#ifndef CRYPTO_H__ #define CRYPTO_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Base.h" #include "Tag.h" #include "CPU.h" // recognize openssl version and features #if ((OPENSSL_VERSION_NUMBER < 0x010100000) || defined(LIBRESSL_VERSION_NUMBER)) // 1.0.2 and below or LibreSSL # define LEGACY_OPENSSL 1 #else # define LEGACY_OPENSSL 0 # if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1 # define OPENSSL_EDDSA 1 # define OPENSSL_X25519 1 # define OPENSSL_SIPHASH 1 # endif #endif namespace i2p { namespace crypto { bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len); // DSA DSA * CreateDSA (); // RSA const BIGNUM * GetRSAE (); // DH class DHKeys { public: DHKeys (); ~DHKeys (); void GenerateKeys (); const uint8_t * GetPublicKey () const { return m_PublicKey; }; void Agree (const uint8_t * pub, uint8_t * shared); private: DH * m_DH; uint8_t m_PublicKey[256]; }; // x25519 class X25519Keys { public: X25519Keys (); X25519Keys (const uint8_t * priv, const uint8_t * pub); // for RouterContext ~X25519Keys (); void GenerateKeys (); const uint8_t * GetPublicKey () const { return m_PublicKey; }; void GetPrivateKey (uint8_t * priv) const; void Agree (const uint8_t * pub, uint8_t * shared); private: uint8_t m_PublicKey[32]; #if OPENSSL_X25519 EVP_PKEY_CTX * m_Ctx; EVP_PKEY * m_Pkey; #else BN_CTX * m_Ctx; uint8_t m_PrivateKey[32]; #endif }; // ElGamal void ElGamalEncrypt (const uint8_t * key, const uint8_t * data, uint8_t * encrypted, BN_CTX * ctx, bool zeroPadding = false); bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data, BN_CTX * ctx, bool zeroPadding = false); void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub); // ECIES void ECIESEncrypt (const EC_GROUP * curve, const EC_POINT * key, const uint8_t * data, uint8_t * encrypted, BN_CTX * ctx, bool zeroPadding = false); // 222 bytes data, 514 bytes encrypted with zeropadding, 512 without bool ECIESDecrypt (const EC_GROUP * curve, const BIGNUM * key, const uint8_t * encrypted, uint8_t * data, BN_CTX * ctx, bool zeroPadding = false); void GenerateECIESKeyPair (const EC_GROUP * curve, BIGNUM *& priv, EC_POINT *& pub); // HMAC typedef i2p::data::Tag<32> MACKey; void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest); // AES struct ChipherBlock { uint8_t buf[16]; void operator^=(const ChipherBlock& other) // XOR { if (!(((size_t)buf | (size_t)other.buf) & 0x0F)) // multiple of 16 ? { // try 128 bits if applicable #ifdef __AVX__ if (i2p::cpu::avx) { __asm__ ( "vmovaps (%[buf]), %%xmm0 \n" "vmovaps (%[other]), %%xmm1 \n" "vxorps %%xmm0, %%xmm1, %%xmm0 \n" "vmovaps %%xmm0, (%[buf]) \n" : : [buf]"r"(buf), [other]"r"(other.buf) : "%xmm0", "%xmm1", "memory" ); } else #endif { #if defined(__SSE__) // SSE __asm__ ( "movaps (%[buf]), %%xmm0 \n" "movaps (%[other]), %%xmm1 \n" "pxor %%xmm1, %%xmm0 \n" "movaps %%xmm0, (%[buf]) \n" : : [buf]"r"(buf), [other]"r"(other.buf) : "%xmm0", "%xmm1", "memory" ); #else // if not we always can cast to uint64_t * ((uint64_t *)buf)[0] ^= ((uint64_t *)other.buf)[0]; ((uint64_t *)buf)[1] ^= ((uint64_t *)other.buf)[1]; #endif } } else if (!(((size_t)buf | (size_t)other.buf) & 0x03)) // multiple of 4 ? { // we are good to cast to uint32_t * for (int i = 0; i < 4; i++) ((uint32_t *)buf)[i] ^= ((uint32_t *)other.buf)[i]; } else { for (int i = 0; i < 16; i++) buf[i] ^= other.buf[i]; } } }; typedef i2p::data::Tag<32> AESKey; template class AESAlignedBuffer // 16 bytes alignment { public: AESAlignedBuffer () { m_Buf = m_UnalignedBuffer; uint8_t rem = ((size_t)m_Buf) & 0x0f; if (rem) m_Buf += (16 - rem); } operator uint8_t * () { return m_Buf; }; operator const uint8_t * () const { return m_Buf; }; ChipherBlock * GetChipherBlock () { return (ChipherBlock *)m_Buf; }; const ChipherBlock * GetChipherBlock () const { return (const ChipherBlock *)m_Buf; }; private: uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment uint8_t * m_Buf; }; #ifdef __AES__ #ifdef ARM64AES void init_aesenc(void) __attribute__((constructor)); #endif class ECBCryptoAESNI { public: uint8_t * GetKeySchedule () { return m_KeySchedule; }; protected: void ExpandKey (const AESKey& key); private: AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes }; #endif #ifdef __AES__ class ECBEncryption: public ECBCryptoAESNI #else class ECBEncryption #endif { public: void SetKey (const AESKey& key); void Encrypt(const ChipherBlock * in, ChipherBlock * out); private: AES_KEY m_Key; }; #ifdef __AES__ class ECBDecryption: public ECBCryptoAESNI #else class ECBDecryption #endif { public: void SetKey (const AESKey& key); void Decrypt (const ChipherBlock * in, ChipherBlock * out); private: AES_KEY m_Key; }; class CBCEncryption { public: CBCEncryption () { memset ((uint8_t *)m_LastBlock, 0, 16); }; void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_LastBlock, iv, 16); }; // 16 bytes void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_LastBlock, 16); }; void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out); void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out); void Encrypt (const uint8_t * in, uint8_t * out); // one block ECBEncryption & ECB() { return m_ECBEncryption; } private: AESAlignedBuffer<16> m_LastBlock; ECBEncryption m_ECBEncryption; }; class CBCDecryption { public: CBCDecryption () { memset ((uint8_t *)m_IV, 0, 16); }; void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes void SetIV (const uint8_t * iv) { memcpy ((uint8_t *)m_IV, iv, 16); }; // 16 bytes void GetIV (uint8_t * iv) const { memcpy (iv, (const uint8_t *)m_IV, 16); }; void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out); void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out); void Decrypt (const uint8_t * in, uint8_t * out); // one block ECBDecryption & ECB() { return m_ECBDecryption; } private: AESAlignedBuffer<16> m_IV; ECBDecryption m_ECBDecryption; }; class TunnelEncryption // with double IV encryption { public: void SetKeys (const AESKey& layerKey, const AESKey& ivKey) { m_LayerEncryption.SetKey (layerKey); m_IVEncryption.SetKey (ivKey); } void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data) private: ECBEncryption m_IVEncryption; CBCEncryption m_LayerEncryption; }; class TunnelDecryption // with double IV encryption { public: void SetKeys (const AESKey& layerKey, const AESKey& ivKey) { m_LayerDecryption.SetKey (layerKey); m_IVDecryption.SetKey (ivKey); } void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data) private: ECBDecryption m_IVDecryption; CBCDecryption m_LayerDecryption; }; // AEAD/ChaCha20/Poly1305 bool AEADChaCha20Poly1305 (const uint8_t * msg, size_t msgLen, const uint8_t * ad, size_t adLen, const uint8_t * key, const uint8_t * nonce, uint8_t * buf, size_t len, bool encrypt); // msgLen is len without tag // init and terminate void InitCrypto (bool precomputation); void TerminateCrypto (); } } // take care about openssl below 1.1.0 #if LEGACY_OPENSSL // define getters and setters introduced in 1.1.0 inline int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g) { if (d->p) BN_free (d->p); if (d->q) BN_free (d->q); if (d->g) BN_free (d->g); d->p = p; d->q = q; d->g = g; return 1; } inline int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key) { if (d->pub_key) BN_free (d->pub_key); if (d->priv_key) BN_free (d->priv_key); d->pub_key = pub_key; d->priv_key = priv_key; return 1; } inline void DSA_get0_key(const DSA *d, const BIGNUM **pub_key, const BIGNUM **priv_key) { *pub_key = d->pub_key; *priv_key = d->priv_key; } inline int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s) { if (sig->r) BN_free (sig->r); if (sig->s) BN_free (sig->s); sig->r = r; sig->s = s; return 1; } inline void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) { *pr = sig->r; *ps = sig->s; } inline int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) { if (sig->r) BN_free (sig->r); if (sig->s) BN_free (sig->s); sig->r = r; sig->s = s; return 1; } inline void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) { *pr = sig->r; *ps = sig->s; } inline int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) { if (r->n) BN_free (r->n); if (r->e) BN_free (r->e); if (r->d) BN_free (r->d); r->n = n; r->e = e; r->d = d; return 1; } inline void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d) { *n = r->n; *e = r->e; *d = r->d; } inline int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) { if (dh->p) BN_free (dh->p); if (dh->q) BN_free (dh->q); if (dh->g) BN_free (dh->g); dh->p = p; dh->q = q; dh->g = g; return 1; } inline int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) { if (dh->pub_key) BN_free (dh->pub_key); if (dh->priv_key) BN_free (dh->priv_key); dh->pub_key = pub_key; dh->priv_key = priv_key; return 1; } inline void DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key) { *pub_key = dh->pub_key; *priv_key = dh->priv_key; } inline RSA *EVP_PKEY_get0_RSA(EVP_PKEY *pkey) { return pkey->pkey.rsa; } inline EVP_MD_CTX *EVP_MD_CTX_new () { return EVP_MD_CTX_create(); } inline void EVP_MD_CTX_free (EVP_MD_CTX *ctx) { EVP_MD_CTX_destroy (ctx); } // ssl #define TLS_method TLSv1_method #endif #endif