransitTransmittedBytes) * 1000 / delta;
}
void Transports::HandleUpdateBandwidthTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
m_TrafficSamplePtr++;
if (m_TrafficSamplePtr == TRAFFIC_SAMPLE_COUNT)
m_TrafficSamplePtr = 0;
TrafficSample& sample = m_TrafficSamples[m_TrafficSamplePtr];
sample.Timestamp = i2p::util::GetMillisecondsSinceEpoch();
sample.TotalReceivedBytes = m_TotalReceivedBytes;
sample.TotalSentBytes = m_TotalSentBytes;
sample.TotalTransitTransmittedBytes = m_TotalTransitTransmittedBytes;
UpdateBandwidthValues (1, m_InBandwidth, m_OutBandwidth, m_TransitBandwidth);
UpdateBandwidthValues (15, m_InBandwidth15s, m_OutBandwidth15s, m_TransitBandwidth15s);
UpdateBandwidthValues (300, m_InBandwidth5m, m_OutBandwidth5m, m_TransitBandwidth5m);
m_UpdateBandwidthTimer->expires_from_now (boost::posix_time::seconds(1));
m_UpdateBandwidthTimer->async_wait (std::bind (&Transports::HandleUpdateBandwidthTimer, this, std::placeholders::_1));
}
}
int Transports::GetCongestionLevel (bool longTerm) const
{
auto bwLimit = i2p::context.GetBandwidthLimit () * 1024; // convert to bytes
auto tbwLimit = i2p::context.GetTransitBandwidthLimit () * 1024; // convert to bytes
if (tbwLimit == 0 || bwLimit == 0)
return CONGESTION_LEVEL_FULL;
uint32_t bw;
uint32_t tbw;
if (longTerm)
{
bw = std::max (m_InBandwidth5m, m_OutBandwidth5m);
tbw = m_TransitBandwidth5m;
}
else
{
bw = std::max (m_InBandwidth15s, m_OutBandwidth15s);
tbw = m_TransitBandwidth;
}
auto bwCongestionLevel = CONGESTION_LEVEL_FULL * bw / bwLimit;
auto tbwCongestionLevel = CONGESTION_LEVEL_FULL * tbw / tbwLimit;
return std::max (bwCongestionLevel, tbwCongestionLevel);
}
void Transports::SendMessage (const i2p::data::IdentHash& ident, std::shared_ptr<i2p::I2NPMessage> msg)
{
if (m_IsOnline)
SendMessages (ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > {msg });
}
void Transports::SendMessages (const i2p::data::IdentHash& ident, const std::vector<std::shared_ptr<i2p::I2NPMessage> >& msgs)
{
m_Service->post (std::bind (&Transports::PostMessages, this, ident, msgs));
}
void Transports::PostMessages (i2p::data::IdentHash ident, std::vector<std::shared_ptr<i2p::I2NPMessage> > msgs)
{
if (ident == i2p::context.GetRouterInfo ().GetIdentHash ())
{
// we send it to ourself
for (auto& it: msgs)
m_LoopbackHandler.PutNextMessage (std::move (it));
m_LoopbackHandler.Flush ();
return;
}
if(RoutesRestricted() && !IsRestrictedPeer(ident)) return;
std::shared_ptr<Peer> peer;
auto it = m_Peers.find (ident);
if (it == m_Peers.end ())
{
// check if not banned
if (i2p::data::IsRouterBanned (ident)) return; // don't create peer to unreachable router
// try to connect
bool connected = false;
try
{
auto r = netdb.FindRouter (ident);
if (r && (r->IsUnreachable () || !r->IsReachableFrom (i2p::context.GetRouterInfo ()))) return; // router found but non-reachable
{
auto ts = i2p::util::GetSecondsSinceEpoch ();
peer = std::make_shared<Peer>(r, ts);
std::unique_lock<std::mutex> l(m_PeersMutex);
peer = m_Peers.emplace (ident, peer).first->second;
}
if (peer)
connected = ConnectToPeer (ident, peer);
}
catch (std::exception& ex)
{
LogPrint (eLogError, "Transports: PostMessages exception:", ex.what ());
}
if (!connected) return;
}
else
peer = it->second;
if (!peer) return;
if (peer->IsConnected ())
peer->sessions.front ()->SendI2NPMessages (msgs);
else
{
auto sz = peer->delayedMessages.size ();
if (sz < MAX_NUM_DELAYED_MESSAGES)
{
if (sz < CHECK_PROFILE_NUM_DELAYED_MESSAGES && sz + msgs.size () >= CHECK_PROFILE_NUM_DELAYED_MESSAGES)
{
if (i2p::data::IsRouterBanned (ident))
{
LogPrint (eLogWarning, "Transports: Router ", ident.ToBase64 (), " is banned. Peer dropped");
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (ident);
return;
}
}
for (auto& it1: msgs)
if (sz > MAX_NUM_DELAYED_MESSAGES/2 && it1->onDrop)
it1->Drop (); // drop earlier because we can handle it
else
peer->delayedMessages.push_back (it1);
}
else
{
LogPrint (eLogWarning, "Transports: Delayed messages queue size to ",
ident.ToBase64 (), " exceeds ", MAX_NUM_DELAYED_MESSAGES);
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (ident);
}
}
}
bool Transports::ConnectToPeer (const i2p::data::IdentHash& ident, std::shared_ptr<Peer> peer)
{
if (!peer->router) // reconnect
peer->SetRouter (netdb.FindRouter (ident)); // try to get new one from netdb
if (peer->router) // we have RI already
{
if (peer->priority.empty ())
SetPriority (peer);
while (peer->numAttempts < (int)peer->priority.size ())
{
auto tr = peer->priority[peer->numAttempts];
peer->numAttempts++;
switch (tr)
{
case i2p::data::RouterInfo::eNTCP2V4:
case i2p::data::RouterInfo::eNTCP2V6:
{
if (!m_NTCP2Server) continue;
std::shared_ptr<const RouterInfo::Address> address = (tr == i2p::data::RouterInfo::eNTCP2V6) ?
peer->router->GetPublishedNTCP2V6Address () : peer->router->GetPublishedNTCP2V4Address ();
if (address && IsInReservedRange(address->host))
address = nullptr;
if (address)
{
auto s = std::make_shared<NTCP2Session> (*m_NTCP2Server, peer->router, address);
if( m_NTCP2Server->UsingProxy())
m_NTCP2Server->ConnectWithProxy(s);
else
m_NTCP2Server->Connect (s);
return true;
}
break;
}
case i2p::data::RouterInfo::eSSU2V4:
case i2p::data::RouterInfo::eSSU2V6:
{
if (!m_SSU2Server) continue;
std::shared_ptr<const RouterInfo::Address> address = (tr == i2p::data::RouterInfo::eSSU2V6) ?
peer->router->GetSSU2V6Address () : peer->router->GetSSU2V4Address ();
if (address && IsInReservedRange(address->host))
address = nullptr;
if (address && address->IsReachableSSU ())
{
if (m_SSU2Server->CreateSession (peer->router, address))
return true;
}
break;
}
case i2p::data::RouterInfo::eNTCP2V6Mesh:
{
if (!m_NTCP2Server) continue;
auto address = peer->router->GetYggdrasilAddress ();
if (address)
{
auto s = std::make_shared<NTCP2Session> (*m_NTCP2Server, peer->router, address);
m_NTCP2Server->Connect (s);
return true;
}
break;
}
default:
LogPrint (eLogError, "Transports: Unknown transport ", (int)tr);
}
}
LogPrint (eLogInfo, "Transports: No compatible addresses available");
if (peer->router->IsReachableFrom (i2p::context.GetRouterInfo ()))
i2p::data::netdb.SetUnreachable (ident, true); // we are here because all connection attempts failed but router claimed them
peer->Done ();
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (ident);
return false;
}
else if (i2p::data::IsRouterBanned (ident))
{
LogPrint (eLogWarning, "Transports: Router ", ident.ToBase64 (), " is banned. Peer dropped");
peer->Done ();
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (ident);
return false;
}
else // otherwise request RI
{
LogPrint (eLogInfo, "Transports: RouterInfo for ", ident.ToBase64 (), " not found, requested");
i2p::data::netdb.RequestDestination (ident, std::bind (
&Transports::RequestComplete, this, std::placeholders::_1, ident));
}
return true;
}
void Transports::SetPriority (std::shared_ptr<Peer> peer) const
{
static const std::vector<i2p::data::RouterInfo::SupportedTransports>
ntcp2Priority =
{
i2p::data::RouterInfo::eNTCP2V6,
i2p::data::RouterInfo::eNTCP2V4,
i2p::data::RouterInfo::eSSU2V6,
i2p::data::RouterInfo::eSSU2V4,
i2p::data::RouterInfo::eNTCP2V6Mesh
},
ssu2Priority =
{
i2p::data::RouterInfo::eSSU2V6,
i2p::data::RouterInfo::eSSU2V4,
i2p::data::RouterInfo::eNTCP2V6,
i2p::data::RouterInfo::eNTCP2V4,
i2p::data::RouterInfo::eNTCP2V6Mesh
};
if (!peer || !peer->router) return;
auto compatibleTransports = context.GetRouterInfo ().GetCompatibleTransports (false) &
peer->router->GetCompatibleTransports (true);
auto directTransports = compatibleTransports & peer->router->GetPublishedTransports ();
peer->numAttempts = 0;
peer->priority.clear ();
bool isReal = peer->router->GetProfile ()->IsReal ();
bool ssu2 = isReal ? (rand () & 1) : false; // try NTCP2 if router is not confirmed real
const auto& priority = ssu2 ? ssu2Priority : ntcp2Priority;
if (directTransports)
{
// direct connections have higher priority
if (!isReal && (directTransports & (i2p::data::RouterInfo::eNTCP2V4 | i2p::data::RouterInfo::eNTCP2V6)))
{
// Non-confirmed router and a NTCP2 direct connection is presented
compatibleTransports &= ~directTransports; // exclude SSU2 direct connections
directTransports &= ~(i2p::data::RouterInfo::eSSU2V4 | i2p::data::RouterInfo::eSSU2V6);
}
for (auto transport: priority)
if (transport & directTransports)
peer->priority.push_back (transport);
compatibleTransports &= ~directTransports;
}
if (compatibleTransports)
{
// then remaining
for (auto transport: priority)
if (transport & compatibleTransports)
peer->priority.push_back (transport);
}
}
void Transports::RequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, const i2p::data::IdentHash& ident)
{
m_Service->post (std::bind (&Transports::HandleRequestComplete, this, r, ident));
}
void Transports::HandleRequestComplete (std::shared_ptr<const i2p::data::RouterInfo> r, i2p::data::IdentHash ident)
{
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
if (r)
{
LogPrint (eLogDebug, "Transports: RouterInfo for ", ident.ToBase64 (), " found, trying to connect");
it->second->SetRouter (r);
if (!it->second->IsConnected ())
ConnectToPeer (ident, it->second);
}
else
{
LogPrint (eLogWarning, "Transports: RouterInfo not found, failed to send messages");
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (it);
}
}
}
void Transports::DetectExternalIP ()
{
if (RoutesRestricted())
{
LogPrint(eLogInfo, "Transports: Restricted routes enabled, not detecting IP");
i2p::context.SetStatus (eRouterStatusOK);
return;
}
if (m_SSU2Server)
PeerTest ();
else
LogPrint (eLogWarning, "Transports: Can't detect external IP. SSU or SSU2 is not available");
}
void Transports::PeerTest (bool ipv4, bool ipv6)
{
if (RoutesRestricted() || !m_SSU2Server || m_SSU2Server->UsesProxy ()) return;
if (ipv4 && i2p::context.SupportsV4 ())
{
LogPrint (eLogInfo, "Transports: Started peer test IPv4");
std::set<i2p::data::IdentHash> excluded;
excluded.insert (i2p::context.GetIdentHash ()); // don't pick own router
int testDelay = 0;
for (int i = 0; i < 5; i++)
{
auto router = i2p::data::netdb.GetRandomSSU2PeerTestRouter (true, excluded); // v4
if (router)
{
if (!i2p::context.GetTesting ())
{
i2p::context.SetTesting (true);
// send first peer test immediately
m_SSU2Server->StartPeerTest (router, true);
}
else
{
testDelay += PEER_TEST_DELAY_INTERVAL + rand() % PEER_TEST_DELAY_INTERVAL_VARIANCE;
if (m_Service)
{
auto delayTimer = std::make_shared<boost::asio::deadline_timer>(*m_Service);
delayTimer->expires_from_now (boost::posix_time::milliseconds (testDelay));
delayTimer->async_wait (
[this, router, delayTimer](const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
m_SSU2Server->StartPeerTest (router, true);
});
}
}
excluded.insert (router->GetIdentHash ());
}
}
if (excluded.size () <= 1)
LogPrint (eLogWarning, "Transports: Can't find routers for peer test IPv4");
}
if (ipv6 && i2p::context.SupportsV6 ())
{
LogPrint (eLogInfo, "Transports: Started peer test IPv6");
std::set<i2p::data::IdentHash> excluded;
excluded.insert (i2p::context.GetIdentHash ()); // don't pick own router
int testDelay = 0;
for (int i = 0; i < 5; i++)
{
auto router = i2p::data::netdb.GetRandomSSU2PeerTestRouter (false, excluded); // v6
if (router)
{
if (!i2p::context.GetTestingV6 ())
{
i2p::context.SetTestingV6 (true);
// send first peer test immediately
m_SSU2Server->StartPeerTest (router, false);
}
else
{
testDelay += PEER_TEST_DELAY_INTERVAL + rand() % PEER_TEST_DELAY_INTERVAL_VARIANCE;
if (m_Service)
{
auto delayTimer = std::make_shared<boost::asio::deadline_timer>(*m_Service);
delayTimer->expires_from_now (boost::posix_time::milliseconds (testDelay));
delayTimer->async_wait (
[this, router, delayTimer](const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
m_SSU2Server->StartPeerTest (router, false);
});
}
}
excluded.insert (router->GetIdentHash ());
}
}
if (excluded.size () <= 1)
LogPrint (eLogWarning, "Transports: Can't find routers for peer test IPv6");
}
}
std::shared_ptr<i2p::crypto::X25519Keys> Transports::GetNextX25519KeysPair ()
{
return m_X25519KeysPairSupplier.Acquire ();
}
void Transports::ReuseX25519KeysPair (std::shared_ptr<i2p::crypto::X25519Keys> pair)
{
m_X25519KeysPairSupplier.Return (pair);
}
void Transports::PeerConnected (std::shared_ptr<TransportSession> session)
{
m_Service->post([session, this]()
{
auto remoteIdentity = session->GetRemoteIdentity ();
if (!remoteIdentity) return;
auto ident = remoteIdentity->GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
auto peer = it->second;
if (peer->numAttempts > 1)
{
// exclude failed transports
i2p::data::RouterInfo::CompatibleTransports transports = 0;
int numExcluded = peer->numAttempts - 1;
if (numExcluded > (int)peer->priority.size ()) numExcluded = peer->priority.size ();
for (int i = 0; i < numExcluded; i++)
transports |= peer->priority[i];
i2p::data::netdb.ExcludeReachableTransports (ident, transports);
}
if (peer->router && peer->numAttempts)
{
auto transport = peer->priority[peer->numAttempts-1];
if (transport == i2p::data::RouterInfo::eNTCP2V4 ||
transport == i2p::data::RouterInfo::eNTCP2V6 || transport == i2p::data::RouterInfo::eNTCP2V6Mesh)
peer->router->GetProfile ()->Connected (); // outgoing NTCP2 connection if always real
i2p::data::netdb.SetUnreachable (ident, false); // clear unreachable
}
peer->numAttempts = 0;
peer->router = nullptr; // we don't need RouterInfo after successive connect
bool sendDatabaseStore = true;
if (it->second->delayedMessages.size () > 0)
{
// check if first message is our DatabaseStore (publishing)
auto firstMsg = peer->delayedMessages[0];
if (firstMsg && firstMsg->GetTypeID () == eI2NPDatabaseStore &&
i2p::data::IdentHash(firstMsg->GetPayload () + DATABASE_STORE_KEY_OFFSET) == i2p::context.GetIdentHash ())
sendDatabaseStore = false; // we have it in the list already
}
if (sendDatabaseStore)
session->SendLocalRouterInfo ();
else
session->SetTerminationTimeout (10); // most likely it's publishing, no follow-up messages expected, set timeout to 10 seconds
peer->sessions.push_back (session);
session->SendI2NPMessages (peer->delayedMessages);
peer->delayedMessages.clear ();
}
else // incoming connection or peer test
{
if(RoutesRestricted() && ! IsRestrictedPeer(ident)) {
// not trusted
LogPrint(eLogWarning, "Transports: Closing untrusted inbound connection from ", ident.ToBase64());
session->Done();
return;
}
if (!session->IsOutgoing ()) // incoming
session->SendI2NPMessages ({ CreateDatabaseStoreMsg () }); // send DatabaseStore
auto r = i2p::data::netdb.FindRouter (ident); // router should be in netdb after SessionConfirmed
if (r) r->GetProfile ()->Connected ();
auto ts = i2p::util::GetSecondsSinceEpoch ();
auto peer = std::make_shared<Peer>(r, ts);
peer->sessions.push_back (session);
peer->router = nullptr;
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.emplace (ident, peer);
}
});
}
void Transports::PeerDisconnected (std::shared_ptr<TransportSession> session)
{
m_Service->post([session, this]()
{
auto remoteIdentity = session->GetRemoteIdentity ();
if (!remoteIdentity) return;
auto ident = remoteIdentity->GetIdentHash ();
auto it = m_Peers.find (ident);
if (it != m_Peers.end ())
{
auto peer = it->second;
bool wasConnected = peer->IsConnected ();
peer->sessions.remove (session);
if (!peer->IsConnected ())
{
if (peer->delayedMessages.size () > 0)
{
if (wasConnected) // we had an active session before
peer->numAttempts = 0; // start over
ConnectToPeer (ident, peer);
}
else
{
std::unique_lock<std::mutex> l(m_PeersMutex);
m_Peers.erase (it);
}
}
}
});
}
bool Transports::IsConnected (const i2p::data::IdentHash& ident) const
{
std::unique_lock<std::mutex> l(m_PeersMutex);
auto it = m_Peers.find (ident);
return it != m_Peers.end ();
}
void Transports::HandlePeerCleanupTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
auto ts = i2p::util::GetSecondsSinceEpoch ();
for (auto it = m_Peers.begin (); it != m_Peers.end (); )
{
it->second->sessions.remove_if (
[](std::shared_ptr<TransportSession> session)->bool
{
return !session || !session->IsEstablished ();
});
if (!it->second->IsConnected () && ts > it->second->creationTime + SESSION_CREATION_TIMEOUT)
{
LogPrint (eLogWarning, "Transports: Session to peer ", it->first.ToBase64 (), " has not been created in ", SESSION_CREATION_TIMEOUT, " seconds");
/* if (!it->second.router)
{
// if router for ident not found mark it unreachable
auto profile = i2p::data::GetRouterProfile (it->first);
if (profile) profile->Unreachable ();
} */
std::unique_lock<std::mutex> l(m_PeersMutex);
it = m_Peers.erase (it);
}
else
{
if (ts > it->second->nextRouterInfoUpdateTime)
{
auto session = it->second->sessions.front ();
if (session)
session->SendLocalRouterInfo (true);
it->second->nextRouterInfoUpdateTime = ts + PEER_ROUTER_INFO_UPDATE_INTERVAL +
rand () % PEER_ROUTER_INFO_UPDATE_INTERVAL_VARIANCE;
}
++it;
}
}
bool ipv4Testing = i2p::context.GetTesting ();
if (!ipv4Testing)
ipv4Testing = i2p::context.GetRouterInfo ().IsSSU2V4 () && (i2p::context.GetStatus() == eRouterStatusUnknown);
bool ipv6Testing = i2p::context.GetTestingV6 ();
if (!ipv6Testing)
ipv6Testing = i2p::context.GetRouterInfo ().IsSSU2V6 () && (i2p::context.GetStatusV6() == eRouterStatusUnknown);
// if still testing or unknown, repeat peer test
if (ipv4Testing || ipv6Testing)
PeerTest (ipv4Testing, ipv6Testing);
m_PeerCleanupTimer->expires_from_now (boost::posix_time::seconds(3 * SESSION_CREATION_TIMEOUT));
m_PeerCleanupTimer->async_wait (std::bind (&Transports::HandlePeerCleanupTimer, this, std::placeholders::_1));
}
}
void Transports::HandlePeerTestTimer (const boost::system::error_code& ecode)
{
if (ecode != boost::asio::error::operation_aborted)
{
PeerTest ();
m_PeerTestTimer->expires_from_now (boost::posix_time::minutes(PEER_TEST_INTERVAL));
m_PeerTestTimer->async_wait (std::bind (&Transports::HandlePeerTestTimer, this, std::placeholders::_1));
}
}
template<typename Filter>
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRandomPeer (Filter filter) const
{
if (m_Peers.empty()) return nullptr;
bool found = false;
i2p::data::IdentHash ident;
{
uint16_t inds[3];
RAND_bytes ((uint8_t *)inds, sizeof (inds));
std::unique_lock<std::mutex> l(m_PeersMutex);
auto count = m_Peers.size ();
if(count == 0) return nullptr;
inds[0] %= count;
auto it = m_Peers.begin ();
std::advance (it, inds[0]);
// try random peer
if (it != m_Peers.end () && filter (it->second))
{
ident = it->first;
found = true;
}
else
{
// try some peers around
auto it1 = m_Peers.begin ();
if (inds[0])
{
// before
inds[1] %= inds[0];
std::advance (it1, (inds[1] + inds[0])/2);
}
else
it1 = it;
auto it2 = it;
if (inds[0] < m_Peers.size () - 1)
{
// after
inds[2] %= (m_Peers.size () - 1 - inds[0]); inds[2] /= 2;
std::advance (it2, inds[2]);
}
// it1 - from, it2 - to
it = it1;
while (it != it2 && it != m_Peers.end ())
{
if (filter (it->second))
{
ident = it->first;
found = true;
break;
}
it++;
}
if (!found)
{
// still not found, try from the beginning
it = m_Peers.begin ();
while (it != it1 && it != m_Peers.end ())
{
if (filter (it->second))
{
ident = it->first;
found = true;
break;
}
it++;
}
if (!found)
{
// still not found, try to the beginning
it = it2;
while (it != m_Peers.end ())
{
if (filter (it->second))
{
ident = it->first;
found = true;
break;
}
it++;
}
}
}
}
}
return found ? i2p::data::netdb.FindRouter (ident) : nullptr;
}
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRandomPeer (bool isHighBandwidth) const
{
return GetRandomPeer (
[isHighBandwidth](std::shared_ptr<const Peer> peer)->bool
{
// connected, not overloaded and not slow
return !peer->router && peer->IsConnected () && peer->isReachable &&
peer->sessions.front ()->GetSendQueueSize () <= PEER_ROUTER_INFO_OVERLOAD_QUEUE_SIZE &&
!peer->sessions.front ()->IsSlow () && !peer->sessions.front ()->IsBandwidthExceeded (peer->isHighBandwidth) &&
(!isHighBandwidth || peer->isHighBandwidth);
});
}
void Transports::RestrictRoutesToFamilies(const std::set<std::string>& families)
{
std::lock_guard<std::mutex> lock(m_FamilyMutex);
m_TrustedFamilies.clear();
for (auto fam : families)
{
boost::to_lower (fam);
auto id = i2p::data::netdb.GetFamilies ().GetFamilyID (fam);
if (id)
m_TrustedFamilies.push_back (id);
}
}
void Transports::RestrictRoutesToRouters(const std::set<i2p::data::IdentHash>& routers)
{
std::lock_guard<std::mutex> lock(m_TrustedRoutersMutex);
m_TrustedRouters.clear();
for (const auto & ri : routers )
m_TrustedRouters.push_back(ri);
}
bool Transports::RoutesRestricted() const
{
{
std::lock_guard<std::mutex> routerslock(m_TrustedRoutersMutex);
if (!m_TrustedRouters.empty ()) return true;
}
{
std::lock_guard<std::mutex> famlock(m_FamilyMutex);
if (!m_TrustedFamilies.empty ()) return true;
}
return false;
}
/** XXX: if routes are not restricted this dies */
std::shared_ptr<const i2p::data::RouterInfo> Transports::GetRestrictedPeer() const
{
{
std::lock_guard<std::mutex> l(m_FamilyMutex);
i2p::data::FamilyID fam = 0;
auto sz = m_TrustedFamilies.size();
if(sz > 1)
{
auto it = m_TrustedFamilies.begin ();
std::advance(it, rand() % sz);
fam = *it;
}
else if (sz == 1)
{
fam = m_TrustedFamilies[0];
}
if (fam)
return i2p::data::netdb.GetRandomRouterInFamily(fam);
}
{
std::lock_guard<std::mutex> l(m_TrustedRoutersMutex);
auto sz = m_TrustedRouters.size();
if (sz)
{
if(sz == 1)
return i2p::data::netdb.FindRouter(m_TrustedRouters[0]);
auto it = m_TrustedRouters.begin();
std::advance(it, rand() % sz);
return i2p::data::netdb.FindRouter(*it);
}
}
return nullptr;
}
bool Transports::IsRestrictedPeer(const i2p::data::IdentHash & ih) const
{
{
std::lock_guard<std::mutex> l(m_TrustedRoutersMutex);
for (const auto & r : m_TrustedRouters )
if ( r == ih ) return true;
}
{
std::lock_guard<std::mutex> l(m_FamilyMutex);
auto ri = i2p::data::netdb.FindRouter(ih);
for (const auto & fam : m_TrustedFamilies)
if(ri->IsFamily(fam)) return true;
}
return false;
}
void Transports::SetOnline (bool online)
{
if (m_IsOnline != online)
{
m_IsOnline = online;
if (online)
PeerTest ();
else
i2p::context.SetError (eRouterErrorOffline);
}
}
bool Transports::IsInReservedRange (const boost::asio::ip::address& host) const
{
return IsCheckReserved () && i2p::util::net::IsInReservedRange (host);
}
void InitAddressFromIface ()
{
bool ipv6; i2p::config::GetOption("ipv6", ipv6);
bool ipv4; i2p::config::GetOption("ipv4", ipv4);
// ifname -> address
std::string ifname; i2p::config::GetOption("ifname", ifname);
if (ipv4 && i2p::config::IsDefault ("address4"))
{
std::string ifname4; i2p::config::GetOption("ifname4", ifname4);
if (!ifname4.empty ())
i2p::config::SetOption ("address4", i2p::util::net::GetInterfaceAddress(ifname4, false).to_string ()); // v4
else if (!ifname.empty ())
i2p::config::SetOption ("address4", i2p::util::net::GetInterfaceAddress(ifname, false).to_string ()); // v4
}
if (ipv6 && i2p::config::IsDefault ("address6"))
{
std::string ifname6; i2p::config::GetOption("ifname6", ifname6);
if (!ifname6.empty ())
i2p::config::SetOption ("address6", i2p::util::net::GetInterfaceAddress(ifname6, true).to_string ()); // v6
else if (!ifname.empty ())
i2p::config::SetOption ("address6", i2p::util::net::GetInterfaceAddress(ifname, true).to_string ()); // v6
}
}
void InitTransports ()
{
bool ipv6; i2p::config::GetOption("ipv6", ipv6);
bool ipv4; i2p::config::GetOption("ipv4", ipv4);
bool ygg; i2p::config::GetOption("meshnets.yggdrasil", ygg);
uint16_t port; i2p::config::GetOption("port", port);
boost::asio::ip::address_v6 yggaddr;
if (ygg)
{
std::string yggaddress; i2p::config::GetOption ("meshnets.yggaddress", yggaddress);
if (!yggaddress.empty ())
{
yggaddr = boost::asio::ip::address_v6::from_string (yggaddress);
if (yggaddr.is_unspecified () || !i2p::util::net::IsYggdrasilAddress (yggaddr) ||
!i2p::util::net::IsLocalAddress (yggaddr))
{
LogPrint(eLogWarning, "Transports: Can't find Yggdrasil address ", yggaddress);
ygg = false;
}
}
else
{
yggaddr = i2p::util::net::GetYggdrasilAddress ();
if (yggaddr.is_unspecified ())
{
LogPrint(eLogWarning, "Transports: Yggdrasil is not running. Disabled");
ygg = false;
}
}
}
if (!i2p::config::IsDefault("port"))
{
LogPrint(eLogInfo, "Transports: Accepting incoming connections at port ", port);
i2p::context.UpdatePort (port);
}
i2p::context.SetSupportsV6 (ipv6);
i2p::context.SetSupportsV4 (ipv4);
i2p::context.SetSupportsMesh (ygg, yggaddr);
bool ntcp2; i2p::config::GetOption("ntcp2.enabled", ntcp2);
if (ntcp2)
{
bool published; i2p::config::GetOption("ntcp2.published", published);
if (published)
{
std::string ntcp2proxy; i2p::config::GetOption("ntcp2.proxy", ntcp2proxy);
if (!ntcp2proxy.empty ()) published = false;
}
if (published)
{
uint16_t ntcp2port; i2p::config::GetOption("ntcp2.port", ntcp2port);
if (!ntcp2port) ntcp2port = port; // use standard port
i2p::context.PublishNTCP2Address (ntcp2port, true, ipv4, ipv6, false); // publish
if (ipv6)
{
std::string ipv6Addr; i2p::config::GetOption("ntcp2.addressv6", ipv6Addr);
auto addr = boost::asio::ip::address_v6::from_string (ipv6Addr);
if (!addr.is_unspecified () && addr != boost::asio::ip::address_v6::any ())
i2p::context.UpdateNTCP2V6Address (addr); // set ipv6 address if configured
}
}
else
i2p::context.PublishNTCP2Address (port, false, ipv4, ipv6, false); // unpublish
}
if (ygg)
{
i2p::context.PublishNTCP2Address (port, true, false, false, true);
i2p::context.UpdateNTCP2V6Address (yggaddr);
if (!ipv4 && !ipv6)
i2p::context.SetStatus (eRouterStatusMesh);
}
bool ssu2; i2p::config::GetOption("ssu2.enabled", ssu2);
if (ssu2 && i2p::config::IsDefault ("ssu2.enabled") && !ipv4 && !ipv6)
ssu2 = false; // don't enable ssu2 for yggdrasil only router
if (ssu2)
{
uint16_t ssu2port; i2p::config::GetOption("ssu2.port", ssu2port);
if (!ssu2port && port) ssu2port = port;
bool published; i2p::config::GetOption("ssu2.published", published);
if (published)
i2p::context.PublishSSU2Address (ssu2port, true, ipv4, ipv6); // publish
else
i2p::context.PublishSSU2Address (ssu2port, false, ipv4, ipv6); // unpublish
}
}
}
}