/* * Copyright (c) 2013-2023, The PurpleI2P Project * * This file is part of Purple i2pd project and licensed under BSD3 * * See full license text in LICENSE file at top of project tree * */ #include #include #include #include #include #include "Log.h" #include "I2PEndian.h" #include "Crypto.h" #include "Siphash.h" #include "RouterContext.h" #include "Transports.h" #include "NetDb.hpp" #include "NTCP2.h" #include "HTTP.h" #include "util.h" #if defined(__linux__) && !defined(_NETINET_IN_H) #include #endif namespace i2p { namespace transport { NTCP2Establisher::NTCP2Establisher (): m_SessionConfirmedBuffer (nullptr) { } NTCP2Establisher::~NTCP2Establisher () { delete[] m_SessionConfirmedBuffer; } void NTCP2Establisher::KeyDerivationFunction1 (const uint8_t * pub, i2p::crypto::X25519Keys& priv, const uint8_t * rs, const uint8_t * epub) { i2p::crypto::InitNoiseXKState (*this, rs); // h = SHA256(h || epub) MixHash (epub, 32); // x25519 between pub and priv uint8_t inputKeyMaterial[32]; priv.Agree (pub, inputKeyMaterial); MixKey (inputKeyMaterial); } void NTCP2Establisher::KDF1Alice () { KeyDerivationFunction1 (m_RemoteStaticKey, *m_EphemeralKeys, m_RemoteStaticKey, GetPub ()); } void NTCP2Establisher::KDF1Bob () { KeyDerivationFunction1 (GetRemotePub (), i2p::context.GetNTCP2StaticKeys (), i2p::context.GetNTCP2StaticPublicKey (), GetRemotePub ()); } void NTCP2Establisher::KeyDerivationFunction2 (const uint8_t * sessionRequest, size_t sessionRequestLen, const uint8_t * epub) { MixHash (sessionRequest + 32, 32); // encrypted payload int paddingLength = sessionRequestLen - 64; if (paddingLength > 0) MixHash (sessionRequest + 64, paddingLength); MixHash (epub, 32); // x25519 between remote pub and ephemaral priv uint8_t inputKeyMaterial[32]; m_EphemeralKeys->Agree (GetRemotePub (), inputKeyMaterial); MixKey (inputKeyMaterial); } void NTCP2Establisher::KDF2Alice () { KeyDerivationFunction2 (m_SessionRequestBuffer, m_SessionRequestBufferLen, GetRemotePub ()); } void NTCP2Establisher::KDF2Bob () { KeyDerivationFunction2 (m_SessionRequestBuffer, m_SessionRequestBufferLen, GetPub ()); } void NTCP2Establisher::KDF3Alice () { uint8_t inputKeyMaterial[32]; i2p::context.GetNTCP2StaticKeys ().Agree (GetRemotePub (), inputKeyMaterial); MixKey (inputKeyMaterial); } void NTCP2Establisher::KDF3Bob () { uint8_t inputKeyMaterial[32]; m_EphemeralKeys->Agree (m_RemoteStaticKey, inputKeyMaterial); MixKey (inputKeyMaterial); } void NTCP2Establisher::CreateEphemeralKey () { m_EphemeralKeys = i2p::transport::transports.GetNextX25519KeysPair (); } void NTCP2Establisher::CreateSessionRequestMessage () { // create buffer and fill padding auto paddingLength = rand () % (NTCP2_SESSION_REQUEST_MAX_SIZE - 64); // message length doesn't exceed 287 bytes m_SessionRequestBufferLen = paddingLength + 64; RAND_bytes (m_SessionRequestBuffer + 64, paddingLength); // encrypt X i2p::crypto::CBCEncryption encryption; encryption.SetKey (m_RemoteIdentHash); encryption.SetIV (m_IV); encryption.Encrypt (GetPub (), 32, m_SessionRequestBuffer); // X encryption.GetIV (m_IV); // save IV for SessionCreated // encryption key for next block KDF1Alice (); // fill options uint8_t options[32]; // actual options size is 16 bytes memset (options, 0, 16); options[0] = i2p::context.GetNetID (); // network ID options[1] = 2; // ver htobe16buf (options + 2, paddingLength); // padLen // m3p2Len auto bufLen = i2p::context.GetRouterInfo ().GetBufferLen (); m3p2Len = bufLen + 4 + 16; // (RI header + RI + MAC for now) TODO: implement options htobe16buf (options + 4, m3p2Len); // fill m3p2 payload (RouterInfo block) m_SessionConfirmedBuffer = new uint8_t[m3p2Len + 48]; // m3p1 is 48 bytes uint8_t * m3p2 = m_SessionConfirmedBuffer + 48; m3p2[0] = eNTCP2BlkRouterInfo; // block htobe16buf (m3p2 + 1, bufLen + 1); // flag + RI m3p2[3] = 0; // flag memcpy (m3p2 + 4, i2p::context.GetRouterInfo ().GetBuffer (), bufLen); // TODO: own RI should be protected by mutex // 2 bytes reserved htobe32buf (options + 8, (i2p::util::GetMillisecondsSinceEpoch () + 500)/1000); // tsA, rounded to seconds // 4 bytes reserved // sign and encrypt options, use m_H as AD uint8_t nonce[12]; memset (nonce, 0, 12); // set nonce to zero i2p::crypto::AEADChaCha20Poly1305 (options, 16, GetH (), 32, GetK (), nonce, m_SessionRequestBuffer + 32, 32, true); // encrypt } void NTCP2Establisher::CreateSessionCreatedMessage () { auto paddingLen = rand () % (NTCP2_SESSION_CREATED_MAX_SIZE - 64); m_SessionCreatedBufferLen = paddingLen + 64; RAND_bytes (m_SessionCreatedBuffer + 64, paddingLen); // encrypt Y i2p::crypto::CBCEncryption encryption; encryption.SetKey (i2p::context.GetIdentHash ()); encryption.SetIV (m_IV); encryption.Encrypt (GetPub (), 32, m_SessionCreatedBuffer); // Y // encryption key for next block (m_K) KDF2Bob (); uint8_t options[16]; memset (options, 0, 16); htobe16buf (options + 2, paddingLen); // padLen htobe32buf (options + 8, (i2p::util::GetMillisecondsSinceEpoch () + 500)/1000); // tsB, rounded to seconds // sign and encrypt options, use m_H as AD uint8_t nonce[12]; memset (nonce, 0, 12); // set nonce to zero i2p::crypto::AEADChaCha20Poly1305 (options, 16, GetH (), 32, GetK (), nonce, m_SessionCreatedBuffer + 32, 32, true); // encrypt } void NTCP2Establisher::CreateSessionConfirmedMessagePart1 (const uint8_t * nonce) { // update AD MixHash (m_SessionCreatedBuffer + 32, 32); // encrypted payload int paddingLength = m_SessionCreatedBufferLen - 64; if (paddingLength > 0) MixHash (m_SessionCreatedBuffer + 64, paddingLength); // part1 48 bytes i2p::crypto::AEADChaCha20Poly1305 (i2p::context.GetNTCP2StaticPublicKey (), 32, GetH (), 32, GetK (), nonce, m_SessionConfirmedBuffer, 48, true); // encrypt } void NTCP2Establisher::CreateSessionConfirmedMessagePart2 (const uint8_t * nonce) { // part 2 // update AD again MixHash (m_SessionConfirmedBuffer, 48); // encrypt m3p2, it must be filled in SessionRequest KDF3Alice (); uint8_t * m3p2 = m_SessionConfirmedBuffer + 48; i2p::crypto::AEADChaCha20Poly1305 (m3p2, m3p2Len - 16, GetH (), 32, GetK (), nonce, m3p2, m3p2Len, true); // encrypt // update h again MixHash (m3p2, m3p2Len); //h = SHA256(h || ciphertext) } bool NTCP2Establisher::ProcessSessionRequestMessage (uint16_t& paddingLen, bool& clockSkew) { clockSkew = false; // decrypt X i2p::crypto::CBCDecryption decryption; decryption.SetKey (i2p::context.GetIdentHash ()); decryption.SetIV (i2p::context.GetNTCP2IV ()); decryption.Decrypt (m_SessionRequestBuffer, 32, GetRemotePub ()); decryption.GetIV (m_IV); // save IV for SessionCreated // decryption key for next block KDF1Bob (); // verify MAC and decrypt options block (32 bytes), use m_H as AD uint8_t nonce[12], options[16]; memset (nonce, 0, 12); // set nonce to zero if (i2p::crypto::AEADChaCha20Poly1305 (m_SessionRequestBuffer + 32, 16, GetH (), 32, GetK (), nonce, options, 16, false)) // decrypt { // options if (options[0] && options[0] != i2p::context.GetNetID ()) { LogPrint (eLogWarning, "NTCP2: SessionRequest networkID ", (int)options[0], " mismatch. Expected ", i2p::context.GetNetID ()); return false; } if (options[1] == 2) // ver is always 2 { paddingLen = bufbe16toh (options + 2); m_SessionRequestBufferLen = paddingLen + 64; m3p2Len = bufbe16toh (options + 4); if (m3p2Len < 16) { LogPrint (eLogWarning, "NTCP2: SessionRequest m3p2len=", m3p2Len, " is too short"); return false; } // check timestamp auto ts = i2p::util::GetSecondsSinceEpoch (); uint32_t tsA = bufbe32toh (options + 8); if (tsA < ts - NTCP2_CLOCK_SKEW || tsA > ts + NTCP2_CLOCK_SKEW) { LogPrint (eLogWarning, "NTCP2: SessionRequest time difference ", (int)(ts - tsA), " exceeds clock skew"); clockSkew = true; // we send SessionCreate to let Alice know our time and then close session } } else { LogPrint (eLogWarning, "NTCP2: SessionRequest version mismatch ", (int)options[1]); return false; } } else { LogPrint (eLogWarning, "NTCP2: SessionRequest AEAD verification failed "); return false; } return true; } bool NTCP2Establisher::ProcessSessionCreatedMessage (uint16_t& paddingLen) { m_SessionCreatedBufferLen = 64; // decrypt Y i2p::crypto::CBCDecryption decryption; decryption.SetKey (m_RemoteIdentHash); decryption.SetIV (m_IV); decryption.Decrypt (m_SessionCreatedBuffer, 32, GetRemotePub ()); // decryption key for next block (m_K) KDF2Alice (); // decrypt and verify MAC uint8_t payload[16]; uint8_t nonce[12]; memset (nonce, 0, 12); // set nonce to zero if (i2p::crypto::AEADChaCha20Poly1305 (m_SessionCreatedBuffer + 32, 16, GetH (), 32, GetK (), nonce, payload, 16, false)) // decrypt { // options paddingLen = bufbe16toh(payload + 2); // check timestamp auto ts = i2p::util::GetSecondsSinceEpoch (); uint32_t tsB = bufbe32toh (payload + 8); if (tsB < ts - NTCP2_CLOCK_SKEW || tsB > ts + NTCP2_CLOCK_SKEW) { LogPrint (eLogWarning, "NTCP2: SessionCreated time difference ", (int)(ts - tsB), " exceeds clock skew"); return false; } } else { LogPrint (eLogWarning, "NTCP2: SessionCreated AEAD verification failed "); return false; } return true; } bool NTCP2Establisher::ProcessSessionConfirmedMessagePart1 (const uint8_t * nonce) { // update AD MixHash (m_SessionCreatedBuffer + 32, 32); // encrypted payload int paddingLength = m_SessionCreatedBufferLen - 64; if (paddingLength > 0) MixHash (m_SessionCreatedBuffer + 64, paddingLength); if (!i2p::crypto::AEADChaCha20Poly1305 (m_SessionConfirmedBuffer, 32, GetH (), 32, GetK (), nonce, m_RemoteStaticKey, 32, false)) // decrypt S { LogPrint (eLogWarning, "NTCP2: SessionConfirmed Part1 AEAD verification failed "); return false; } return true; } bool NTCP2Establisher::ProcessSessionConfirmedMessagePart2 (const uint8_t * nonce, uint8_t * m3p2Buf) { // update AD again MixHash (m_SessionConfirmedBuffer, 48); KDF3Bob (); if (i2p::crypto::AEADChaCha20Poly1305 (m_SessionConfirmedBuffer + 48, m3p2Len - 16, GetH (), 32, GetK (), nonce, m3p2Buf, m3p2Len - 16, false)) // decrypt // calculate new h again for KDF data MixHash (m_SessionConfirmedBuffer + 48, m3p2Len); // h = SHA256(h || ciphertext) else { LogPrint (eLogWarning, "NTCP2: SessionConfirmed Part2 AEAD verification failed "); return false; } return true; } NTCP2Session::NTCP2Session (NTCP2Server& server, std::shared_ptr in_RemoteRouter, std::shared_ptr addr): TransportSession (in_RemoteRouter, NTCP2_ESTABLISH_TIMEOUT), m_Server (server), m_Socket (m_Server.GetService ()), m_IsEstablished (false), m_IsTerminated (false), m_Establisher (new NTCP2Establisher), #if OPENSSL_SIPHASH m_SendMDCtx(nullptr), m_ReceiveMDCtx (nullptr), #else m_SendSipKey (nullptr), m_ReceiveSipKey (nullptr), #endif m_NextReceivedLen (0), m_NextReceivedBuffer (nullptr), m_NextSendBuffer (nullptr), m_NextReceivedBufferSize (0), m_ReceiveSequenceNumber (0), m_SendSequenceNumber (0), m_IsSending (false), m_IsReceiving (false), m_NextPaddingSize (16) { if (in_RemoteRouter) // Alice { m_Establisher->m_RemoteIdentHash = GetRemoteIdentity ()->GetIdentHash (); if (addr) { memcpy (m_Establisher->m_RemoteStaticKey, addr->s, 32); memcpy (m_Establisher->m_IV, addr->i, 16); m_RemoteEndpoint = boost::asio::ip::tcp::endpoint (addr->host, addr->port); } else LogPrint (eLogWarning, "NTCP2: Missing NTCP2 address"); } m_NextRouterInfoResendTime = i2p::util::GetSecondsSinceEpoch () + NTCP2_ROUTERINFO_RESEND_INTERVAL + rand ()%NTCP2_ROUTERINFO_RESEND_INTERVAL_THRESHOLD; } NTCP2Session::~NTCP2Session () { delete[] m_NextReceivedBuffer; delete[] m_NextSendBuffer; #if OPENSSL_SIPHASH if (m_SendMDCtx) EVP_MD_CTX_destroy (m_SendMDCtx); if (m_ReceiveMDCtx) EVP_MD_CTX_destroy (m_ReceiveMDCtx); #endif } void NTCP2Session::Terminate () { if (!m_IsTerminated) { m_IsTerminated = true; m_IsEstablished = false; boost::system::error_code ec; m_Socket.shutdown(boost::asio::ip::tcp::socket::shutdown_both, ec); if (ec) LogPrint (eLogDebug, "NTCP2: Couldn't shutdown socket: ", ec.message ()); m_Socket.close (); transports.PeerDisconnected (shared_from_this ()); m_Server.RemoveNTCP2Session (shared_from_this ()); m_SendQueue.clear (); m_SendQueueSize = 0; LogPrint (eLogDebug, "NTCP2: Session terminated"); } } void NTCP2Session::Close () { m_Socket.close (); } void NTCP2Session::TerminateByTimeout () { SendTerminationAndTerminate (eNTCP2IdleTimeout); } void NTCP2Session::Done () { m_Server.GetService ().post (std::bind (&NTCP2Session::Terminate, shared_from_this ())); } void NTCP2Session::Established () { m_IsEstablished = true; m_Establisher.reset (nullptr); SetTerminationTimeout (NTCP2_TERMINATION_TIMEOUT); transports.PeerConnected (shared_from_this ()); } void NTCP2Session::CreateNonce (uint64_t seqn, uint8_t * nonce) { memset (nonce, 0, 4); htole64buf (nonce + 4, seqn); } void NTCP2Session::CreateNextReceivedBuffer (size_t size) { if (m_NextReceivedBuffer) { if (size <= m_NextReceivedBufferSize) return; // buffer is good, do nothing else delete[] m_NextReceivedBuffer; } m_NextReceivedBuffer = new uint8_t[size]; m_NextReceivedBufferSize = size; } void NTCP2Session::DeleteNextReceiveBuffer (uint64_t ts) { if (m_NextReceivedBuffer && !m_IsReceiving && ts > m_LastActivityTimestamp + NTCP2_RECEIVE_BUFFER_DELETION_TIMEOUT) { delete[] m_NextReceivedBuffer; m_NextReceivedBuffer = nullptr; m_NextReceivedBufferSize = 0; } } void NTCP2Session::KeyDerivationFunctionDataPhase () { uint8_t k[64]; i2p::crypto::HKDF (m_Establisher->GetCK (), nullptr, 0, "", k); // k_ab, k_ba = HKDF(ck, zerolen) memcpy (m_Kab, k, 32); memcpy (m_Kba, k + 32, 32); uint8_t master[32]; i2p::crypto::HKDF (m_Establisher->GetCK (), nullptr, 0, "ask", master, 32); // ask_master = HKDF(ck, zerolen, info="ask") uint8_t h[39]; memcpy (h, m_Establisher->GetH (), 32); memcpy (h + 32, "siphash", 7); i2p::crypto::HKDF (master, h, 39, "", master, 32); // sip_master = HKDF(ask_master, h || "siphash") i2p::crypto::HKDF (master, nullptr, 0, "", k); // sipkeys_ab, sipkeys_ba = HKDF(sip_master, zerolen) memcpy (m_Sipkeysab, k, 32); memcpy (m_Sipkeysba, k + 32, 32); } void NTCP2Session::SendSessionRequest () { m_Establisher->CreateSessionRequestMessage (); // send message m_HandshakeInterval = i2p::util::GetMillisecondsSinceEpoch (); boost::asio::async_write (m_Socket, boost::asio::buffer (m_Establisher->m_SessionRequestBuffer, m_Establisher->m_SessionRequestBufferLen), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionRequestSent, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::HandleSessionRequestSent (const boost::system::error_code& ecode, std::size_t bytes_transferred) { (void) bytes_transferred; if (ecode) { LogPrint (eLogWarning, "NTCP2: Couldn't send SessionRequest message: ", ecode.message ()); Terminate (); } else { // we receive first 64 bytes (32 Y, and 32 ChaCha/Poly frame) first boost::asio::async_read (m_Socket, boost::asio::buffer(m_Establisher->m_SessionCreatedBuffer, 64), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionCreatedReceived, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } } void NTCP2Session::HandleSessionRequestReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred) { (void) bytes_transferred; if (ecode) { LogPrint (eLogWarning, "NTCP2: SessionRequest read error: ", ecode.message ()); Terminate (); } else { LogPrint (eLogDebug, "NTCP2: SessionRequest received ", bytes_transferred); uint16_t paddingLen = 0; bool clockSkew = false; if (m_Establisher->ProcessSessionRequestMessage (paddingLen, clockSkew)) { if (clockSkew) { // we don't care about padding, send SessionCreated and close session SendSessionCreated (); m_Server.GetService ().post (std::bind (&NTCP2Session::Terminate, shared_from_this ())); } else if (paddingLen > 0) { if (paddingLen <= NTCP2_SESSION_REQUEST_MAX_SIZE - 64) // session request is 287 bytes max { boost::asio::async_read (m_Socket, boost::asio::buffer(m_Establisher->m_SessionRequestBuffer + 64, paddingLen), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionRequestPaddingReceived, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } else { LogPrint (eLogWarning, "NTCP2: SessionRequest padding length ", (int)paddingLen, " is too long"); Terminate (); } } else SendSessionCreated (); } else Terminate (); } } void NTCP2Session::HandleSessionRequestPaddingReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (ecode) { LogPrint (eLogWarning, "NTCP2: SessionRequest padding read error: ", ecode.message ()); Terminate (); } else SendSessionCreated (); } void NTCP2Session::SendSessionCreated () { m_Establisher->CreateSessionCreatedMessage (); // send message m_HandshakeInterval = i2p::util::GetMillisecondsSinceEpoch (); boost::asio::async_write (m_Socket, boost::asio::buffer (m_Establisher->m_SessionCreatedBuffer, m_Establisher->m_SessionCreatedBufferLen), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionCreatedSent, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::HandleSessionCreatedReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (ecode) { LogPrint (eLogWarning, "NTCP2: SessionCreated read error: ", ecode.message ()); Terminate (); } else { m_HandshakeInterval = i2p::util::GetMillisecondsSinceEpoch () - m_HandshakeInterval; LogPrint (eLogDebug, "NTCP2: SessionCreated received ", bytes_transferred); uint16_t paddingLen = 0; if (m_Establisher->ProcessSessionCreatedMessage (paddingLen)) { if (paddingLen > 0) { if (paddingLen <= NTCP2_SESSION_CREATED_MAX_SIZE - 64) // session created is 287 bytes max { boost::asio::async_read (m_Socket, boost::asio::buffer(m_Establisher->m_SessionCreatedBuffer + 64, paddingLen), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionCreatedPaddingReceived, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } else { LogPrint (eLogWarning, "NTCP2: SessionCreated padding length ", (int)paddingLen, " is too long"); Terminate (); } } else SendSessionConfirmed (); } else Terminate (); } } void NTCP2Session::HandleSessionCreatedPaddingReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (ecode) { LogPrint (eLogWarning, "NTCP2: SessionCreated padding read error: ", ecode.message ()); Terminate (); } else { m_Establisher->m_SessionCreatedBufferLen += bytes_transferred; SendSessionConfirmed (); } } void NTCP2Session::SendSessionConfirmed () { uint8_t nonce[12]; CreateNonce (1, nonce); // set nonce to 1 m_Establisher->CreateSessionConfirmedMessagePart1 (nonce); memset (nonce, 0, 12); // set nonce back to 0 m_Establisher->CreateSessionConfirmedMessagePart2 (nonce); // send message boost::asio::async_write (m_Socket, boost::asio::buffer (m_Establisher->m_SessionConfirmedBuffer, m_Establisher->m3p2Len + 48), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionConfirmedSent, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::HandleSessionConfirmedSent (const boost::system::error_code& ecode, std::size_t bytes_transferred) { (void) bytes_transferred; if (ecode) { LogPrint (eLogWarning, "NTCP2: Couldn't send SessionConfirmed message: ", ecode.message ()); Terminate (); } else { LogPrint (eLogDebug, "NTCP2: SessionConfirmed sent"); KeyDerivationFunctionDataPhase (); // Alice data phase keys m_SendKey = m_Kab; m_ReceiveKey = m_Kba; SetSipKeys (m_Sipkeysab, m_Sipkeysba); memcpy (m_ReceiveIV.buf, m_Sipkeysba + 16, 8); memcpy (m_SendIV.buf, m_Sipkeysab + 16, 8); Established (); ReceiveLength (); // TODO: remove // m_SendQueue.push_back (CreateDeliveryStatusMsg (1)); // SendQueue (); } } void NTCP2Session::HandleSessionCreatedSent (const boost::system::error_code& ecode, std::size_t bytes_transferred) { (void) bytes_transferred; if (ecode) { LogPrint (eLogWarning, "NTCP2: Couldn't send SessionCreated message: ", ecode.message ()); Terminate (); } else { LogPrint (eLogDebug, "NTCP2: SessionCreated sent"); m_Establisher->m_SessionConfirmedBuffer = new uint8_t[m_Establisher->m3p2Len + 48]; boost::asio::async_read (m_Socket, boost::asio::buffer(m_Establisher->m_SessionConfirmedBuffer, m_Establisher->m3p2Len + 48), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionConfirmedReceived , shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } } void NTCP2Session::HandleSessionConfirmedReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (ecode) { LogPrint (eLogWarning, "NTCP2: SessionConfirmed read error: ", ecode.message ()); Terminate (); } else { m_HandshakeInterval = i2p::util::GetMillisecondsSinceEpoch () - m_HandshakeInterval; LogPrint (eLogDebug, "NTCP2: SessionConfirmed received"); // part 1 uint8_t nonce[12]; CreateNonce (1, nonce); if (m_Establisher->ProcessSessionConfirmedMessagePart1 (nonce)) { // part 2 std::vector buf(m_Establisher->m3p2Len - 16); // -MAC memset (nonce, 0, 12); // set nonce to 0 again if (m_Establisher->ProcessSessionConfirmedMessagePart2 (nonce, buf.data ())) { KeyDerivationFunctionDataPhase (); // Bob data phase keys m_SendKey = m_Kba; m_ReceiveKey = m_Kab; SetSipKeys (m_Sipkeysba, m_Sipkeysab); memcpy (m_ReceiveIV.buf, m_Sipkeysab + 16, 8); memcpy (m_SendIV.buf, m_Sipkeysba + 16, 8); // payload // process RI if (buf[0] != eNTCP2BlkRouterInfo) { LogPrint (eLogWarning, "NTCP2: Unexpected block ", (int)buf[0], " in SessionConfirmed"); Terminate (); return; } auto size = bufbe16toh (buf.data () + 1); if (size > buf.size () - 3) { LogPrint (eLogError, "NTCP2: Unexpected RouterInfo size ", size, " in SessionConfirmed"); Terminate (); return; } // TODO: check flag i2p::data::RouterInfo ri (buf.data () + 4, size - 1); // 1 byte block type + 2 bytes size + 1 byte flag if (ri.IsUnreachable ()) { LogPrint (eLogError, "NTCP2: Signature verification failed in SessionConfirmed"); SendTerminationAndTerminate (eNTCP2RouterInfoSignatureVerificationFail); return; } if (i2p::util::GetMillisecondsSinceEpoch () > ri.GetTimestamp () + i2p::data::NETDB_MIN_EXPIRATION_TIMEOUT*1000LL) // 90 minutes { LogPrint (eLogError, "NTCP2: RouterInfo is too old in SessionConfirmed"); SendTerminationAndTerminate (eNTCP2Message3Error); return; } auto addr = m_RemoteEndpoint.address ().is_v4 () ? ri.GetNTCP2V4Address () : (i2p::util::net::IsYggdrasilAddress (m_RemoteEndpoint.address ()) ? ri.GetYggdrasilAddress () : ri.GetNTCP2V6Address ()); if (!addr || memcmp (m_Establisher->m_RemoteStaticKey, addr->s, 32)) { LogPrint (eLogError, "NTCP2: Wrong static key in SessionConfirmed"); Terminate (); return; } if (addr->IsPublishedNTCP2 () && m_RemoteEndpoint.address () != addr->host && (!m_RemoteEndpoint.address ().is_v6 () || (i2p::util::net::IsYggdrasilAddress (m_RemoteEndpoint.address ()) ? memcmp (m_RemoteEndpoint.address ().to_v6 ().to_bytes ().data () + 1, addr->host.to_v6 ().to_bytes ().data () + 1, 7) : // from the same yggdrasil subnet memcmp (m_RemoteEndpoint.address ().to_v6 ().to_bytes ().data (), addr->host.to_v6 ().to_bytes ().data (), 8)))) // temporary address { LogPrint (eLogError, "NTCP2: Host mismatch between published address ", addr->host, " and actual endpoint ", m_RemoteEndpoint.address ()); Terminate (); return; } i2p::data::netdb.PostI2NPMsg (CreateI2NPMessage (eI2NPDummyMsg, buf.data () + 3, size)); // TODO: should insert ri and not parse it twice // TODO: process options // ready to communicate auto existing = i2p::data::netdb.FindRouter (ri.GetRouterIdentity ()->GetIdentHash ()); // check if exists already SetRemoteIdentity (existing ? existing->GetRouterIdentity () : ri.GetRouterIdentity ()); if (m_Server.AddNTCP2Session (shared_from_this (), true)) { Established (); ReceiveLength (); } else Terminate (); } else Terminate (); } else Terminate (); } } void NTCP2Session::SetSipKeys (const uint8_t * sendSipKey, const uint8_t * receiveSipKey) { #if OPENSSL_SIPHASH EVP_PKEY * sipKey = EVP_PKEY_new_raw_private_key (EVP_PKEY_SIPHASH, nullptr, sendSipKey, 16); m_SendMDCtx = EVP_MD_CTX_create (); EVP_PKEY_CTX *ctx = nullptr; EVP_DigestSignInit (m_SendMDCtx, &ctx, nullptr, nullptr, sipKey); EVP_PKEY_CTX_ctrl (ctx, -1, EVP_PKEY_OP_SIGNCTX, EVP_PKEY_CTRL_SET_DIGEST_SIZE, 8, nullptr); EVP_PKEY_free (sipKey); sipKey = EVP_PKEY_new_raw_private_key (EVP_PKEY_SIPHASH, nullptr, receiveSipKey, 16); m_ReceiveMDCtx = EVP_MD_CTX_create (); ctx = nullptr; EVP_DigestSignInit (m_ReceiveMDCtx, &ctx, NULL, NULL, sipKey); EVP_PKEY_CTX_ctrl (ctx, -1, EVP_PKEY_OP_SIGNCTX, EVP_PKEY_CTRL_SET_DIGEST_SIZE, 8, nullptr); EVP_PKEY_free (sipKey); #else m_SendSipKey = sendSipKey; m_ReceiveSipKey = receiveSipKey; #endif } void NTCP2Session::ClientLogin () { m_Establisher->CreateEphemeralKey (); SendSessionRequest (); } void NTCP2Session::ServerLogin () { SetTerminationTimeout (NTCP2_ESTABLISH_TIMEOUT); m_LastActivityTimestamp = i2p::util::GetSecondsSinceEpoch (); m_Establisher->CreateEphemeralKey (); boost::asio::async_read (m_Socket, boost::asio::buffer(m_Establisher->m_SessionRequestBuffer, 64), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleSessionRequestReceived, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::ReceiveLength () { if (IsTerminated ()) return; #ifdef __linux__ const int one = 1; setsockopt(m_Socket.native_handle(), IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif boost::asio::async_read (m_Socket, boost::asio::buffer(&m_NextReceivedLen, 2), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleReceivedLength, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::HandleReceivedLength (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (ecode) { if (ecode != boost::asio::error::operation_aborted) LogPrint (eLogWarning, "NTCP2: Receive length read error: ", ecode.message ()); Terminate (); } else { #if OPENSSL_SIPHASH EVP_DigestSignInit (m_ReceiveMDCtx, nullptr, nullptr, nullptr, nullptr); EVP_DigestSignUpdate (m_ReceiveMDCtx, m_ReceiveIV.buf, 8); size_t l = 8; EVP_DigestSignFinal (m_ReceiveMDCtx, m_ReceiveIV.buf, &l); #else i2p::crypto::Siphash<8> (m_ReceiveIV.buf, m_ReceiveIV.buf, 8, m_ReceiveSipKey); #endif // m_NextReceivedLen comes from the network in BigEndian m_NextReceivedLen = be16toh (m_NextReceivedLen) ^ le16toh (m_ReceiveIV.key); LogPrint (eLogDebug, "NTCP2: Received length ", m_NextReceivedLen); if (m_NextReceivedLen >= 16) { CreateNextReceivedBuffer (m_NextReceivedLen); boost::system::error_code ec; size_t moreBytes = m_Socket.available(ec); if (!ec && moreBytes >= m_NextReceivedLen) { // read and process message immediately if available moreBytes = boost::asio::read (m_Socket, boost::asio::buffer(m_NextReceivedBuffer, m_NextReceivedLen), boost::asio::transfer_all (), ec); HandleReceived (ec, moreBytes); } else Receive (); } else { LogPrint (eLogError, "NTCP2: Received length ", m_NextReceivedLen, " is too short"); Terminate (); } } } void NTCP2Session::Receive () { if (IsTerminated ()) return; #ifdef __linux__ const int one = 1; setsockopt(m_Socket.native_handle(), IPPROTO_TCP, TCP_QUICKACK, &one, sizeof(one)); #endif m_IsReceiving = true; boost::asio::async_read (m_Socket, boost::asio::buffer(m_NextReceivedBuffer, m_NextReceivedLen), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleReceived, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::HandleReceived (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (ecode) { if (ecode != boost::asio::error::operation_aborted) LogPrint (eLogWarning, "NTCP2: Receive read error: ", ecode.message ()); Terminate (); } else { m_LastActivityTimestamp = i2p::util::GetSecondsSinceEpoch (); m_NumReceivedBytes += bytes_transferred + 2; // + length i2p::transport::transports.UpdateReceivedBytes (bytes_transferred); uint8_t nonce[12]; CreateNonce (m_ReceiveSequenceNumber, nonce); m_ReceiveSequenceNumber++; if (i2p::crypto::AEADChaCha20Poly1305 (m_NextReceivedBuffer, m_NextReceivedLen-16, nullptr, 0, m_ReceiveKey, nonce, m_NextReceivedBuffer, m_NextReceivedLen, false)) { LogPrint (eLogDebug, "NTCP2: Received message decrypted"); ProcessNextFrame (m_NextReceivedBuffer, m_NextReceivedLen-16); m_IsReceiving = false; ReceiveLength (); } else { LogPrint (eLogWarning, "NTCP2: Received AEAD verification failed "); SendTerminationAndTerminate (eNTCP2DataPhaseAEADFailure); } } } void NTCP2Session::ProcessNextFrame (const uint8_t * frame, size_t len) { size_t offset = 0; while (offset < len) { uint8_t blk = frame[offset]; offset++; auto size = bufbe16toh (frame + offset); offset += 2; LogPrint (eLogDebug, "NTCP2: Block type ", (int)blk, " of size ", size); if (size > len) { LogPrint (eLogError, "NTCP2: Unexpected block length ", size); break; } switch (blk) { case eNTCP2BlkDateTime: { LogPrint (eLogDebug, "NTCP2: Datetime"); if (m_IsEstablished) { uint64_t ts = i2p::util::GetSecondsSinceEpoch (); uint64_t tsA = bufbe32toh (frame + offset); if (tsA < ts - NTCP2_CLOCK_SKEW || tsA > ts + NTCP2_CLOCK_SKEW) { LogPrint (eLogWarning, "NTCP2: Established session time difference ", (int)(ts - tsA), " exceeds clock skew"); SendTerminationAndTerminate (eNTCP2ClockSkew); } } break; } case eNTCP2BlkOptions: LogPrint (eLogDebug, "NTCP2: Options"); break; case eNTCP2BlkRouterInfo: { LogPrint (eLogDebug, "NTCP2: RouterInfo flag=", (int)frame[offset]); i2p::data::netdb.PostI2NPMsg (CreateI2NPMessage (eI2NPDummyMsg, frame + offset, size)); break; } case eNTCP2BlkI2NPMessage: { LogPrint (eLogDebug, "NTCP2: I2NP"); if (size > I2NP_MAX_MESSAGE_SIZE) { LogPrint (eLogError, "NTCP2: I2NP block is too long ", size); break; } auto nextMsg = (frame[offset] == eI2NPTunnelData) ? NewI2NPTunnelMessage (true) : NewI2NPMessage (size); nextMsg->len = nextMsg->offset + size + 7; // 7 more bytes for full I2NP header if (nextMsg->len <= nextMsg->maxLen) { memcpy (nextMsg->GetNTCP2Header (), frame + offset, size); nextMsg->FromNTCP2 (); m_Handler.PutNextMessage (std::move (nextMsg)); } else LogPrint (eLogError, "NTCP2: I2NP block is too long for I2NP message"); break; } case eNTCP2BlkTermination: if (size >= 9) { LogPrint (eLogDebug, "NTCP2: Termination. reason=", (int)(frame[offset + 8])); Terminate (); } else LogPrint (eLogWarning, "NTCP2: Unexpected termination block size ", size); break; case eNTCP2BlkPadding: LogPrint (eLogDebug, "NTCP2: Padding"); break; default: LogPrint (eLogWarning, "NTCP2: Unknown block type ", (int)blk); } offset += size; } m_Handler.Flush (); } void NTCP2Session::SetNextSentFrameLength (size_t frameLen, uint8_t * lengthBuf) { #if OPENSSL_SIPHASH EVP_DigestSignInit (m_SendMDCtx, nullptr, nullptr, nullptr, nullptr); EVP_DigestSignUpdate (m_SendMDCtx, m_SendIV.buf, 8); size_t l = 8; EVP_DigestSignFinal (m_SendMDCtx, m_SendIV.buf, &l); #else i2p::crypto::Siphash<8> (m_SendIV.buf, m_SendIV.buf, 8, m_SendSipKey); #endif // length must be in BigEndian htobe16buf (lengthBuf, frameLen ^ le16toh (m_SendIV.key)); LogPrint (eLogDebug, "NTCP2: Sent length ", frameLen); } void NTCP2Session::SendI2NPMsgs (std::vector >& msgs) { if (msgs.empty () || IsTerminated ()) return; size_t totalLen = 0; std::vector > encryptBufs; std::vector bufs; std::shared_ptr first; uint8_t * macBuf = nullptr; for (auto& it: msgs) { it->ToNTCP2 (); auto buf = it->GetNTCP2Header (); auto len = it->GetNTCP2Length (); // block header buf -= 3; buf[0] = eNTCP2BlkI2NPMessage; // blk htobe16buf (buf + 1, len); // size len += 3; totalLen += len; encryptBufs.push_back ( {buf, len} ); if (&it == &msgs.front ()) // first message { // allocate two bytes for length buf -= 2; len += 2; first = it; } if (&it == &msgs.back () && it->len + 16 < it->maxLen) // last message { // if it's long enough we add padding and MAC to it // create padding block auto paddingLen = CreatePaddingBlock (totalLen, buf + len, it->maxLen - it->len - 16); if (paddingLen) { encryptBufs.push_back ( {buf + len, paddingLen} ); len += paddingLen; totalLen += paddingLen; } macBuf = buf + len; // allocate 16 bytes for MAC len += 16; } bufs.push_back (boost::asio::buffer (buf, len)); } if (!macBuf) // last block was not enough for MAC { // allocate send buffer m_NextSendBuffer = new uint8_t[287]; // can be any size > 16, we just allocate 287 frequently // create padding block auto paddingLen = CreatePaddingBlock (totalLen, m_NextSendBuffer, 287 - 16); // and padding block to encrypt and send if (paddingLen) encryptBufs.push_back ( {m_NextSendBuffer, paddingLen} ); bufs.push_back (boost::asio::buffer (m_NextSendBuffer, paddingLen + 16)); macBuf = m_NextSendBuffer + paddingLen; totalLen += paddingLen; } uint8_t nonce[12]; CreateNonce (m_SendSequenceNumber, nonce); m_SendSequenceNumber++; i2p::crypto::AEADChaCha20Poly1305Encrypt (encryptBufs, m_SendKey, nonce, macBuf); // encrypt buffers SetNextSentFrameLength (totalLen + 16, first->GetNTCP2Header () - 5); // frame length right before first block // send buffers m_IsSending = true; boost::asio::async_write (m_Socket, bufs, boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleI2NPMsgsSent, shared_from_this (), std::placeholders::_1, std::placeholders::_2, msgs)); } void NTCP2Session::HandleI2NPMsgsSent (const boost::system::error_code& ecode, std::size_t bytes_transferred, std::vector > msgs) { HandleNextFrameSent (ecode, bytes_transferred); // msgs get destroyed here } void NTCP2Session::EncryptAndSendNextBuffer (size_t payloadLen) { if (IsTerminated ()) { delete[] m_NextSendBuffer; m_NextSendBuffer = nullptr; return; } // encrypt uint8_t nonce[12]; CreateNonce (m_SendSequenceNumber, nonce); m_SendSequenceNumber++; i2p::crypto::AEADChaCha20Poly1305Encrypt ({ {m_NextSendBuffer + 2, payloadLen} }, m_SendKey, nonce, m_NextSendBuffer + payloadLen + 2); SetNextSentFrameLength (payloadLen + 16, m_NextSendBuffer); // send m_IsSending = true; boost::asio::async_write (m_Socket, boost::asio::buffer (m_NextSendBuffer, payloadLen + 16 + 2), boost::asio::transfer_all (), std::bind(&NTCP2Session::HandleNextFrameSent, shared_from_this (), std::placeholders::_1, std::placeholders::_2)); } void NTCP2Session::HandleNextFrameSent (const boost::system::error_code& ecode, std::size_t bytes_transferred) { m_IsSending = false; delete[] m_NextSendBuffer; m_NextSendBuffer = nullptr; if (ecode) { if (ecode != boost::asio::error::operation_aborted) LogPrint (eLogWarning, "NTCP2: Couldn't send frame ", ecode.message ()); Terminate (); } else { m_LastActivityTimestamp = i2p::util::GetSecondsSinceEpoch (); m_NumSentBytes += bytes_transferred; i2p::transport::transports.UpdateSentBytes (bytes_transferred); LogPrint (eLogDebug, "NTCP2: Next frame sent ", bytes_transferred); if (m_LastActivityTimestamp > m_NextRouterInfoResendTime) { m_NextRouterInfoResendTime += NTCP2_ROUTERINFO_RESEND_INTERVAL + rand ()%NTCP2_ROUTERINFO_RESEND_INTERVAL_THRESHOLD; SendRouterInfo (); } else { SendQueue (); m_SendQueueSize = m_SendQueue.size (); } } } void NTCP2Session::SendQueue () { if (!m_SendQueue.empty ()) { std::vector > msgs; size_t s = 0; while (!m_SendQueue.empty ()) { auto msg = m_SendQueue.front (); size_t len = msg->GetNTCP2Length (); if (s + len + 3 <= NTCP2_UNENCRYPTED_FRAME_MAX_SIZE) // 3 bytes block header { msgs.push_back (msg); s += (len + 3); m_SendQueue.pop_front (); } else if (len + 3 > NTCP2_UNENCRYPTED_FRAME_MAX_SIZE) { LogPrint (eLogError, "NTCP2: I2NP message of size ", len, " can't be sent. Dropped"); m_SendQueue.pop_front (); } else break; } SendI2NPMsgs (msgs); } } size_t NTCP2Session::CreatePaddingBlock (size_t msgLen, uint8_t * buf, size_t len) { if (len < 3) return 0; len -= 3; if (msgLen < 256) msgLen = 256; // for short message padding should not be always zero size_t paddingSize = (msgLen*NTCP2_MAX_PADDING_RATIO)/100; if (msgLen + paddingSize + 3 > NTCP2_UNENCRYPTED_FRAME_MAX_SIZE) paddingSize = NTCP2_UNENCRYPTED_FRAME_MAX_SIZE - msgLen -3; if (paddingSize > len) paddingSize = len; if (paddingSize) { if (m_NextPaddingSize >= 16) { RAND_bytes ((uint8_t *)m_PaddingSizes, sizeof (m_PaddingSizes)); m_NextPaddingSize = 0; } paddingSize = m_PaddingSizes[m_NextPaddingSize++] % paddingSize; } buf[0] = eNTCP2BlkPadding; // blk htobe16buf (buf + 1, paddingSize); // size memset (buf + 3, 0, paddingSize); return paddingSize + 3; } void NTCP2Session::SendRouterInfo () { if (!IsEstablished ()) return; auto riLen = i2p::context.GetRouterInfo ().GetBufferLen (); size_t payloadLen = riLen + 3 + 1 + 7; // 3 bytes block header + 1 byte RI flag + 7 bytes DateTime m_NextSendBuffer = new uint8_t[payloadLen + 16 + 2 + 64]; // up to 64 bytes padding // DateTime block m_NextSendBuffer[2] = eNTCP2BlkDateTime; htobe16buf (m_NextSendBuffer + 3, 4); htobe32buf (m_NextSendBuffer + 5, (i2p::util::GetMillisecondsSinceEpoch () + 500)/1000); // RouterInfo block m_NextSendBuffer[9] = eNTCP2BlkRouterInfo; htobe16buf (m_NextSendBuffer + 10, riLen + 1); // size m_NextSendBuffer[12] = 0; // flag memcpy (m_NextSendBuffer + 13, i2p::context.GetRouterInfo ().GetBuffer (), riLen); // padding block auto paddingSize = CreatePaddingBlock (payloadLen, m_NextSendBuffer + 2 + payloadLen, 64); payloadLen += paddingSize; // encrypt and send EncryptAndSendNextBuffer (payloadLen); } void NTCP2Session::SendTermination (NTCP2TerminationReason reason) { if (!m_SendKey || #if OPENSSL_SIPHASH !m_SendMDCtx #else !m_SendSipKey #endif ) return; m_NextSendBuffer = new uint8_t[49]; // 49 = 12 bytes message + 16 bytes MAC + 2 bytes size + up to 19 padding block // termination block m_NextSendBuffer[2] = eNTCP2BlkTermination; m_NextSendBuffer[3] = 0; m_NextSendBuffer[4] = 9; // 9 bytes block size htobe64buf (m_NextSendBuffer + 5, m_ReceiveSequenceNumber); m_NextSendBuffer[13] = (uint8_t)reason; // padding block auto paddingSize = CreatePaddingBlock (12, m_NextSendBuffer + 14, 19); // encrypt and send EncryptAndSendNextBuffer (paddingSize + 12); } void NTCP2Session::SendTerminationAndTerminate (NTCP2TerminationReason reason) { SendTermination (reason); m_Server.GetService ().post (std::bind (&NTCP2Session::Terminate, shared_from_this ())); // let termination message go } void NTCP2Session::SendI2NPMessages (const std::vector >& msgs) { m_Server.GetService ().post (std::bind (&NTCP2Session::PostI2NPMessages, shared_from_this (), msgs)); } void NTCP2Session::PostI2NPMessages (std::vector > msgs) { if (m_IsTerminated) return; for (auto it: msgs) m_SendQueue.push_back (std::move (it)); if (!m_IsSending) SendQueue (); else if (m_SendQueue.size () > NTCP2_MAX_OUTGOING_QUEUE_SIZE) { LogPrint (eLogWarning, "NTCP2: Outgoing messages queue size to ", GetIdentHashBase64(), " exceeds ", NTCP2_MAX_OUTGOING_QUEUE_SIZE); Terminate (); } m_SendQueueSize = m_SendQueue.size (); } void NTCP2Session::SendLocalRouterInfo (bool update) { if (update || !IsOutgoing ()) // we send it in SessionConfirmed for ougoing session m_Server.GetService ().post (std::bind (&NTCP2Session::SendRouterInfo, shared_from_this ())); } NTCP2Server::NTCP2Server (): RunnableServiceWithWork ("NTCP2"), m_TerminationTimer (GetService ()), m_ProxyType(eNoProxy), m_Resolver(GetService ()) { } NTCP2Server::~NTCP2Server () { Stop (); } void NTCP2Server::Start () { if (!IsRunning ()) { StartIOService (); if(UsingProxy()) { LogPrint(eLogInfo, "NTCP2: Using proxy to connect to peers"); // TODO: resolve proxy until it is resolved boost::asio::ip::tcp::resolver::query q(m_ProxyAddress, std::to_string(m_ProxyPort)); boost::system::error_code e; auto itr = m_Resolver.resolve(q, e); if(e) LogPrint(eLogError, "NTCP2: Failed to resolve proxy ", e.message()); else { m_ProxyEndpoint.reset (new boost::asio::ip::tcp::endpoint(*itr)); if (m_ProxyEndpoint) LogPrint(eLogDebug, "NTCP2: m_ProxyEndpoint ", *m_ProxyEndpoint); } } else LogPrint(eLogInfo, "NTCP2: Proxy is not used"); // start acceptors auto addresses = context.GetRouterInfo ().GetAddresses (); if (!addresses) return; for (const auto& address: *addresses) { if (!address) continue; if (address->IsPublishedNTCP2 () && address->port) { if (address->IsV4()) { try { auto ep = m_Address4 ? boost::asio::ip::tcp::endpoint (m_Address4->address(), address->port): boost::asio::ip::tcp::endpoint (boost::asio::ip::tcp::v4(), address->port); m_NTCP2Acceptor.reset (new boost::asio::ip::tcp::acceptor (GetService (), ep)); } catch ( std::exception & ex ) { LogPrint(eLogError, "NTCP2: Failed to bind to v4 port ", address->port, ex.what()); ThrowFatal ("Unable to start IPv4 NTCP2 transport at port ", address->port, ": ", ex.what ()); continue; } LogPrint (eLogInfo, "NTCP2: Start listening v4 TCP port ", address->port); auto conn = std::make_shared(*this); m_NTCP2Acceptor->async_accept(conn->GetSocket (), std::bind (&NTCP2Server::HandleAccept, this, conn, std::placeholders::_1)); } else if (address->IsV6() && (context.SupportsV6 () || context.SupportsMesh ())) { m_NTCP2V6Acceptor.reset (new boost::asio::ip::tcp::acceptor (GetService ())); try { m_NTCP2V6Acceptor->open (boost::asio::ip::tcp::v6()); m_NTCP2V6Acceptor->set_option (boost::asio::ip::v6_only (true)); m_NTCP2V6Acceptor->set_option (boost::asio::socket_base::reuse_address (true)); #if defined(__linux__) && !defined(_NETINET_IN_H) if (!m_Address6 && !m_YggdrasilAddress) // only if not binded to address { // Set preference to use public IPv6 address -- tested on linux, not works on windows, and not tested on others #if (BOOST_VERSION >= 105500) typedef boost::asio::detail::socket_option::integer ipv6PreferAddr; #else typedef boost::asio::detail::socket_option::integer ipv6PreferAddr; #endif m_NTCP2V6Acceptor->set_option (ipv6PreferAddr(IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_NONCGA)); } #endif auto ep = boost::asio::ip::tcp::endpoint(boost::asio::ip::tcp::v6(), address->port); if (m_Address6 && !context.SupportsMesh ()) ep = boost::asio::ip::tcp::endpoint (m_Address6->address(), address->port); else if (m_YggdrasilAddress && !context.SupportsV6 ()) ep = boost::asio::ip::tcp::endpoint (m_YggdrasilAddress->address(), address->port); m_NTCP2V6Acceptor->bind (ep); m_NTCP2V6Acceptor->listen (); LogPrint (eLogInfo, "NTCP2: Start listening v6 TCP port ", address->port); auto conn = std::make_shared (*this); m_NTCP2V6Acceptor->async_accept(conn->GetSocket (), std::bind (&NTCP2Server::HandleAcceptV6, this, conn, std::placeholders::_1)); } catch ( std::exception & ex ) { LogPrint(eLogError, "NTCP2: Failed to bind to v6 port ", address->port, ": ", ex.what()); ThrowFatal ("Unable to start IPv6 NTCP2 transport at port ", address->port, ": ", ex.what ()); continue; } } } } ScheduleTermination (); } } void NTCP2Server::Stop () { { // we have to copy it because Terminate changes m_NTCP2Sessions auto ntcpSessions = m_NTCP2Sessions; for (auto& it: ntcpSessions) it.second->Terminate (); for (auto& it: m_PendingIncomingSessions) it.second->Terminate (); } m_NTCP2Sessions.clear (); if (IsRunning ()) { m_TerminationTimer.cancel (); m_ProxyEndpoint = nullptr; } StopIOService (); } bool NTCP2Server::AddNTCP2Session (std::shared_ptr session, bool incoming) { if (!session) return false; if (incoming) m_PendingIncomingSessions.erase (session->GetRemoteEndpoint ().address ()); if (!session->GetRemoteIdentity ()) { LogPrint (eLogWarning, "NTCP2: Unknown identity for ", session->GetRemoteEndpoint ()); session->Terminate (); return false; } auto& ident = session->GetRemoteIdentity ()->GetIdentHash (); auto it = m_NTCP2Sessions.find (ident); if (it != m_NTCP2Sessions.end ()) { LogPrint (eLogWarning, "NTCP2: Session with ", ident.ToBase64 (), " already exists. ", incoming ? "Replaced" : "Dropped"); if (incoming) { // replace by new session auto s = it->second; m_NTCP2Sessions.erase (it); s->Terminate (); } else { session->Terminate (); return false; } } m_NTCP2Sessions.emplace (ident, session); return true; } void NTCP2Server::RemoveNTCP2Session (std::shared_ptr session) { if (session && session->GetRemoteIdentity ()) m_NTCP2Sessions.erase (session->GetRemoteIdentity ()->GetIdentHash ()); } std::shared_ptr NTCP2Server::FindNTCP2Session (const i2p::data::IdentHash& ident) { auto it = m_NTCP2Sessions.find (ident); if (it != m_NTCP2Sessions.end ()) return it->second; return nullptr; } void NTCP2Server::Connect(std::shared_ptr conn) { if (!conn || conn->GetRemoteEndpoint ().address ().is_unspecified ()) { LogPrint (eLogError, "NTCP2: Can't connect to unspecified address"); return; } LogPrint (eLogDebug, "NTCP2: Connecting to ", conn->GetRemoteEndpoint ()); GetService ().post([this, conn]() { if (this->AddNTCP2Session (conn)) { auto timer = std::make_shared(GetService ()); auto timeout = NTCP2_CONNECT_TIMEOUT * 5; conn->SetTerminationTimeout(timeout * 2); timer->expires_from_now (boost::posix_time::seconds(timeout)); timer->async_wait ([conn, timeout](const boost::system::error_code& ecode) { if (ecode != boost::asio::error::operation_aborted) { LogPrint (eLogInfo, "NTCP2: Not connected in ", timeout, " seconds"); conn->Terminate (); } }); // bind to local address std::shared_ptr localAddress; if (conn->GetRemoteEndpoint ().address ().is_v6 ()) { if (i2p::util::net::IsYggdrasilAddress (conn->GetRemoteEndpoint ().address ())) localAddress = m_YggdrasilAddress; else localAddress = m_Address6; conn->GetSocket ().open (boost::asio::ip::tcp::v6 ()); } else { localAddress = m_Address4; conn->GetSocket ().open (boost::asio::ip::tcp::v4 ()); } if (localAddress) { boost::system::error_code ec; conn->GetSocket ().bind (*localAddress, ec); if (ec) LogPrint (eLogError, "NTCP2: Can't bind to ", localAddress->address ().to_string (), ": ", ec.message ()); } conn->GetSocket ().async_connect (conn->GetRemoteEndpoint (), std::bind (&NTCP2Server::HandleConnect, this, std::placeholders::_1, conn, timer)); } else conn->Terminate (); }); } void NTCP2Server::HandleConnect (const boost::system::error_code& ecode, std::shared_ptr conn, std::shared_ptr timer) { timer->cancel (); if (ecode) { LogPrint (eLogInfo, "NTCP2: Connect error ", ecode.message ()); conn->Terminate (); } else { LogPrint (eLogDebug, "NTCP2: Connected to ", conn->GetRemoteEndpoint ()); conn->ClientLogin (); } } void NTCP2Server::HandleAccept (std::shared_ptr conn, const boost::system::error_code& error) { if (!error && conn) { boost::system::error_code ec; auto ep = conn->GetSocket ().remote_endpoint(ec); if (!ec) { LogPrint (eLogDebug, "NTCP2: Connected from ", ep); if (!i2p::util::net::IsInReservedRange(ep.address ())) { if (m_PendingIncomingSessions.emplace (ep.address (), conn).second) { conn->SetRemoteEndpoint (ep); conn->ServerLogin (); conn = nullptr; } else LogPrint (eLogInfo, "NTCP2: Incoming session from ", ep.address (), " is already pending"); } else LogPrint (eLogError, "NTCP2: Incoming connection from invalid IP ", ep.address ()); } else LogPrint (eLogError, "NTCP2: Connected from error ", ec.message ()); } else { LogPrint (eLogError, "NTCP2: Accept error ", error.message ()); if (error == boost::asio::error::no_descriptors) { i2p::context.SetError (eRouterErrorNoDescriptors); return; } } if (error != boost::asio::error::operation_aborted) { if (!conn) // connection is used, create new one conn = std::make_shared (*this); else // reuse failed conn->Close (); m_NTCP2Acceptor->async_accept(conn->GetSocket (), std::bind (&NTCP2Server::HandleAccept, this, conn, std::placeholders::_1)); } } void NTCP2Server::HandleAcceptV6 (std::shared_ptr conn, const boost::system::error_code& error) { if (!error && conn) { boost::system::error_code ec; auto ep = conn->GetSocket ().remote_endpoint(ec); if (!ec) { LogPrint (eLogDebug, "NTCP2: Connected from ", ep); if (!i2p::util::net::IsInReservedRange(ep.address ()) || i2p::util::net::IsYggdrasilAddress (ep.address ())) { if (m_PendingIncomingSessions.emplace (ep.address (), conn).second) { conn->SetRemoteEndpoint (ep); conn->ServerLogin (); conn = nullptr; } else LogPrint (eLogInfo, "NTCP2: Incoming session from ", ep.address (), " is already pending"); } else LogPrint (eLogError, "NTCP2: Incoming connection from invalid IP ", ep.address ()); } else LogPrint (eLogError, "NTCP2: Connected from error ", ec.message ()); } else { LogPrint (eLogError, "NTCP2: Accept ipv6 error ", error.message ()); if (error == boost::asio::error::no_descriptors) { i2p::context.SetErrorV6 (eRouterErrorNoDescriptors); return; } } if (error != boost::asio::error::operation_aborted) { if (!conn) // connection is used, create new one conn = std::make_shared (*this); else // reuse failed conn->Close (); m_NTCP2V6Acceptor->async_accept(conn->GetSocket (), std::bind (&NTCP2Server::HandleAcceptV6, this, conn, std::placeholders::_1)); } } void NTCP2Server::ScheduleTermination () { m_TerminationTimer.expires_from_now (boost::posix_time::seconds(NTCP2_TERMINATION_CHECK_TIMEOUT)); m_TerminationTimer.async_wait (std::bind (&NTCP2Server::HandleTerminationTimer, this, std::placeholders::_1)); } void NTCP2Server::HandleTerminationTimer (const boost::system::error_code& ecode) { if (ecode != boost::asio::error::operation_aborted) { auto ts = i2p::util::GetSecondsSinceEpoch (); // established for (auto& it: m_NTCP2Sessions) if (it.second->IsTerminationTimeoutExpired (ts)) { auto session = it.second; LogPrint (eLogDebug, "NTCP2: No activity for ", session->GetTerminationTimeout (), " seconds"); session->TerminateByTimeout (); // it doesn't change m_NTCP2Session right a way } else it.second->DeleteNextReceiveBuffer (ts); // pending for (auto it = m_PendingIncomingSessions.begin (); it != m_PendingIncomingSessions.end ();) { if (it->second->IsEstablished () || it->second->IsTerminationTimeoutExpired (ts)) { it->second->Terminate (); it = m_PendingIncomingSessions.erase (it); // established of expired } else if (it->second->IsTerminated ()) it = m_PendingIncomingSessions.erase (it); // already terminated else it++; } ScheduleTermination (); // try to restart acceptors if no description // we do it after timer to let timer take descriptor first if (i2p::context.GetError () == eRouterErrorNoDescriptors) { i2p::context.SetError (eRouterErrorNone); auto conn = std::make_shared (*this); m_NTCP2Acceptor->async_accept(conn->GetSocket (), std::bind (&NTCP2Server::HandleAccept, this, conn, std::placeholders::_1)); } if (i2p::context.GetErrorV6 () == eRouterErrorNoDescriptors) { i2p::context.SetErrorV6 (eRouterErrorNone); auto conn = std::make_shared (*this); m_NTCP2V6Acceptor->async_accept(conn->GetSocket (), std::bind (&NTCP2Server::HandleAcceptV6, this, conn, std::placeholders::_1)); } } } void NTCP2Server::ConnectWithProxy (std::shared_ptr conn) { if(!m_ProxyEndpoint) return; if (!conn || conn->GetRemoteEndpoint ().address ().is_unspecified ()) { LogPrint (eLogError, "NTCP2: Can't connect to unspecified address"); return; } GetService().post([this, conn]() { if (this->AddNTCP2Session (conn)) { auto timer = std::make_shared(GetService()); auto timeout = NTCP2_CONNECT_TIMEOUT * 5; conn->SetTerminationTimeout(timeout * 2); timer->expires_from_now (boost::posix_time::seconds(timeout)); timer->async_wait ([conn, timeout](const boost::system::error_code& ecode) { if (ecode != boost::asio::error::operation_aborted) { LogPrint (eLogInfo, "NTCP2: Not connected in ", timeout, " seconds"); conn->Terminate (); } }); conn->GetSocket ().async_connect (*m_ProxyEndpoint, std::bind (&NTCP2Server::HandleProxyConnect, this, std::placeholders::_1, conn, timer)); } }); } void NTCP2Server::UseProxy(ProxyType proxytype, const std::string& addr, uint16_t port, const std::string& user, const std::string& pass) { m_ProxyType = proxytype; m_ProxyAddress = addr; m_ProxyPort = port; if (m_ProxyType == eHTTPProxy ) m_ProxyAuthorization = i2p::http::CreateBasicAuthorizationString (user, pass); } void NTCP2Server::HandleProxyConnect(const boost::system::error_code& ecode, std::shared_ptr conn, std::shared_ptr timer) { if (ecode) { LogPrint(eLogWarning, "NTCP2: Failed to connect to proxy ", ecode.message()); timer->cancel(); conn->Terminate(); return; } switch (m_ProxyType) { case eSocksProxy: { // TODO: support username/password auth etc static const uint8_t buff[3] = {SOCKS5_VER, 0x01, 0x00}; boost::asio::async_write(conn->GetSocket(), boost::asio::buffer(buff, 3), boost::asio::transfer_all(), [] (const boost::system::error_code & ec, std::size_t transferred) { (void) transferred; if(ec) { LogPrint(eLogWarning, "NTCP2: SOCKS5 write error ", ec.message()); } }); auto readbuff = std::make_shared >(2); boost::asio::async_read(conn->GetSocket(), boost::asio::buffer(readbuff->data (), 2), [this, readbuff, timer, conn](const boost::system::error_code & ec, std::size_t transferred) { if(ec) { LogPrint(eLogError, "NTCP2: SOCKS5 read error ", ec.message()); timer->cancel(); conn->Terminate(); return; } else if(transferred == 2) { if((*readbuff)[1] == 0x00) { AfterSocksHandshake(conn, timer); return; } else if ((*readbuff)[1] == 0xff) { LogPrint(eLogError, "NTCP2: SOCKS5 proxy rejected authentication"); timer->cancel(); conn->Terminate(); return; } LogPrint(eLogError, "NTCP2:", (int)(*readbuff)[1]); } LogPrint(eLogError, "NTCP2: SOCKS5 server gave invalid response"); timer->cancel(); conn->Terminate(); }); break; } case eHTTPProxy: { auto& ep = conn->GetRemoteEndpoint (); i2p::http::HTTPReq req; req.method = "CONNECT"; req.version ="HTTP/1.1"; if(ep.address ().is_v6 ()) req.uri = "[" + ep.address ().to_string() + "]:" + std::to_string(ep.port ()); else req.uri = ep.address ().to_string() + ":" + std::to_string(ep.port ()); if (!m_ProxyAuthorization.empty ()) req.AddHeader("Proxy-Authorization", m_ProxyAuthorization); boost::asio::streambuf writebuff; std::ostream out(&writebuff); out << req.to_string(); boost::asio::async_write(conn->GetSocket(), writebuff.data(), boost::asio::transfer_all(), [](const boost::system::error_code & ec, std::size_t transferred) { (void) transferred; if(ec) LogPrint(eLogError, "NTCP2: HTTP proxy write error ", ec.message()); }); boost::asio::streambuf * readbuff = new boost::asio::streambuf; boost::asio::async_read_until(conn->GetSocket(), *readbuff, "\r\n\r\n", [readbuff, timer, conn] (const boost::system::error_code & ec, std::size_t transferred) { if(ec) { LogPrint(eLogError, "NTCP2: HTTP proxy read error ", ec.message()); timer->cancel(); conn->Terminate(); } else { readbuff->commit(transferred); i2p::http::HTTPRes res; if(res.parse(boost::asio::buffer_cast(readbuff->data()), readbuff->size()) > 0) { if(res.code == 200) { timer->cancel(); conn->ClientLogin(); delete readbuff; return; } else LogPrint(eLogError, "NTCP2: HTTP proxy rejected request ", res.code); } else LogPrint(eLogError, "NTCP2: HTTP proxy gave malformed response"); timer->cancel(); conn->Terminate(); delete readbuff; } }); break; } default: LogPrint(eLogError, "NTCP2: Unknown proxy type, invalid state"); } } void NTCP2Server::AfterSocksHandshake(std::shared_ptr conn, std::shared_ptr timer) { // build request size_t sz = 6; // header + port auto buff = std::make_shared >(256); auto readbuff = std::make_shared >(256); (*buff)[0] = SOCKS5_VER; (*buff)[1] = SOCKS5_CMD_CONNECT; (*buff)[2] = 0x00; auto& ep = conn->GetRemoteEndpoint (); if(ep.address ().is_v4 ()) { (*buff)[3] = SOCKS5_ATYP_IPV4; auto addrbytes = ep.address ().to_v4().to_bytes(); sz += 4; memcpy(buff->data () + 4, addrbytes.data(), 4); } else if (ep.address ().is_v6 ()) { (*buff)[3] = SOCKS5_ATYP_IPV6; auto addrbytes = ep.address ().to_v6().to_bytes(); sz += 16; memcpy(buff->data () + 4, addrbytes.data(), 16); } else { // We mustn't really fall here because all connections are made to IP addresses LogPrint(eLogError, "NTCP2: Tried to connect to unexpected address via proxy"); return; } htobe16buf(buff->data () + sz - 2, ep.port ()); boost::asio::async_write(conn->GetSocket(), boost::asio::buffer(buff->data (), sz), boost::asio::transfer_all(), [buff](const boost::system::error_code & ec, std::size_t written) { if(ec) { LogPrint(eLogError, "NTCP2: Failed to write handshake to socks proxy ", ec.message()); return; } }); boost::asio::async_read(conn->GetSocket(), boost::asio::buffer(readbuff->data (), SOCKS5_UDP_IPV4_REQUEST_HEADER_SIZE), // read min reply size boost::asio::transfer_all(), [timer, conn, readbuff](const boost::system::error_code & e, std::size_t transferred) { if (e) LogPrint(eLogError, "NTCP2: SOCKS proxy read error ", e.message()); else if (!(*readbuff)[1]) // succeeded { boost::system::error_code ec; size_t moreBytes = conn->GetSocket ().available(ec); if (moreBytes) // read remaining portion of reply if ipv6 received boost::asio::read (conn->GetSocket (), boost::asio::buffer(readbuff->data (), moreBytes), boost::asio::transfer_all (), ec); timer->cancel(); conn->ClientLogin(); return; } else LogPrint(eLogError, "NTCP2: Proxy reply error ", (int)(*readbuff)[1]); timer->cancel(); conn->Terminate(); }); } void NTCP2Server::SetLocalAddress (const boost::asio::ip::address& localAddress) { auto addr = std::make_shared(boost::asio::ip::tcp::endpoint(localAddress, 0)); if (localAddress.is_v6 ()) { if (i2p::util::net::IsYggdrasilAddress (localAddress)) m_YggdrasilAddress = addr; else m_Address6 = addr; } else m_Address4 = addr; } } }