#include <boost/bind.hpp> #include "Crypto.h" #include "Log.h" #include "Timestamp.h" #include "RouterContext.h" #include "Transports.h" #include "SSU.h" #include "SSUSession.h" namespace i2p { namespace transport { SSUSession::SSUSession (SSUServer& server, boost::asio::ip::udp::endpoint& remoteEndpoint, std::shared_ptr<const i2p::data::RouterInfo> router, bool peerTest ): TransportSession (router), m_Server (server), m_RemoteEndpoint (remoteEndpoint), m_Timer (GetService ()), m_IsPeerTest (peerTest),m_State (eSessionStateUnknown), m_IsSessionKey (false), m_RelayTag (0),m_Data (*this), m_IsDataReceived (false) { if (router) { // we are client auto address = router->GetSSUAddress (); if (address) m_IntroKey = address->key; m_Data.AdjustPacketSize (router); // mtu } else { // we are server auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (address) m_IntroKey = address->key; } m_CreationTime = i2p::util::GetSecondsSinceEpoch (); } SSUSession::~SSUSession () { } boost::asio::io_service& SSUSession::GetService () { return IsV6 () ? m_Server.GetServiceV6 () : m_Server.GetService (); } void SSUSession::CreateAESandMacKey (const uint8_t * pubKey) { uint8_t sharedKey[256]; m_DHKeysPair->Agree (pubKey, sharedKey); uint8_t * sessionKey = m_SessionKey, * macKey = m_MacKey; if (sharedKey[0] & 0x80) { sessionKey[0] = 0; memcpy (sessionKey + 1, sharedKey, 31); memcpy (macKey, sharedKey + 31, 32); } else if (sharedKey[0]) { memcpy (sessionKey, sharedKey, 32); memcpy (macKey, sharedKey + 32, 32); } else { // find first non-zero byte uint8_t * nonZero = sharedKey + 1; while (!*nonZero) { nonZero++; if (nonZero - sharedKey > 32) { LogPrint (eLogWarning, "SSU: first 32 bytes of shared key is all zeros. Ignored"); return; } } memcpy (sessionKey, nonZero, 32); SHA256(nonZero, 64 - (nonZero - sharedKey), macKey); } m_IsSessionKey = true; m_SessionKeyEncryption.SetKey (m_SessionKey); m_SessionKeyDecryption.SetKey (m_SessionKey); } void SSUSession::ProcessNextMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { m_NumReceivedBytes += len; i2p::transport::transports.UpdateReceivedBytes (len); if (m_State == eSessionStateIntroduced) { // HolePunch received LogPrint (eLogDebug, "SSU: HolePunch of ", len, " bytes received"); m_State = eSessionStateUnknown; Connect (); } else { if (!len) return; // ignore zero-length packets if (m_State == eSessionStateEstablished) ScheduleTermination (); if (m_IsSessionKey && Validate (buf, len, m_MacKey)) // try session key first DecryptSessionKey (buf, len); else { // try intro key depending on side if (Validate (buf, len, m_IntroKey)) Decrypt (buf, len, m_IntroKey); else { // try own intro key auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!address) { LogPrint (eLogInfo, "SSU is not supported"); return; } if (Validate (buf, len, address->key)) Decrypt (buf, len, address->key); else { LogPrint (eLogWarning, "SSU: MAC verification failed ", len, " bytes from ", senderEndpoint); m_Server.DeleteSession (shared_from_this ()); return; } } } // successfully decrypted ProcessMessage (buf, len, senderEndpoint); } } size_t SSUSession::GetSSUHeaderSize (const uint8_t * buf) const { size_t s = sizeof (SSUHeader); if (((const SSUHeader *)buf)->IsExtendedOptions ()) s += buf[s] + 1; // byte right after header is extended options length return s; } void SSUSession::ProcessMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { len -= (len & 0x0F); // %16, delete extra padding if (len <= sizeof (SSUHeader)) return; // drop empty message //TODO: since we are accessing a uint8_t this is unlikely to crash due to alignment but should be improved auto headerSize = GetSSUHeaderSize (buf); if (headerSize >= len) { LogPrint (eLogError, "SSU header size ", headerSize, " exceeds packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; switch (header->GetPayloadType ()) { case PAYLOAD_TYPE_DATA: ProcessData (buf + headerSize, len - headerSize); break; case PAYLOAD_TYPE_SESSION_REQUEST: ProcessSessionRequest (buf, len, senderEndpoint); // buf with header break; case PAYLOAD_TYPE_SESSION_CREATED: ProcessSessionCreated (buf, len); // buf with header break; case PAYLOAD_TYPE_SESSION_CONFIRMED: ProcessSessionConfirmed (buf, len); // buf with header break; case PAYLOAD_TYPE_PEER_TEST: LogPrint (eLogDebug, "SSU: peer test received"); ProcessPeerTest (buf + headerSize, len - headerSize, senderEndpoint); break; case PAYLOAD_TYPE_SESSION_DESTROYED: { LogPrint (eLogDebug, "SSU: session destroy received"); m_Server.DeleteSession (shared_from_this ()); break; } case PAYLOAD_TYPE_RELAY_RESPONSE: ProcessRelayResponse (buf + headerSize, len - headerSize); if (m_State != eSessionStateEstablished) m_Server.DeleteSession (shared_from_this ()); break; case PAYLOAD_TYPE_RELAY_REQUEST: LogPrint (eLogDebug, "SSU: relay request received"); ProcessRelayRequest (buf + headerSize, len - headerSize, senderEndpoint); break; case PAYLOAD_TYPE_RELAY_INTRO: LogPrint (eLogDebug, "SSU: relay intro received"); ProcessRelayIntro (buf + headerSize, len - headerSize); break; default: LogPrint (eLogWarning, "SSU: Unexpected payload type ", (int)header->GetPayloadType ()); } } void SSUSession::ProcessSessionRequest (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { LogPrint (eLogDebug, "SSU message: session request"); bool sendRelayTag = true; auto headerSize = sizeof (SSUHeader); if (((SSUHeader *)buf)->IsExtendedOptions ()) { uint8_t extendedOptionsLen = buf[headerSize]; headerSize++; if (extendedOptionsLen >= 3) // options are presented { uint16_t flags = bufbe16toh (buf + headerSize); sendRelayTag = flags & EXTENDED_OPTIONS_FLAG_REQUEST_RELAY_TAG; } headerSize += extendedOptionsLen; } if (headerSize >= len) { LogPrint (eLogError, "Session reaquest header size ", headerSize, " exceeds packet length ", len); return; } m_RemoteEndpoint = senderEndpoint; if (!m_DHKeysPair) m_DHKeysPair = transports.GetNextDHKeysPair (); CreateAESandMacKey (buf + headerSize); SendSessionCreated (buf + headerSize, sendRelayTag); } void SSUSession::ProcessSessionCreated (uint8_t * buf, size_t len) { if (!IsOutgoing () || !m_DHKeysPair) { LogPrint (eLogWarning, "SSU: Unsolicited session created message"); return; } LogPrint (eLogDebug, "SSU message: session created"); m_Timer.cancel (); // connect timer SignedData s; // x,y, our IP, our port, remote IP, remote port, relayTag, signed on time auto headerSize = GetSSUHeaderSize (buf); if (headerSize >= len) { LogPrint (eLogError, "Session created header size ", headerSize, " exceeds packet length ", len); return; } uint8_t * payload = buf + headerSize; uint8_t * y = payload; CreateAESandMacKey (y); s.Insert (m_DHKeysPair->GetPublicKey (), 256); // x s.Insert (y, 256); // y payload += 256; uint8_t addressSize = *payload; payload += 1; // size uint8_t * ourAddress = payload; boost::asio::ip::address ourIP; if (addressSize == 4) // v4 { boost::asio::ip::address_v4::bytes_type bytes; memcpy (bytes.data (), ourAddress, 4); ourIP = boost::asio::ip::address_v4 (bytes); } else // v6 { boost::asio::ip::address_v6::bytes_type bytes; memcpy (bytes.data (), ourAddress, 16); ourIP = boost::asio::ip::address_v6 (bytes); } s.Insert (ourAddress, addressSize); // our IP payload += addressSize; // address uint16_t ourPort = bufbe16toh (payload); s.Insert (payload, 2); // our port payload += 2; // port if (m_RemoteEndpoint.address ().is_v4 ()) s.Insert (m_RemoteEndpoint.address ().to_v4 ().to_bytes ().data (), 4); // remote IP v4 else s.Insert (m_RemoteEndpoint.address ().to_v6 ().to_bytes ().data (), 16); // remote IP v6 s.Insert<uint16_t> (htobe16 (m_RemoteEndpoint.port ())); // remote port s.Insert (payload, 8); // relayTag and signed on time m_RelayTag = bufbe32toh (payload); payload += 4; // relayTag payload += 4; // signed on time // decrypt signature size_t signatureLen = m_RemoteIdentity->GetSignatureLen (); size_t paddingSize = signatureLen & 0x0F; // %16 if (paddingSize > 0) signatureLen += (16 - paddingSize); //TODO: since we are accessing a uint8_t this is unlikely to crash due to alignment but should be improved m_SessionKeyDecryption.SetIV (((SSUHeader *)buf)->iv); m_SessionKeyDecryption.Decrypt (payload, signatureLen, payload); // TODO: non-const payload // verify signature if (s.Verify (m_RemoteIdentity, payload)) { LogPrint (eLogInfo, "SSU: Our external address is ", ourIP.to_string (), ":", ourPort); i2p::context.UpdateAddress (ourIP); SendSessionConfirmed (y, ourAddress, addressSize + 2); } else { LogPrint (eLogError, "SSU: message 'created' signature verification failed"); Failed (); } } void SSUSession::ProcessSessionConfirmed (const uint8_t * buf, size_t len) { LogPrint (eLogDebug, "SSU: Session confirmed received"); auto headerSize = GetSSUHeaderSize (buf); if (headerSize >= len) { LogPrint (eLogError, "SSU: Session confirmed header size ", len, " exceeds packet length ", len); return; } const uint8_t * payload = buf + headerSize; payload++; // identity fragment info uint16_t identitySize = bufbe16toh (payload); payload += 2; // size of identity fragment SetRemoteIdentity (std::make_shared<i2p::data::IdentityEx> (payload, identitySize)); m_Data.UpdatePacketSize (m_RemoteIdentity->GetIdentHash ()); payload += identitySize; // identity if (m_SignedData) m_SignedData->Insert (payload, 4); // insert Alice's signed on time payload += 4; // signed-on time size_t paddingSize = (payload - buf) + m_RemoteIdentity->GetSignatureLen (); paddingSize &= 0x0F; // %16 if (paddingSize > 0) paddingSize = 16 - paddingSize; payload += paddingSize; // verify signature if (m_SignedData && m_SignedData->Verify (m_RemoteIdentity, payload)) { m_Data.Send (CreateDeliveryStatusMsg (0)); Established (); } else { LogPrint (eLogError, "SSU message 'confirmed' signature verification failed"); Failed (); } } void SSUSession::SendSessionRequest () { uint8_t buf[320 + 18]; // 304 bytes for ipv4, 320 for ipv6 uint8_t * payload = buf + sizeof (SSUHeader); uint8_t flag = 0; // fill extended options, 3 bytes extended options don't change message size if (i2p::context.GetStatus () == eRouterStatusOK) // we don't need relays { // tell out peer to now assign relay tag flag = SSU_HEADER_EXTENDED_OPTIONS_INCLUDED; *payload = 2; payload++; // 1 byte length uint16_t flags = 0; // clear EXTENDED_OPTIONS_FLAG_REQUEST_RELAY_TAG htobe16buf (payload, flags); payload += 2; } // fill payload memcpy (payload, m_DHKeysPair->GetPublicKey (), 256); // x bool isV4 = m_RemoteEndpoint.address ().is_v4 (); if (isV4) { payload[256] = 4; memcpy (payload + 257, m_RemoteEndpoint.address ().to_v4 ().to_bytes ().data(), 4); } else { payload[256] = 16; memcpy (payload + 257, m_RemoteEndpoint.address ().to_v6 ().to_bytes ().data(), 16); } // encrypt and send uint8_t iv[16]; RAND_bytes (iv, 16); // random iv FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_REQUEST, buf, isV4 ? 304 : 320, m_IntroKey, iv, m_IntroKey, flag); m_Server.Send (buf, isV4 ? 304 : 320, m_RemoteEndpoint); } void SSUSession::SendRelayRequest (const i2p::data::RouterInfo::Introducer& introducer, uint32_t nonce) { auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!address) { LogPrint (eLogInfo, "SSU is not supported"); return; } uint8_t buf[96 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); htobe32buf (payload, introducer.iTag); payload += 4; *payload = 0; // no address payload++; htobuf16(payload, 0); // port = 0 payload += 2; *payload = 0; // challenge payload++; memcpy (payload, (const uint8_t *)address->key, 32); payload += 32; htobe32buf (payload, nonce); // nonce uint8_t iv[16]; RAND_bytes (iv, 16); // random iv if (m_State == eSessionStateEstablished) FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_REQUEST, buf, 96, m_SessionKey, iv, m_MacKey); else FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_REQUEST, buf, 96, introducer.iKey, iv, introducer.iKey); m_Server.Send (buf, 96, m_RemoteEndpoint); } void SSUSession::SendSessionCreated (const uint8_t * x, bool sendRelayTag) { auto address = IsV6 () ? i2p::context.GetRouterInfo ().GetSSUV6Address () : i2p::context.GetRouterInfo ().GetSSUAddress (true); //v4 only if (!address) { LogPrint (eLogInfo, "SSU is not supported"); return; } SignedData s; // x,y, remote IP, remote port, our IP, our port, relayTag, signed on time s.Insert (x, 256); // x uint8_t buf[384 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); memcpy (payload, m_DHKeysPair->GetPublicKey (), 256); s.Insert (payload, 256); // y payload += 256; if (m_RemoteEndpoint.address ().is_v4 ()) { // ipv4 *payload = 4; payload++; memcpy (payload, m_RemoteEndpoint.address ().to_v4 ().to_bytes ().data(), 4); s.Insert (payload, 4); // remote endpoint IP V4 payload += 4; } else { // ipv6 *payload = 16; payload++; memcpy (payload, m_RemoteEndpoint.address ().to_v6 ().to_bytes ().data(), 16); s.Insert (payload, 16); // remote endpoint IP V6 payload += 16; } htobe16buf (payload, m_RemoteEndpoint.port ()); s.Insert (payload, 2); // remote port payload += 2; if (address->host.is_v4 ()) s.Insert (address->host.to_v4 ().to_bytes ().data (), 4); // our IP V4 else s.Insert (address->host.to_v6 ().to_bytes ().data (), 16); // our IP V6 s.Insert<uint16_t> (htobe16 (address->port)); // our port uint32_t relayTag = 0; if (sendRelayTag && i2p::context.GetRouterInfo ().IsIntroducer () && !IsV6 ()) { RAND_bytes((uint8_t *)&relayTag, 4); if (!relayTag) relayTag = 1; m_Server.AddRelay (relayTag, m_RemoteEndpoint); } htobe32buf (payload, relayTag); payload += 4; // relay tag htobe32buf (payload, i2p::util::GetSecondsSinceEpoch ()); // signed on time payload += 4; s.Insert (payload - 8, 4); // relayTag // we have to store this signed data for session confirmed // same data but signed on time, it will Alice's there m_SignedData = std::unique_ptr<SignedData>(new SignedData (s)); s.Insert (payload - 4, 4); // BOB's signed on time s.Sign (i2p::context.GetPrivateKeys (), payload); // DSA signature // TODO: fill padding with random data uint8_t iv[16]; RAND_bytes (iv, 16); // random iv // encrypt signature and padding with newly created session key size_t signatureLen = i2p::context.GetIdentity ()->GetSignatureLen (); size_t paddingSize = signatureLen & 0x0F; // %16 if (paddingSize > 0) signatureLen += (16 - paddingSize); m_SessionKeyEncryption.SetIV (iv); m_SessionKeyEncryption.Encrypt (payload, signatureLen, payload); payload += signatureLen; size_t msgLen = payload - buf; // encrypt message with intro key FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_CREATED, buf, msgLen, m_IntroKey, iv, m_IntroKey); Send (buf, msgLen); } void SSUSession::SendSessionConfirmed (const uint8_t * y, const uint8_t * ourAddress, size_t ourAddressLen) { uint8_t buf[512 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *payload = 1; // 1 fragment payload++; // info size_t identLen = i2p::context.GetIdentity ()->GetFullLen (); // 387+ bytes htobe16buf (payload, identLen); payload += 2; // cursize i2p::context.GetIdentity ()->ToBuffer (payload, identLen); payload += identLen; uint32_t signedOnTime = i2p::util::GetSecondsSinceEpoch (); htobe32buf (payload, signedOnTime); // signed on time payload += 4; auto signatureLen = i2p::context.GetIdentity ()->GetSignatureLen (); size_t paddingSize = ((payload - buf) + signatureLen)%16; if (paddingSize > 0) paddingSize = 16 - paddingSize; // TODO: fill padding payload += paddingSize; // padding size // signature SignedData s; // x,y, our IP, our port, remote IP, remote port, relayTag, our signed on time s.Insert (m_DHKeysPair->GetPublicKey (), 256); // x s.Insert (y, 256); // y s.Insert (ourAddress, ourAddressLen); // our address/port as seem by party if (m_RemoteEndpoint.address ().is_v4 ()) s.Insert (m_RemoteEndpoint.address ().to_v4 ().to_bytes ().data (), 4); // remote IP V4 else s.Insert (m_RemoteEndpoint.address ().to_v6 ().to_bytes ().data (), 16); // remote IP V6 s.Insert<uint16_t> (htobe16 (m_RemoteEndpoint.port ())); // remote port s.Insert (htobe32 (m_RelayTag)); // relay tag s.Insert (htobe32 (signedOnTime)); // signed on time s.Sign (i2p::context.GetPrivateKeys (), payload); // DSA signature payload += signatureLen; size_t msgLen = payload - buf; uint8_t iv[16]; RAND_bytes (iv, 16); // random iv // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_CONFIRMED, buf, msgLen, m_SessionKey, iv, m_MacKey); Send (buf, msgLen); } void SSUSession::ProcessRelayRequest (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& from) { uint32_t relayTag = bufbe32toh (buf); auto session = m_Server.FindRelaySession (relayTag); if (session) { buf += 4; // relay tag uint8_t size = *buf; buf++; // size buf += size; // address buf += 2; // port uint8_t challengeSize = *buf; buf++; // challenge size buf += challengeSize; const uint8_t * introKey = buf; buf += 32; // introkey uint32_t nonce = bufbe32toh (buf); SendRelayResponse (nonce, from, introKey, session->m_RemoteEndpoint); SendRelayIntro (session, from); } } void SSUSession::SendRelayResponse (uint32_t nonce, const boost::asio::ip::udp::endpoint& from, const uint8_t * introKey, const boost::asio::ip::udp::endpoint& to) { uint8_t buf[80 + 18]; // 64 Alice's ipv4 and 80 Alice's ipv6 uint8_t * payload = buf + sizeof (SSUHeader); // Charlie's address always v4 if (!to.address ().is_v4 ()) { LogPrint (eLogWarning, "SSU: Charlie's IP must be v4"); return; } *payload = 4; payload++; // size htobe32buf (payload, to.address ().to_v4 ().to_ulong ()); // Charlie's IP payload += 4; // address htobe16buf (payload, to.port ()); // Charlie's port payload += 2; // port // Alice bool isV4 = from.address ().is_v4 (); // Alice's if (isV4) { *payload = 4; payload++; // size memcpy (payload, from.address ().to_v4 ().to_bytes ().data (), 4); // Alice's IP V4 payload += 4; // address } else { *payload = 16; payload++; // size memcpy (payload, from.address ().to_v6 ().to_bytes ().data (), 16); // Alice's IP V6 payload += 16; // address } htobe16buf (payload, from.port ()); // Alice's port payload += 2; // port htobe32buf (payload, nonce); if (m_State == eSessionStateEstablished) { // encrypt with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_RESPONSE, buf, isV4 ? 64 : 80); Send (buf, isV4 ? 64 : 80); } else { // ecrypt with Alice's intro key uint8_t iv[16]; RAND_bytes (iv, 16); // random iv FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_RESPONSE, buf, isV4 ? 64 : 80, introKey, iv, introKey); m_Server.Send (buf, isV4 ? 64 : 80, from); } LogPrint (eLogDebug, "SSU: relay response sent"); } void SSUSession::SendRelayIntro (std::shared_ptr<SSUSession> session, const boost::asio::ip::udp::endpoint& from) { if (!session) return; // Alice's address always v4 if (!from.address ().is_v4 ()) { LogPrint (eLogWarning, "SSU: Alice's IP must be v4"); return; } uint8_t buf[48 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *payload = 4; payload++; // size htobe32buf (payload, from.address ().to_v4 ().to_ulong ()); // Alice's IP payload += 4; // address htobe16buf (payload, from.port ()); // Alice's port payload += 2; // port *payload = 0; // challenge size uint8_t iv[16]; RAND_bytes (iv, 16); // random iv FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_INTRO, buf, 48, session->m_SessionKey, iv, session->m_MacKey); m_Server.Send (buf, 48, session->m_RemoteEndpoint); LogPrint (eLogDebug, "SSU: relay intro sent"); } void SSUSession::ProcessRelayResponse (const uint8_t * buf, size_t len) { LogPrint (eLogDebug, "SSU message: Relay response received"); uint8_t remoteSize = *buf; buf++; // remote size boost::asio::ip::address_v4 remoteIP (bufbe32toh (buf)); buf += remoteSize; // remote address uint16_t remotePort = bufbe16toh (buf); buf += 2; // remote port uint8_t ourSize = *buf; buf++; // our size boost::asio::ip::address ourIP; if (ourSize == 4) { boost::asio::ip::address_v4::bytes_type bytes; memcpy (bytes.data (), buf, 4); ourIP = boost::asio::ip::address_v4 (bytes); } else { boost::asio::ip::address_v6::bytes_type bytes; memcpy (bytes.data (), buf, 16); ourIP = boost::asio::ip::address_v6 (bytes); } buf += ourSize; // our address uint16_t ourPort = bufbe16toh (buf); buf += 2; // our port LogPrint (eLogInfo, "SSU: Our external address is ", ourIP.to_string (), ":", ourPort); i2p::context.UpdateAddress (ourIP); uint32_t nonce = bufbe32toh (buf); buf += 4; // nonce auto it = m_RelayRequests.find (nonce); if (it != m_RelayRequests.end ()) { // check if we are waiting for introduction boost::asio::ip::udp::endpoint remoteEndpoint (remoteIP, remotePort); if (!m_Server.FindSession (remoteEndpoint)) { // we didn't have correct endpoint when sent relay request // now we do LogPrint (eLogInfo, "SSU: RelayReponse connecting to endpoint ", remoteEndpoint); if (i2p::context.GetRouterInfo ().UsesIntroducer ()) // if we are unreachable m_Server.Send (buf, 0, remoteEndpoint); // send HolePunch m_Server.CreateDirectSession (it->second, remoteEndpoint, false); } // delete request m_RelayRequests.erase (it); } else LogPrint (eLogError, "SSU: Unsolicited RelayResponse, nonce=", nonce); } void SSUSession::ProcessRelayIntro (const uint8_t * buf, size_t len) { uint8_t size = *buf; if (size == 4) { buf++; // size boost::asio::ip::address_v4 address (bufbe32toh (buf)); buf += 4; // address uint16_t port = bufbe16toh (buf); // send hole punch of 0 bytes m_Server.Send (buf, 0, boost::asio::ip::udp::endpoint (address, port)); } else LogPrint (eLogWarning, "SSU: Address size ", size, " is not supported"); } void SSUSession::FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len, const i2p::crypto::AESKey& aesKey, const uint8_t * iv, const i2p::crypto::MACKey& macKey, uint8_t flag) { if (len < sizeof (SSUHeader)) { LogPrint (eLogError, "SSU: Unexpected packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; memcpy (header->iv, iv, 16); header->flag = flag | (payloadType << 4); // MSB is 0 htobe32buf (header->time, i2p::util::GetSecondsSinceEpoch ()); uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); i2p::crypto::CBCEncryption encryption; encryption.SetKey (aesKey); encryption.SetIV (iv); encryption.Encrypt (encrypted, encryptedLen, encrypted); // assume actual buffer size is 18 (16 + 2) bytes more memcpy (buf + len, iv, 16); htobe16buf (buf + len + 16, encryptedLen); i2p::crypto::HMACMD5Digest (encrypted, encryptedLen + 18, macKey, header->mac); } void SSUSession::FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len) { if (len < sizeof (SSUHeader)) { LogPrint (eLogError, "SSU: Unexpected packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; RAND_bytes (header->iv, 16); // random iv m_SessionKeyEncryption.SetIV (header->iv); header->flag = payloadType << 4; // MSB is 0 htobe32buf (header->time, i2p::util::GetSecondsSinceEpoch ()); uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); m_SessionKeyEncryption.Encrypt (encrypted, encryptedLen, encrypted); // assume actual buffer size is 18 (16 + 2) bytes more memcpy (buf + len, header->iv, 16); htobe16buf (buf + len + 16, encryptedLen); i2p::crypto::HMACMD5Digest (encrypted, encryptedLen + 18, m_MacKey, header->mac); } void SSUSession::Decrypt (uint8_t * buf, size_t len, const i2p::crypto::AESKey& aesKey) { if (len < sizeof (SSUHeader)) { LogPrint (eLogError, "SSU: Unexpected packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); i2p::crypto::CBCDecryption decryption; decryption.SetKey (aesKey); decryption.SetIV (header->iv); decryption.Decrypt (encrypted, encryptedLen, encrypted); } void SSUSession::DecryptSessionKey (uint8_t * buf, size_t len) { if (len < sizeof (SSUHeader)) { LogPrint (eLogError, "SSU: Unexpected packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); if (encryptedLen > 0) { m_SessionKeyDecryption.SetIV (header->iv); m_SessionKeyDecryption.Decrypt (encrypted, encryptedLen, encrypted); } } bool SSUSession::Validate (uint8_t * buf, size_t len, const i2p::crypto::MACKey& macKey) { if (len < sizeof (SSUHeader)) { LogPrint (eLogError, "SSU: Unexpected packet length ", len); return false; } SSUHeader * header = (SSUHeader *)buf; uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); // assume actual buffer size is 18 (16 + 2) bytes more memcpy (buf + len, header->iv, 16); htobe16buf (buf + len + 16, encryptedLen); uint8_t digest[16]; i2p::crypto::HMACMD5Digest (encrypted, encryptedLen + 18, macKey, digest); return !memcmp (header->mac, digest, 16); } void SSUSession::Connect () { if (m_State == eSessionStateUnknown) { // set connect timer ScheduleConnectTimer (); m_DHKeysPair = transports.GetNextDHKeysPair (); SendSessionRequest (); } } void SSUSession::WaitForConnect () { if (!IsOutgoing ()) // incoming session ScheduleConnectTimer (); else LogPrint (eLogError, "SSU: wait for connect for outgoing session"); } void SSUSession::ScheduleConnectTimer () { m_Timer.cancel (); m_Timer.expires_from_now (boost::posix_time::seconds(SSU_CONNECT_TIMEOUT)); m_Timer.async_wait (std::bind (&SSUSession::HandleConnectTimer, shared_from_this (), std::placeholders::_1)); } void SSUSession::HandleConnectTimer (const boost::system::error_code& ecode) { if (!ecode) { // timeout expired LogPrint (eLogWarning, "SSU: session was not established after ", SSU_CONNECT_TIMEOUT, " seconds"); Failed (); } } void SSUSession::Introduce (const i2p::data::RouterInfo::Introducer& introducer, std::shared_ptr<const i2p::data::RouterInfo> to) { if (m_State == eSessionStateUnknown) { // set connect timer m_Timer.expires_from_now (boost::posix_time::seconds(SSU_CONNECT_TIMEOUT)); m_Timer.async_wait (std::bind (&SSUSession::HandleConnectTimer, shared_from_this (), std::placeholders::_1)); } uint32_t nonce; RAND_bytes ((uint8_t *)&nonce, 4); m_RelayRequests[nonce] = to; SendRelayRequest (introducer, nonce); } void SSUSession::WaitForIntroduction () { m_State = eSessionStateIntroduced; // set connect timer m_Timer.expires_from_now (boost::posix_time::seconds(SSU_CONNECT_TIMEOUT)); m_Timer.async_wait (std::bind (&SSUSession::HandleConnectTimer, shared_from_this (), std::placeholders::_1)); } void SSUSession::Close () { m_State = eSessionStateClosed; SendSesionDestroyed (); transports.PeerDisconnected (shared_from_this ()); m_Data.Stop (); m_Timer.cancel (); } void SSUSession::Done () { GetService ().post (std::bind (&SSUSession::Failed, shared_from_this ())); } void SSUSession::Established () { m_State = eSessionStateEstablished; m_DHKeysPair = nullptr; m_SignedData = nullptr; m_Data.Start (); transports.PeerConnected (shared_from_this ()); if (m_IsPeerTest) SendPeerTest (); ScheduleTermination (); } void SSUSession::Failed () { if (m_State != eSessionStateFailed) { m_State = eSessionStateFailed; m_Server.DeleteSession (shared_from_this ()); } } void SSUSession::ScheduleTermination () { m_Timer.cancel (); m_Timer.expires_from_now (boost::posix_time::seconds(SSU_TERMINATION_TIMEOUT)); m_Timer.async_wait (std::bind (&SSUSession::HandleTerminationTimer, shared_from_this (), std::placeholders::_1)); } void SSUSession::HandleTerminationTimer (const boost::system::error_code& ecode) { if (ecode != boost::asio::error::operation_aborted) { LogPrint (eLogWarning, "SSU: no activity for ", SSU_TERMINATION_TIMEOUT, " seconds"); Failed (); } } void SSUSession::SendI2NPMessages (const std::vector<std::shared_ptr<I2NPMessage> >& msgs) { GetService ().post (std::bind (&SSUSession::PostI2NPMessages, shared_from_this (), msgs)); } void SSUSession::PostI2NPMessages (std::vector<std::shared_ptr<I2NPMessage> > msgs) { if (m_State == eSessionStateEstablished) { for (auto it: msgs) if (it) m_Data.Send (it); } } void SSUSession::ProcessData (uint8_t * buf, size_t len) { m_Data.ProcessMessage (buf, len); m_IsDataReceived = true; } void SSUSession::FlushData () { if (m_IsDataReceived) { m_Data.FlushReceivedMessage (); m_IsDataReceived = false; } } void SSUSession::ProcessPeerTest (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { uint32_t nonce = bufbe32toh (buf); // 4 bytes uint8_t size = buf[4]; // 1 byte uint32_t address = (size == 4) ? buf32toh(buf + 5) : 0; // big endian, size bytes uint16_t port = buf16toh(buf + size + 5); // big endian, 2 bytes const uint8_t * introKey = buf + size + 7; if (port && !address) { LogPrint (eLogWarning, "SSU: Address of ", size, " bytes not supported"); return; } switch (m_Server.GetPeerTestParticipant (nonce)) { // existing test case ePeerTestParticipantAlice1: { if (m_State == eSessionStateEstablished) { LogPrint (eLogDebug, "SSU: peer test from Bob. We are Alice"); if (i2p::context.GetStatus () == eRouterStatusTesting) // still not OK i2p::context.SetStatus (eRouterStatusFirewalled); } else { LogPrint (eLogDebug, "SSU: first peer test from Charlie. We are Alice"); i2p::context.SetStatus (eRouterStatusOK); m_Server.UpdatePeerTest (nonce, ePeerTestParticipantAlice2); SendPeerTest (nonce, senderEndpoint.address ().to_v4 ().to_ulong (), senderEndpoint.port (), introKey, true, false); // to Charlie } break; } case ePeerTestParticipantAlice2: { if (m_State == eSessionStateEstablished) LogPrint (eLogDebug, "SSU: peer test from Bob. We are Alice"); else { // peer test successive LogPrint (eLogDebug, "SSU: second peer test from Charlie. We are Alice"); i2p::context.SetStatus (eRouterStatusOK); m_Server.RemovePeerTest (nonce); } break; } case ePeerTestParticipantBob: { LogPrint (eLogDebug, "SSU: peer test from Charlie. We are Bob"); auto session = m_Server.GetPeerTestSession (nonce); // session with Alice from PeerTest if (session && session->m_State == eSessionStateEstablished) session->Send (PAYLOAD_TYPE_PEER_TEST, buf, len); // back to Alice m_Server.RemovePeerTest (nonce); // nonce has been used break; } case ePeerTestParticipantCharlie: { LogPrint (eLogDebug, "SSU: peer test from Alice. We are Charlie"); SendPeerTest (nonce, senderEndpoint.address ().to_v4 ().to_ulong (), senderEndpoint.port (), introKey); // to Alice with her actual address m_Server.RemovePeerTest (nonce); // nonce has been used break; } // test not found case ePeerTestParticipantUnknown: { if (m_State == eSessionStateEstablished) { // new test if (port) { LogPrint (eLogDebug, "SSU: peer test from Bob. We are Charlie"); m_Server.NewPeerTest (nonce, ePeerTestParticipantCharlie); Send (PAYLOAD_TYPE_PEER_TEST, buf, len); // back to Bob SendPeerTest (nonce, be32toh (address), be16toh (port), introKey); // to Alice with her address received from Bob } else { LogPrint (eLogDebug, "SSU: peer test from Alice. We are Bob"); auto session = m_Server.GetRandomEstablishedV4Session (shared_from_this ()); // Charlie, TODO: implement v6 support if (session) { m_Server.NewPeerTest (nonce, ePeerTestParticipantBob, shared_from_this ()); session->SendPeerTest (nonce, senderEndpoint.address ().to_v4 ().to_ulong (), senderEndpoint.port (), introKey, false); // to Charlie with Alice's actual address } } } else LogPrint (eLogError, "SSU: unexpected peer test"); } } } void SSUSession::SendPeerTest (uint32_t nonce, uint32_t address, uint16_t port, const uint8_t * introKey, bool toAddress, bool sendAddress) // toAddress is true for Alice<->Chalie communications only // sendAddress is false if message comes from Alice { uint8_t buf[80 + 18]; uint8_t iv[16]; uint8_t * payload = buf + sizeof (SSUHeader); htobe32buf (payload, nonce); payload += 4; // nonce // address and port if (sendAddress && address) { *payload = 4; payload++; // size htobe32buf (payload, address); payload += 4; // address } else { *payload = 0; payload++; //size } htobe16buf (payload, port); payload += 2; // port // intro key if (toAddress) { // send our intro key to address instead it's own auto addr = i2p::context.GetRouterInfo ().GetSSUAddress (); if (addr) memcpy (payload, addr->key, 32); // intro key else LogPrint (eLogInfo, "SSU is not supported. Can't send peer test"); } else memcpy (payload, introKey, 32); // intro key // send RAND_bytes (iv, 16); // random iv if (toAddress) { // encrypt message with specified intro key FillHeaderAndEncrypt (PAYLOAD_TYPE_PEER_TEST, buf, 80, introKey, iv, introKey); boost::asio::ip::udp::endpoint e (boost::asio::ip::address_v4 (address), port); m_Server.Send (buf, 80, e); } else { // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_PEER_TEST, buf, 80); Send (buf, 80); } } void SSUSession::SendPeerTest () { // we are Alice LogPrint (eLogDebug, "SSU: sending peer test"); auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!address) { LogPrint (eLogInfo, "SSU is not supported. Can't send peer test"); return; } uint32_t nonce; RAND_bytes ((uint8_t *)&nonce, 4); if (!nonce) nonce = 1; m_IsPeerTest = false; m_Server.NewPeerTest (nonce, ePeerTestParticipantAlice1); SendPeerTest (nonce, 0, 0, address->key, false, false); // address and port always zero for Alice } void SSUSession::SendKeepAlive () { if (m_State == eSessionStateEstablished) { uint8_t buf[48 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *payload = 0; // flags payload++; *payload = 0; // num fragments // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, 48); Send (buf, 48); LogPrint (eLogDebug, "SSU: keep-alive sent"); ScheduleTermination (); } } void SSUSession::SendSesionDestroyed () { if (m_IsSessionKey) { uint8_t buf[48 + 18]; // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_DESTROYED, buf, 48); try { Send (buf, 48); } catch (std::exception& ex) { LogPrint (eLogWarning, "SSU: exception while sending session destoroyed: ", ex.what ()); } LogPrint (eLogDebug, "SSU: session destroyed sent"); } } void SSUSession::Send (uint8_t type, const uint8_t * payload, size_t len) { uint8_t buf[SSU_MTU_V4 + 18]; size_t msgSize = len + sizeof (SSUHeader); size_t paddingSize = msgSize & 0x0F; // %16 if (paddingSize > 0) msgSize += (16 - paddingSize); if (msgSize > SSU_MTU_V4) { LogPrint (eLogWarning, "SSU: payload size ", msgSize, " exceeds MTU"); return; } memcpy (buf + sizeof (SSUHeader), payload, len); // encrypt message with session key FillHeaderAndEncrypt (type, buf, msgSize); Send (buf, msgSize); } void SSUSession::Send (const uint8_t * buf, size_t size) { m_NumSentBytes += size; i2p::transport::transports.UpdateSentBytes (size); m_Server.Send (buf, size, m_RemoteEndpoint); } } }