I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

816 lines
27 KiB

/*
* Copyright (c) 2013-2023, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include "Crypto.h"
#include "I2PEndian.h"
#include "Log.h"
#include "Timestamp.h"
#include "Identity.h"
namespace i2p
{
namespace data
{
Identity& Identity::operator=(const Keys& keys)
{
// copy public and signing keys together
memcpy (publicKey, keys.publicKey, sizeof (publicKey));
memcpy (signingKey, keys.signingKey, sizeof (signingKey));
memset (certificate, 0, sizeof (certificate));
return *this;
}
size_t Identity::FromBuffer (const uint8_t * buf, size_t len)
{
if ( len < DEFAULT_IDENTITY_SIZE ) {
// buffer too small, don't overflow
return 0;
}
memcpy (publicKey, buf, DEFAULT_IDENTITY_SIZE);
return DEFAULT_IDENTITY_SIZE;
}
IdentHash Identity::Hash () const
{
IdentHash hash;
SHA256(publicKey, DEFAULT_IDENTITY_SIZE, hash);
return hash;
}
IdentityEx::IdentityEx ():
m_ExtendedLen (0)
{
}
IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type, CryptoKeyType cryptoType)
{
uint8_t randomPaddingBlock[32];
RAND_bytes (randomPaddingBlock, 32);
if (cryptoType == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD)
{
memcpy (m_StandardIdentity.publicKey, publicKey ? publicKey : randomPaddingBlock, 32);
for (int i = 0; i < 7; i++) // 224 bytes
memcpy (m_StandardIdentity.publicKey + 32*(i + 1), randomPaddingBlock, 32);
}
else
{
if (publicKey)
memcpy (m_StandardIdentity.publicKey, publicKey, 256);
else
for (int i = 0; i < 8; i++) // 256 bytes
memcpy (m_StandardIdentity.publicKey + 32*i, randomPaddingBlock, 32);
}
if (type != SIGNING_KEY_TYPE_DSA_SHA1)
{
size_t excessLen = 0;
uint8_t * excessBuf = nullptr;
switch (type)
{
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
{
size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64
RAND_bytes (m_StandardIdentity.signingKey, padding);
memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
{
size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96
RAND_bytes (m_StandardIdentity.signingKey, padding);
memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
{
memcpy (m_StandardIdentity.signingKey, signingKey, 128);
excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128
excessBuf = new uint8_t[excessLen];
memcpy (excessBuf, signingKey + 128, excessLen);
break;
}
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint (eLogError, "Identity: RSA signing key type ", (int)type, " is not supported");
break;
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
{
size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32
for (int i = 0; i < 3; i++) // 96 bytes
memcpy (m_StandardIdentity.signingKey + 32*i, randomPaddingBlock, 32);
memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
{
// 256
size_t padding = 128 - i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH; // 64 = 128 - 64
RAND_bytes (m_StandardIdentity.signingKey, padding);
memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH);
break;
}
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
{
// 512
// no padding, key length is 128
memcpy (m_StandardIdentity.signingKey, signingKey, i2p::crypto::GOSTR3410_512_PUBLIC_KEY_LENGTH);
break;
}
default:
LogPrint (eLogError, "Identity: Signing key type ", (int)type, " is not supported");
}
m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length
// fill certificate
m_StandardIdentity.certificate[0] = CERTIFICATE_TYPE_KEY;
htobe16buf (m_StandardIdentity.certificate + 1, m_ExtendedLen);
// fill extended buffer
htobe16buf (m_ExtendedBuffer, type);
htobe16buf (m_ExtendedBuffer + 2, cryptoType);
if (excessLen && excessBuf)
{
if (excessLen > MAX_EXTENDED_BUFFER_SIZE - 4)
{
LogPrint (eLogError, "Identity: Unexpected excessive signing key len ", excessLen);
excessLen = MAX_EXTENDED_BUFFER_SIZE - 4;
}
memcpy (m_ExtendedBuffer + 4, excessBuf, excessLen);
delete[] excessBuf;
}
// calculate ident hash
RecalculateIdentHash();
}
else // DSA-SHA1
{
memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey));
memset (m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate));
m_IdentHash = m_StandardIdentity.Hash ();
m_ExtendedLen = 0;
}
CreateVerifier ();
}
void IdentityEx::RecalculateIdentHash(uint8_t * buf)
{
bool dofree = buf == nullptr;
size_t sz = GetFullLen();
if(!buf)
buf = new uint8_t[sz];
ToBuffer (buf, sz);
SHA256(buf, sz, m_IdentHash);
if(dofree)
delete[] buf;
}
IdentityEx::IdentityEx (const uint8_t * buf, size_t len):
m_ExtendedLen (0)
{
FromBuffer (buf, len);
}
IdentityEx::IdentityEx (const IdentityEx& other):
m_ExtendedLen (0)
{
*this = other;
}
IdentityEx::IdentityEx (const Identity& standard):
m_ExtendedLen (0)
{
*this = standard;
}
IdentityEx::~IdentityEx ()
{
}
IdentityEx& IdentityEx::operator=(const IdentityEx& other)
{
memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
m_IdentHash = other.m_IdentHash;
m_ExtendedLen = other.m_ExtendedLen;
if (m_ExtendedLen > 0)
{
if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) m_ExtendedLen = MAX_EXTENDED_BUFFER_SIZE;
memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen);
}
m_Verifier = nullptr;
CreateVerifier ();
return *this;
}
IdentityEx& IdentityEx::operator=(const Identity& standard)
{
m_StandardIdentity = standard;
m_IdentHash = m_StandardIdentity.Hash ();
m_ExtendedLen = 0;
m_Verifier = nullptr;
CreateVerifier ();
return *this;
}
size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len)
{
if (len < DEFAULT_IDENTITY_SIZE)
{
LogPrint (eLogError, "Identity: Buffer length ", len, " is too small");
return 0;
}
memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE);
m_ExtendedLen = bufbe16toh (m_StandardIdentity.certificate + 1);
if (m_ExtendedLen)
{
if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len)
{
if (m_ExtendedLen > MAX_EXTENDED_BUFFER_SIZE) m_ExtendedLen = MAX_EXTENDED_BUFFER_SIZE;
memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen);
}
else
{
LogPrint (eLogError, "Identity: Certificate length ", m_ExtendedLen, " exceeds buffer length ", len - DEFAULT_IDENTITY_SIZE);
m_ExtendedLen = 0;
return 0;
}
}
else
m_ExtendedLen = 0;
SHA256(buf, GetFullLen (), m_IdentHash);
m_Verifier = nullptr;
CreateVerifier ();
return GetFullLen ();
}
size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const
{
const size_t fullLen = GetFullLen();
if (fullLen > len) return 0; // buffer is too small and may overflow somewhere else
memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE);
if (m_ExtendedLen > 0)
memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen);
return fullLen;
}
size_t IdentityEx::FromBase64(const std::string& s)
{
const size_t slen = s.length();
std::vector<uint8_t> buf(slen); // binary data can't exceed base64
const size_t len = Base64ToByteStream (s.c_str(), slen, buf.data(), slen);
return FromBuffer (buf.data(), len);
}
std::string IdentityEx::ToBase64 () const
{
const size_t bufLen = GetFullLen();
const size_t strLen = Base64EncodingBufferSize(bufLen);
std::vector<uint8_t> buf(bufLen);
std::vector<char> str(strLen);
size_t l = ToBuffer (buf.data(), bufLen);
size_t l1 = i2p::data::ByteStreamToBase64 (buf.data(), l, str.data(), strLen);
return std::string (str.data(), l1);
}
size_t IdentityEx::GetSigningPublicKeyLen () const
{
if (m_Verifier)
return m_Verifier->GetPublicKeyLen ();
return 128;
}
const uint8_t * IdentityEx::GetSigningPublicKeyBuffer () const
{
auto keyLen = GetSigningPublicKeyLen ();
if (keyLen > 128) return nullptr; // P521
return m_StandardIdentity.signingKey + 128 - keyLen;
}
size_t IdentityEx::GetSigningPrivateKeyLen () const
{
if (m_Verifier)
return m_Verifier->GetPrivateKeyLen ();
return GetSignatureLen ()/2;
}
size_t IdentityEx::GetSignatureLen () const
{
if (m_Verifier)
return m_Verifier->GetSignatureLen ();
return i2p::crypto::DSA_SIGNATURE_LENGTH;
}
bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
{
if (m_Verifier)
return m_Verifier->Verify (buf, len, signature);
return false;
}
SigningKeyType IdentityEx::GetSigningKeyType () const
{
if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 2)
return bufbe16toh (m_ExtendedBuffer); // signing key
return SIGNING_KEY_TYPE_DSA_SHA1;
}
bool IdentityEx::IsRSA () const
{
auto sigType = GetSigningKeyType ();
return sigType <= SIGNING_KEY_TYPE_RSA_SHA512_4096 && sigType >= SIGNING_KEY_TYPE_RSA_SHA256_2048;
}
CryptoKeyType IdentityEx::GetCryptoKeyType () const
{
if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 4)
return bufbe16toh (m_ExtendedBuffer + 2); // crypto key
return CRYPTO_KEY_TYPE_ELGAMAL;
}
i2p::crypto::Verifier * IdentityEx::CreateVerifier (SigningKeyType keyType)
{
switch (keyType)
{
case SIGNING_KEY_TYPE_DSA_SHA1:
return new i2p::crypto::DSAVerifier ();
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
return new i2p::crypto::ECDSAP256Verifier ();
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
return new i2p::crypto::ECDSAP384Verifier ();
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
return new i2p::crypto::ECDSAP521Verifier ();
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
return new i2p::crypto::EDDSA25519Verifier ();
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
return new i2p::crypto::GOSTR3410_256_Verifier (i2p::crypto::eGOSTR3410CryptoProA);
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
return new i2p::crypto::GOSTR3410_512_Verifier (i2p::crypto::eGOSTR3410TC26A512);
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
return new i2p::crypto::RedDSA25519Verifier ();
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported");
break;
default:
LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported");
}
return nullptr;
}
void IdentityEx::CreateVerifier ()
{
if (!m_Verifier)
{
auto verifier = CreateVerifier (GetSigningKeyType ());
if (verifier)
{
auto keyLen = verifier->GetPublicKeyLen ();
if (keyLen <= 128)
verifier->SetPublicKey (m_StandardIdentity.signingKey + 128 - keyLen);
else
{
// for P521
uint8_t * signingKey = new uint8_t[keyLen];
memcpy (signingKey, m_StandardIdentity.signingKey, 128);
size_t excessLen = keyLen - 128;
memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types
verifier->SetPublicKey (signingKey);
delete[] signingKey;
}
}
m_Verifier.reset (verifier);
}
}
std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor (CryptoKeyType keyType, const uint8_t * key)
{
switch (keyType)
{
case CRYPTO_KEY_TYPE_ELGAMAL:
return std::make_shared<i2p::crypto::ElGamalEncryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
return std::make_shared<i2p::crypto::ECIESX25519AEADRatchetEncryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST:
return std::make_shared<i2p::crypto::ECIESP256Encryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC:
return std::make_shared<i2p::crypto::ECIESGOSTR3410Encryptor>(key);
break;
default:
LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)keyType);
};
return nullptr;
}
std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor (const uint8_t * key) const
{
if (!key) key = GetEncryptionPublicKey (); // use publicKey
return CreateEncryptor (GetCryptoKeyType (), key);
}
PrivateKeys& PrivateKeys::operator=(const Keys& keys)
{
m_Public = std::make_shared<IdentityEx>(Identity (keys));
memcpy (m_PrivateKey, keys.privateKey, 256); // 256
memcpy (m_SigningPrivateKey, keys.signingPrivateKey, m_Public->GetSigningPrivateKeyLen ());
m_OfflineSignature.resize (0);
m_TransientSignatureLen = 0;
m_TransientSigningPrivateKeyLen = 0;
m_Signer = nullptr;
CreateSigner ();
return *this;
}
PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other)
{
m_Public = std::make_shared<IdentityEx>(*other.m_Public);
memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256
m_OfflineSignature = other.m_OfflineSignature;
m_TransientSignatureLen = other.m_TransientSignatureLen;
m_TransientSigningPrivateKeyLen = other.m_TransientSigningPrivateKeyLen;
memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, m_TransientSigningPrivateKeyLen > 0 ? m_TransientSigningPrivateKeyLen : m_Public->GetSigningPrivateKeyLen ());
m_Signer = nullptr;
CreateSigner ();
return *this;
}
size_t PrivateKeys::GetFullLen () const
{
size_t ret = m_Public->GetFullLen () + GetPrivateKeyLen () + m_Public->GetSigningPrivateKeyLen ();
if (IsOfflineSignature ())
ret += m_OfflineSignature.size () + m_TransientSigningPrivateKeyLen;
return ret;
}
size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len)
{
m_Public = std::make_shared<IdentityEx>();
size_t ret = m_Public->FromBuffer (buf, len);
auto cryptoKeyLen = GetPrivateKeyLen ();
if (!ret || ret + cryptoKeyLen > len) return 0; // overflow
memcpy (m_PrivateKey, buf + ret, cryptoKeyLen);
ret += cryptoKeyLen;
size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen ();
if(signingPrivateKeySize + ret > len || signingPrivateKeySize > 128) return 0; // overflow
memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize);
ret += signingPrivateKeySize;
m_Signer = nullptr;
// check if signing private key is all zeros
bool allzeros = true;
for (size_t i = 0; i < signingPrivateKeySize; i++)
if (m_SigningPrivateKey[i])
{
allzeros = false;
break;
}
if (allzeros)
{
// offline information
const uint8_t * offlineInfo = buf + ret;
ret += 4; // expires timestamp
SigningKeyType keyType = bufbe16toh (buf + ret); ret += 2; // key type
std::unique_ptr<i2p::crypto::Verifier> transientVerifier (IdentityEx::CreateVerifier (keyType));
if (!transientVerifier) return 0;
auto keyLen = transientVerifier->GetPublicKeyLen ();
if (keyLen + ret > len) return 0;
transientVerifier->SetPublicKey (buf + ret); ret += keyLen;
if (m_Public->GetSignatureLen () + ret > len) return 0;
if (!m_Public->Verify (offlineInfo, keyLen + 6, buf + ret))
{
LogPrint (eLogError, "Identity: Offline signature verification failed");
return 0;
}
ret += m_Public->GetSignatureLen ();
m_TransientSignatureLen = transientVerifier->GetSignatureLen ();
// copy offline signature
size_t offlineInfoLen = buf + ret - offlineInfo;
m_OfflineSignature.resize (offlineInfoLen);
memcpy (m_OfflineSignature.data (), offlineInfo, offlineInfoLen);
// override signing private key
m_TransientSigningPrivateKeyLen = transientVerifier->GetPrivateKeyLen ();
if (m_TransientSigningPrivateKeyLen + ret > len || m_TransientSigningPrivateKeyLen > 128) return 0;
memcpy (m_SigningPrivateKey, buf + ret, m_TransientSigningPrivateKeyLen);
ret += m_TransientSigningPrivateKeyLen;
CreateSigner (keyType);
}
else
CreateSigner (m_Public->GetSigningKeyType ());
return ret;
}
size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const
{
size_t ret = m_Public->ToBuffer (buf, len);
auto cryptoKeyLen = GetPrivateKeyLen ();
memcpy (buf + ret, m_PrivateKey, cryptoKeyLen);
ret += cryptoKeyLen;
size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen ();
if(ret + signingPrivateKeySize > len) return 0; // overflow
if (IsOfflineSignature ())
memset (buf + ret, 0, signingPrivateKeySize);
else
memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize);
ret += signingPrivateKeySize;
if (IsOfflineSignature ())
{
// offline signature
auto offlineSignatureLen = m_OfflineSignature.size ();
if (ret + offlineSignatureLen > len) return 0;
memcpy (buf + ret, m_OfflineSignature.data (), offlineSignatureLen);
ret += offlineSignatureLen;
// transient private key
if (ret + m_TransientSigningPrivateKeyLen > len) return 0;
memcpy (buf + ret, m_SigningPrivateKey, m_TransientSigningPrivateKeyLen);
ret += m_TransientSigningPrivateKeyLen;
}
return ret;
}
size_t PrivateKeys::FromBase64(const std::string& s)
{
uint8_t * buf = new uint8_t[s.length ()];
size_t l = i2p::data::Base64ToByteStream (s.c_str (), s.length (), buf, s.length ());
size_t ret = FromBuffer (buf, l);
delete[] buf;
return ret;
}
std::string PrivateKeys::ToBase64 () const
{
uint8_t * buf = new uint8_t[GetFullLen ()];
char * str = new char[GetFullLen ()*2];
size_t l = ToBuffer (buf, GetFullLen ());
size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, GetFullLen ()*2);
str[l1] = 0;
delete[] buf;
std::string ret(str);
delete[] str;
return ret;
}
void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const
{
if (!m_Signer)
CreateSigner();
m_Signer->Sign (buf, len, signature);
}
void PrivateKeys::CreateSigner () const
{
if (IsOfflineSignature ())
CreateSigner (bufbe16toh (m_OfflineSignature.data () + 4)); // key type
else
CreateSigner (m_Public->GetSigningKeyType ());
}
void PrivateKeys::CreateSigner (SigningKeyType keyType) const
{
if (m_Signer) return;
if (keyType == SIGNING_KEY_TYPE_DSA_SHA1)
m_Signer.reset (new i2p::crypto::DSASigner (m_SigningPrivateKey, m_Public->GetStandardIdentity ().signingKey));
else if (keyType == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519 && !IsOfflineSignature ())
m_Signer.reset (new i2p::crypto::EDDSA25519Signer (m_SigningPrivateKey, m_Public->GetStandardIdentity ().signingKey + (sizeof(Identity::signingKey) - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH))); // TODO: remove public key check
else
{
// public key is not required
auto signer = CreateSigner (keyType, m_SigningPrivateKey);
if (signer) m_Signer.reset (signer);
}
}
i2p::crypto::Signer * PrivateKeys::CreateSigner (SigningKeyType keyType, const uint8_t * priv)
{
switch (keyType)
{
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
return new i2p::crypto::ECDSAP256Signer (priv);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
return new i2p::crypto::ECDSAP384Signer (priv);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
return new i2p::crypto::ECDSAP521Signer (priv);
break;
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported");
break;
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
return new i2p::crypto::EDDSA25519Signer (priv, nullptr);
break;
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
return new i2p::crypto::GOSTR3410_256_Signer (i2p::crypto::eGOSTR3410CryptoProA, priv);
break;
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
return new i2p::crypto::GOSTR3410_512_Signer (i2p::crypto::eGOSTR3410TC26A512, priv);
break;
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
return new i2p::crypto::RedDSA25519Signer (priv);
break;
default:
LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported");
}
return nullptr;
}
size_t PrivateKeys::GetSignatureLen () const
{
return IsOfflineSignature () ? m_TransientSignatureLen : m_Public->GetSignatureLen ();
}
size_t PrivateKeys::GetPrivateKeyLen () const
{
// private key length always 256, but type 4
return (m_Public->GetCryptoKeyType () == CRYPTO_KEY_TYPE_ECIES_X25519_AEAD) ? 32 : 256;
}
uint8_t * PrivateKeys::GetPadding()
{
if(m_Public->GetSigningKeyType () == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519)
return m_Public->GetEncryptionPublicKeyBuffer() + 256;
else
return nullptr; // TODO: implement me
}
std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor (const uint8_t * key) const
{
if (!key) key = m_PrivateKey; // use privateKey
return CreateDecryptor (m_Public->GetCryptoKeyType (), key);
}
std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor (CryptoKeyType cryptoType, const uint8_t * key)
{
if (!key) return nullptr;
switch (cryptoType)
{
case CRYPTO_KEY_TYPE_ELGAMAL:
return std::make_shared<i2p::crypto::ElGamalDecryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
return std::make_shared<i2p::crypto::ECIESX25519AEADRatchetDecryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST:
return std::make_shared<i2p::crypto::ECIESP256Decryptor>(key);
break;
case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC:
return std::make_shared<i2p::crypto::ECIESGOSTR3410Decryptor>(key);
break;
default:
LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)cryptoType);
};
return nullptr;
}
PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type, CryptoKeyType cryptoType, bool isDestination)
{
if (type != SIGNING_KEY_TYPE_DSA_SHA1)
{
PrivateKeys keys;
// signature
uint8_t signingPublicKey[512]; // signing public key is 512 bytes max
GenerateSigningKeyPair (type, keys.m_SigningPrivateKey, signingPublicKey);
// encryption
uint8_t publicKey[256];
if (isDestination)
RAND_bytes (keys.m_PrivateKey, 256);
else
GenerateCryptoKeyPair (cryptoType, keys.m_PrivateKey, publicKey);
// identity
keys.m_Public = std::make_shared<IdentityEx> (isDestination ? nullptr : publicKey, signingPublicKey, type, cryptoType);
keys.CreateSigner ();
return keys;
}
return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1
}
void PrivateKeys::GenerateSigningKeyPair (SigningKeyType type, uint8_t * priv, uint8_t * pub)
{
switch (type)
{
case SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
i2p::crypto::CreateECDSAP256RandomKeys (priv, pub);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
i2p::crypto::CreateECDSAP384RandomKeys (priv, pub);
break;
case SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
i2p::crypto::CreateECDSAP521RandomKeys (priv, pub);
break;
case SIGNING_KEY_TYPE_RSA_SHA256_2048:
case SIGNING_KEY_TYPE_RSA_SHA384_3072:
case SIGNING_KEY_TYPE_RSA_SHA512_4096:
LogPrint (eLogWarning, "Identity: RSA signature type is not supported. Creating EdDSA");
#if (__cplusplus >= 201703L) // C++ 17 or higher
[[fallthrough]];
#endif
// no break here
case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
i2p::crypto::CreateEDDSA25519RandomKeys (priv, pub);
break;
case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410CryptoProA, priv, pub);
break;
case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410TC26A512, priv, pub);
break;
case SIGNING_KEY_TYPE_REDDSA_SHA512_ED25519:
i2p::crypto::CreateRedDSA25519RandomKeys (priv, pub);
break;
default:
LogPrint (eLogWarning, "Identity: Signing key type ", (int)type, " is not supported. Create DSA-SHA1");
i2p::crypto::CreateDSARandomKeys (priv, pub); // DSA-SHA1
}
}
void PrivateKeys::GenerateCryptoKeyPair (CryptoKeyType type, uint8_t * priv, uint8_t * pub)
{
switch (type)
{
case CRYPTO_KEY_TYPE_ELGAMAL:
i2p::crypto::GenerateElGamalKeyPair(priv, pub);
break;
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC:
case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST:
i2p::crypto::CreateECIESP256RandomKeys (priv, pub);
break;
case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC:
i2p::crypto::CreateECIESGOSTR3410RandomKeys (priv, pub);
break;
case CRYPTO_KEY_TYPE_ECIES_X25519_AEAD:
i2p::crypto::CreateECIESX25519AEADRatchetRandomKeys (priv, pub);
break;
default:
LogPrint (eLogError, "Identity: Crypto key type ", (int)type, " is not supported");
}
}
PrivateKeys PrivateKeys::CreateOfflineKeys (SigningKeyType type, uint32_t expires) const
{
PrivateKeys keys (*this);
std::unique_ptr<i2p::crypto::Verifier> verifier (IdentityEx::CreateVerifier (type));
if (verifier)
{
size_t pubKeyLen = verifier->GetPublicKeyLen ();
keys.m_TransientSigningPrivateKeyLen = verifier->GetPrivateKeyLen ();
keys.m_TransientSignatureLen = verifier->GetSignatureLen ();
keys.m_OfflineSignature.resize (pubKeyLen + m_Public->GetSignatureLen () + 6);
htobe32buf (keys.m_OfflineSignature.data (), expires); // expires
htobe16buf (keys.m_OfflineSignature.data () + 4, type); // type
GenerateSigningKeyPair (type, keys.m_SigningPrivateKey, keys.m_OfflineSignature.data () + 6); // public key
Sign (keys.m_OfflineSignature.data (), pubKeyLen + 6, keys.m_OfflineSignature.data () + 6 + pubKeyLen); // signature
// recreate signer
keys.m_Signer = nullptr;
keys.CreateSigner (type);
}
return keys;
}
Keys CreateRandomKeys ()
{
Keys keys;
// encryption
i2p::crypto::GenerateElGamalKeyPair(keys.privateKey, keys.publicKey);
// signing
i2p::crypto::CreateDSARandomKeys (keys.signingPrivateKey, keys.signingKey);
return keys;
}
IdentHash CreateRoutingKey (const IdentHash& ident)
{
uint8_t buf[41]; // ident + yyyymmdd
memcpy (buf, (const uint8_t *)ident, 32);
i2p::util::GetCurrentDate ((char *)(buf + 32));
IdentHash key;
SHA256(buf, 40, key);
return key;
}
XORMetric operator^(const IdentHash& key1, const IdentHash& key2)
{
XORMetric m;
const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL ();
m.metric_ll[0] = hash1[0] ^ hash2[0];
m.metric_ll[1] = hash1[1] ^ hash2[1];
m.metric_ll[2] = hash1[2] ^ hash2[2];
m.metric_ll[3] = hash1[3] ^ hash2[3];
return m;
}
}
}