#include #include #include #include #include "CryptoConst.h" #include "Log.h" #include "Timestamp.h" #include "RouterContext.h" #include "Transports.h" #include "hmac.h" #include "SSU.h" namespace i2p { namespace ssu { SSUSession::SSUSession (SSUServer& server, boost::asio::ip::udp::endpoint& remoteEndpoint, const i2p::data::RouterInfo * router, bool peerTest ): m_Server (server), m_RemoteEndpoint (remoteEndpoint), m_RemoteRouter (router), m_Timer (m_Server.GetService ()), m_DHKeysPair (nullptr), m_PeerTest (peerTest), m_State (eSessionStateUnknown), m_IsSessionKey (false), m_RelayTag (0), m_Data (*this), m_NumSentBytes (0), m_NumReceivedBytes (0) { m_CreationTime = i2p::util::GetSecondsSinceEpoch (); if (!router) // incoming session ScheduleConnectTimer (); } SSUSession::~SSUSession () { delete m_DHKeysPair; } void SSUSession::CreateAESandMacKey (const uint8_t * pubKey) { CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg); uint8_t sharedKey[256]; if (!dh.Agree (sharedKey, m_DHKeysPair->privateKey, pubKey)) { LogPrint ("Couldn't create shared key"); return; }; if (sharedKey[0] & 0x80) { m_SessionKey[0] = 0; memcpy (m_SessionKey + 1, sharedKey, 31); memcpy (m_MacKey, sharedKey + 31, 32); } else if (sharedKey[0]) { memcpy (m_SessionKey, sharedKey, 32); memcpy (m_MacKey, sharedKey + 32, 32); } else { // find first non-zero byte uint8_t * nonZero = sharedKey + 1; while (!*nonZero) { nonZero++; if (nonZero - sharedKey > 32) { LogPrint ("First 32 bytes of shared key is all zeros. Ignored"); return; } } memcpy (m_SessionKey, nonZero, 32); CryptoPP::SHA256().CalculateDigest(m_MacKey, nonZero, 64 - (nonZero - sharedKey)); } m_IsSessionKey = true; m_SessionKeyEncryption.SetKey (m_SessionKey); m_SessionKeyDecryption.SetKey (m_SessionKey); } void SSUSession::ProcessNextMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { m_NumReceivedBytes += len; if (m_State == eSessionStateIntroduced) { // HolePunch received LogPrint ("SSU HolePunch of ", len, " bytes received"); m_State = eSessionStateUnknown; Connect (); } else { if (!len) return; // ignore zero-length packets if (m_State == eSessionStateEstablished) ScheduleTermination (); if (m_IsSessionKey && Validate (buf, len, m_MacKey)) // try session key first DecryptSessionKey (buf, len); else { // try intro key depending on side auto introKey = GetIntroKey (); if (introKey && Validate (buf, len, introKey)) Decrypt (buf, len, introKey); else { // try own intro key auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!address) { LogPrint ("SSU is not supported"); return; } if (Validate (buf, len, address->key)) Decrypt (buf, len, address->key); else { LogPrint ("MAC verification failed ", len, " bytes from ", senderEndpoint); m_Server.DeleteSession (this); return; } } } // successfully decrypted ProcessMessage (buf, len, senderEndpoint); } } void SSUSession::ProcessMessage (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { SSUHeader * header = (SSUHeader *)buf; switch (header->GetPayloadType ()) { case PAYLOAD_TYPE_DATA: LogPrint ("SSU data received"); ProcessData (buf + sizeof (SSUHeader), len - sizeof (SSUHeader)); break; case PAYLOAD_TYPE_SESSION_REQUEST: ProcessSessionRequest (buf, len, senderEndpoint); break; case PAYLOAD_TYPE_SESSION_CREATED: ProcessSessionCreated (buf, len); break; case PAYLOAD_TYPE_SESSION_CONFIRMED: ProcessSessionConfirmed (buf, len); break; case PAYLOAD_TYPE_PEER_TEST: LogPrint ("SSU peer test received"); ProcessPeerTest (buf + sizeof (SSUHeader), len - sizeof (SSUHeader), senderEndpoint); break; case PAYLOAD_TYPE_SESSION_DESTROYED: { LogPrint ("SSU session destroy received"); m_Server.DeleteSession (this); // delete this break; } case PAYLOAD_TYPE_RELAY_RESPONSE: ProcessRelayResponse (buf, len); if (m_State != eSessionStateEstablished) m_Server.DeleteSession (this); break; case PAYLOAD_TYPE_RELAY_REQUEST: LogPrint ("SSU relay request received"); ProcessRelayRequest (buf + sizeof (SSUHeader), len - sizeof (SSUHeader), senderEndpoint); break; case PAYLOAD_TYPE_RELAY_INTRO: LogPrint ("SSU relay intro received"); ProcessRelayIntro (buf + sizeof (SSUHeader), len - sizeof (SSUHeader)); break; default: LogPrint ("Unexpected SSU payload type ", (int)header->GetPayloadType ()); } } void SSUSession::ProcessSessionRequest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { LogPrint ("Session request received"); m_RemoteEndpoint = senderEndpoint; if (!m_DHKeysPair) m_DHKeysPair = i2p::transports.GetNextDHKeysPair (); CreateAESandMacKey (buf + sizeof (SSUHeader)); SendSessionCreated (buf + sizeof (SSUHeader)); } void SSUSession::ProcessSessionCreated (uint8_t * buf, size_t len) { if (!m_RemoteRouter || !m_DHKeysPair) { LogPrint ("Unsolicited session created message"); return; } LogPrint ("Session created received"); m_Timer.cancel (); // connect timer uint8_t signedData[532]; // x,y, our IP, our port, remote IP, remote port, relayTag, signed on time uint8_t * payload = buf + sizeof (SSUHeader); uint8_t * y = payload; CreateAESandMacKey (y); memcpy (signedData, m_DHKeysPair->publicKey, 256); // x memcpy (signedData + 256, y, 256); // y payload += 256; payload += 1; // size, assume 4 uint8_t * ourAddress = payload; boost::asio::ip::address_v4 ourIP (be32toh (*(uint32_t* )ourAddress)); payload += 4; // address uint16_t ourPort = be16toh (*(uint16_t *)payload); payload += 2; // port memcpy (signedData + 512, ourAddress, 6); // our IP and port LogPrint ("Our external address is ", ourIP.to_string (), ":", ourPort); i2p::context.UpdateAddress (ourIP.to_string ().c_str ()); *(uint32_t *)(signedData + 518) = htobe32 (m_RemoteEndpoint.address ().to_v4 ().to_ulong ()); // remote IP *(uint16_t *)(signedData + 522) = htobe16 (m_RemoteEndpoint.port ()); // remote port memcpy (signedData + 524, payload, 8); // relayTag and signed on time m_RelayTag = be32toh (*(uint32_t *)payload); payload += 4; // relayTag payload += 4; // signed on time // decrypt DSA signature m_SessionKeyDecryption.SetIV (((SSUHeader *)buf)->iv); m_SessionKeyDecryption.Decrypt (payload, 48, payload); // verify CryptoPP::DSA::PublicKey pubKey; pubKey.Initialize (i2p::crypto::dsap, i2p::crypto::dsaq, i2p::crypto::dsag, CryptoPP::Integer (m_RemoteRouter->GetRouterIdentity ().signingKey, 128)); CryptoPP::DSA::Verifier verifier (pubKey); if (!verifier.VerifyMessage (signedData, 532, payload, 40)) LogPrint ("SSU signature verification failed"); SendSessionConfirmed (y, ourAddress); } void SSUSession::ProcessSessionConfirmed (uint8_t * buf, size_t len) { LogPrint ("Session confirmed received"); uint8_t * payload = buf + sizeof (SSUHeader); payload++; // identity fragment info uint16_t identitySize = be16toh (*(uint16_t *)payload); payload += 2; // size of identity fragment if (identitySize == i2p::data::DEFAULT_IDENTITY_SIZE) { i2p::data::Identity ident; ident.FromBuffer (payload, identitySize); m_RemoteIdent = ident.Hash (); m_Data.UpdatePacketSize (m_RemoteIdent); } else LogPrint ("SSU unexpected identity size ", identitySize); payload += identitySize; // identity // TODO: verify signature SendI2NPMessage (CreateDeliveryStatusMsg (0)); Established (); } void SSUSession::SendSessionRequest () { auto introKey = GetIntroKey (); if (!introKey) { LogPrint ("SSU is not supported"); return; } uint8_t buf[304 + 18]; // 304 bytes for ipv4 (320 for ipv6) uint8_t * payload = buf + sizeof (SSUHeader); memcpy (payload, m_DHKeysPair->publicKey, 256); // x payload[256] = 4; // we assume ipv4 *(uint32_t *)(payload + 257) = htobe32 (m_RemoteEndpoint.address ().to_v4 ().to_ulong ()); uint8_t iv[16]; CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); rnd.GenerateBlock (iv, 16); // random iv FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_REQUEST, buf, 304, introKey, iv, introKey); m_Server.Send (buf, 304, m_RemoteEndpoint); } void SSUSession::SendRelayRequest (uint32_t iTag, const uint8_t * iKey) { auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!address) { LogPrint ("SSU is not supported"); return; } uint8_t buf[96 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *(uint32_t *)payload = htobe32 (iTag); payload += 4; *payload = 0; // no address payload++; *(uint16_t *)payload = 0; // port = 0 payload += 2; *payload = 0; // challenge payload++; memcpy (payload, (const uint8_t *)address->key, 32); payload += 32; CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); *(uint32_t *)payload = htobe32 (rnd.GenerateWord32 ()); // nonce uint8_t iv[16]; rnd.GenerateBlock (iv, 16); // random iv if (m_State == eSessionStateEstablished) FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_REQUEST, buf, 96, m_SessionKey, iv, m_MacKey); else FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_REQUEST, buf, 96, iKey, iv, iKey); m_Server.Send (buf, 96, m_RemoteEndpoint); } void SSUSession::SendSessionCreated (const uint8_t * x) { auto introKey = GetIntroKey (); auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!introKey || !address) { LogPrint ("SSU is not supported"); return; } CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); uint8_t signedData[532]; // x,y, remote IP, remote port, our IP, our port, relayTag, signed on time memcpy (signedData, x, 256); // x uint8_t buf[368 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); memcpy (payload, m_DHKeysPair->publicKey, 256); memcpy (signedData + 256, payload, 256); // y payload += 256; *payload = 4; // we assume ipv4 payload++; *(uint32_t *)(payload) = htobe32 (m_RemoteEndpoint.address ().to_v4 ().to_ulong ()); payload += 4; *(uint16_t *)(payload) = htobe16 (m_RemoteEndpoint.port ()); payload += 2; memcpy (signedData + 512, payload - 6, 6); // remote endpoint IP and port *(uint32_t *)(signedData + 518) = htobe32 (address->host.to_v4 ().to_ulong ()); // our IP *(uint16_t *)(signedData + 522) = htobe16 (address->port); // our port uint32_t relayTag = 0; if (i2p::context.GetRouterInfo ().IsIntroducer ()) { relayTag = rnd.GenerateWord32 (); if (!relayTag) relayTag = 1; m_Server.AddRelay (relayTag, m_RemoteEndpoint); } *(uint32_t *)(payload) = htobe32 (relayTag); payload += 4; // relay tag *(uint32_t *)(payload) = htobe32 (i2p::util::GetSecondsSinceEpoch ()); // signed on time payload += 4; memcpy (signedData + 524, payload - 8, 8); // relayTag and signed on time i2p::context.Sign (signedData, 532, payload); // DSA signature // TODO: fill padding with random data uint8_t iv[16]; rnd.GenerateBlock (iv, 16); // random iv // encrypt signature and 8 bytes padding with newly created session key m_SessionKeyEncryption.SetIV (iv); m_SessionKeyEncryption.Encrypt (payload, 48, payload); // encrypt message with intro key FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_CREATED, buf, 368, introKey, iv, introKey); Send (buf, 368); } void SSUSession::SendSessionConfirmed (const uint8_t * y, const uint8_t * ourAddress) { uint8_t buf[480 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *payload = 1; // 1 fragment payload++; // info size_t identLen = sizeof (i2p::context.GetRouterIdentity ()); // 387 bytes *(uint16_t *)(payload) = htobe16 (identLen); payload += 2; // cursize memcpy (payload, (uint8_t *)&i2p::context.GetRouterIdentity (), identLen); payload += identLen; uint32_t signedOnTime = i2p::util::GetSecondsSinceEpoch (); *(uint32_t *)(payload) = htobe32 (signedOnTime); // signed on time payload += 4; size_t paddingSize = ((payload - buf) + 40)%16; if (paddingSize > 0) paddingSize = 16 - paddingSize; // TODO: fill padding payload += paddingSize; // padding size // signature uint8_t signedData[532]; // x,y, our IP, our port, remote IP, remote port, relayTag, our signed on time memcpy (signedData, m_DHKeysPair->publicKey, 256); // x memcpy (signedData + 256, y, 256); // y memcpy (signedData + 512, ourAddress, 6); // our address/port as seem by party *(uint32_t *)(signedData + 518) = htobe32 (m_RemoteEndpoint.address ().to_v4 ().to_ulong ()); // remote IP *(uint16_t *)(signedData + 522) = htobe16 (m_RemoteEndpoint.port ()); // remote port *(uint32_t *)(signedData + 524) = htobe32 (m_RelayTag); // relay tag *(uint32_t *)(signedData + 528) = htobe32 (signedOnTime); // signed on time i2p::context.Sign (signedData, 532, payload); // DSA signature uint8_t iv[16]; CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); rnd.GenerateBlock (iv, 16); // random iv // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_CONFIRMED, buf, 480, m_SessionKey, iv, m_MacKey); Send (buf, 480); } void SSUSession::ProcessRelayRequest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& from) { uint32_t relayTag = be32toh (*(uint32_t *)buf); auto session = m_Server.FindRelaySession (relayTag); if (session) { buf += 4; // relay tag uint8_t size = *buf; buf++; // size buf += size; // address buf += 2; // port uint8_t challengeSize = *buf; buf++; // challenge size buf += challengeSize; uint8_t * introKey = buf; buf += 32; // introkey uint32_t nonce = be32toh (*(uint32_t *)buf); SendRelayResponse (nonce, from, introKey, session->m_RemoteEndpoint); SendRelayIntro (session, from); } } void SSUSession::SendRelayResponse (uint32_t nonce, const boost::asio::ip::udp::endpoint& from, const uint8_t * introKey, const boost::asio::ip::udp::endpoint& to) { uint8_t buf[64 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); // Charlie *payload = 4; payload++; // size *(uint32_t *)payload = htobe32 (to.address ().to_v4 ().to_ulong ()); // Charlie's IP payload += 4; // address *(uint16_t *)payload = htobe16 (to.port ()); // Charlie's port payload += 2; // port // Alice *payload = 4; payload++; // size *(uint32_t *)payload = htobe32 (from.address ().to_v4 ().to_ulong ()); // Alice's IP payload += 4; // address *(uint16_t *)payload = htobe16 (from.port ()); // Alice's port payload += 2; // port *(uint32_t *)payload = htobe32 (nonce); if (m_State == eSessionStateEstablished) { // encrypt with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_RESPONSE, buf, 64); Send (buf, 64); } else { // ecrypt with Alice's intro key uint8_t iv[16]; CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); rnd.GenerateBlock (iv, 16); // random iv FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_RESPONSE, buf, 64, introKey, iv, introKey); m_Server.Send (buf, 64, from); } LogPrint ("SSU relay response sent"); } void SSUSession::SendRelayIntro (SSUSession * session, const boost::asio::ip::udp::endpoint& from) { if (!session) return; uint8_t buf[48 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *payload = 4; payload++; // size *(uint32_t *)payload = htobe32 (from.address ().to_v4 ().to_ulong ()); // Alice's IP payload += 4; // address *(uint16_t *)payload = htobe16 (from.port ()); // Alice's port payload += 2; // port *payload = 0; // challenge size uint8_t iv[16]; CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); rnd.GenerateBlock (iv, 16); // random iv FillHeaderAndEncrypt (PAYLOAD_TYPE_RELAY_INTRO, buf, 48, session->m_SessionKey, iv, session->m_MacKey); m_Server.Send (buf, 48, session->m_RemoteEndpoint); LogPrint ("SSU relay intro sent"); } void SSUSession::ProcessRelayResponse (uint8_t * buf, size_t len) { LogPrint ("Relay response received"); uint8_t * payload = buf + sizeof (SSUHeader); payload++; // remote size //boost::asio::ip::address_v4 remoteIP (be32toh (*(uint32_t* )(payload))); payload += 4; // remote address //uint16_t remotePort = be16toh (*(uint16_t *)(payload)); payload += 2; // remote port payload++; // our size boost::asio::ip::address_v4 ourIP (be32toh (*(uint32_t* )(payload))); payload += 4; // our address uint16_t ourPort = be16toh (*(uint16_t *)(payload)); payload += 2; // our port LogPrint ("Our external address is ", ourIP.to_string (), ":", ourPort); i2p::context.UpdateAddress (ourIP.to_string ().c_str ()); } void SSUSession::ProcessRelayIntro (uint8_t * buf, size_t len) { uint8_t size = *buf; if (size == 4) { buf++; // size boost::asio::ip::address_v4 address (be32toh (*(uint32_t* )buf)); buf += 4; // address uint16_t port = be16toh (*(uint16_t *)buf); // send hole punch of 1 byte m_Server.Send (buf, 0, boost::asio::ip::udp::endpoint (address, port)); } else LogPrint ("Address size ", size, " is not supported"); } void SSUSession::FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len, const uint8_t * aesKey, const uint8_t * iv, const uint8_t * macKey) { if (len < sizeof (SSUHeader)) { LogPrint ("Unexpected SSU packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; memcpy (header->iv, iv, 16); header->flag = payloadType << 4; // MSB is 0 header->time = htobe32 (i2p::util::GetSecondsSinceEpoch ()); uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); i2p::crypto::CBCEncryption encryption; encryption.SetKey (aesKey); encryption.SetIV (iv); encryption.Encrypt (encrypted, encryptedLen, encrypted); // assume actual buffer size is 18 (16 + 2) bytes more memcpy (buf + len, iv, 16); *(uint16_t *)(buf + len + 16) = htobe16 (encryptedLen); i2p::crypto::HMACMD5Digest (encrypted, encryptedLen + 18, macKey, header->mac); } void SSUSession::FillHeaderAndEncrypt (uint8_t payloadType, uint8_t * buf, size_t len) { if (len < sizeof (SSUHeader)) { LogPrint ("Unexpected SSU packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; i2p::context.GetRandomNumberGenerator ().GenerateBlock (header->iv, 16); // random iv m_SessionKeyEncryption.SetIV (header->iv); header->flag = payloadType << 4; // MSB is 0 header->time = htobe32 (i2p::util::GetSecondsSinceEpoch ()); uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); m_SessionKeyEncryption.Encrypt (encrypted, encryptedLen, encrypted); // assume actual buffer size is 18 (16 + 2) bytes more memcpy (buf + len, header->iv, 16); *(uint16_t *)(buf + len + 16) = htobe16 (encryptedLen); i2p::crypto::HMACMD5Digest (encrypted, encryptedLen + 18, m_MacKey, header->mac); } void SSUSession::Decrypt (uint8_t * buf, size_t len, const uint8_t * aesKey) { if (len < sizeof (SSUHeader)) { LogPrint ("Unexpected SSU packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); i2p::crypto::CBCDecryption decryption; decryption.SetKey (aesKey); decryption.SetIV (header->iv); decryption.Decrypt (encrypted, encryptedLen, encrypted); } void SSUSession::DecryptSessionKey (uint8_t * buf, size_t len) { if (len < sizeof (SSUHeader)) { LogPrint ("Unexpected SSU packet length ", len); return; } SSUHeader * header = (SSUHeader *)buf; uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); if (encryptedLen > 0) { m_SessionKeyDecryption.SetIV (header->iv); m_SessionKeyDecryption.Decrypt (encrypted, encryptedLen, encrypted); } } bool SSUSession::Validate (uint8_t * buf, size_t len, const uint8_t * macKey) { if (len < sizeof (SSUHeader)) { LogPrint ("Unexpected SSU packet length ", len); return false; } SSUHeader * header = (SSUHeader *)buf; uint8_t * encrypted = &header->flag; uint16_t encryptedLen = len - (encrypted - buf); // assume actual buffer size is 18 (16 + 2) bytes more memcpy (buf + len, header->iv, 16); *(uint16_t *)(buf + len + 16) = htobe16 (encryptedLen); uint8_t digest[16]; i2p::crypto::HMACMD5Digest (encrypted, encryptedLen + 18, macKey, digest); return !memcmp (header->mac, digest, 16); } void SSUSession::Connect () { if (m_State == eSessionStateUnknown) { // set connect timer ScheduleConnectTimer (); m_DHKeysPair = i2p::transports.GetNextDHKeysPair (); SendSessionRequest (); } } void SSUSession::ScheduleConnectTimer () { m_Timer.cancel (); m_Timer.expires_from_now (boost::posix_time::seconds(SSU_CONNECT_TIMEOUT)); m_Timer.async_wait (boost::bind (&SSUSession::HandleConnectTimer, this, boost::asio::placeholders::error)); } void SSUSession::HandleConnectTimer (const boost::system::error_code& ecode) { if (!ecode) { // timeout expired LogPrint ("SSU session was not established after ", SSU_CONNECT_TIMEOUT, " second"); Failed (); } } void SSUSession::Introduce (uint32_t iTag, const uint8_t * iKey) { if (m_State == eSessionStateUnknown) { // set connect timer m_Timer.expires_from_now (boost::posix_time::seconds(SSU_CONNECT_TIMEOUT)); m_Timer.async_wait (boost::bind (&SSUSession::HandleConnectTimer, this, boost::asio::placeholders::error)); } SendRelayRequest (iTag, iKey); } void SSUSession::WaitForIntroduction () { m_State = eSessionStateIntroduced; // set connect timer m_Timer.expires_from_now (boost::posix_time::seconds(SSU_CONNECT_TIMEOUT)); m_Timer.async_wait (boost::bind (&SSUSession::HandleConnectTimer, this, boost::asio::placeholders::error)); } void SSUSession::Close () { SendSesionDestroyed (); if (!m_DelayedMessages.empty ()) { for (auto it :m_DelayedMessages) DeleteI2NPMessage (it); m_DelayedMessages.clear (); } } void SSUSession::Established () { m_State = eSessionStateEstablished; if (m_DHKeysPair) { delete m_DHKeysPair; m_DHKeysPair = nullptr; } SendI2NPMessage (CreateDatabaseStoreMsg ()); if (!m_DelayedMessages.empty ()) { for (auto it :m_DelayedMessages) m_Data.Send (it); m_DelayedMessages.clear (); } if (m_PeerTest && (m_RemoteRouter && m_RemoteRouter->IsPeerTesting ())) SendPeerTest (); ScheduleTermination (); } void SSUSession::Failed () { if (m_State != eSessionStateFailed) { m_State = eSessionStateFailed; m_Server.DeleteSession (this); // delete this } } void SSUSession::ScheduleTermination () { m_Timer.cancel (); m_Timer.expires_from_now (boost::posix_time::seconds(SSU_TERMINATION_TIMEOUT)); m_Timer.async_wait (boost::bind (&SSUSession::HandleTerminationTimer, this, boost::asio::placeholders::error)); } void SSUSession::HandleTerminationTimer (const boost::system::error_code& ecode) { if (ecode != boost::asio::error::operation_aborted) { LogPrint ("SSU no activity fo ", SSU_TERMINATION_TIMEOUT, " seconds"); Failed (); } } const uint8_t * SSUSession::GetIntroKey () const { if (m_RemoteRouter) { // we are client auto address = m_RemoteRouter->GetSSUAddress (); return address ? (const uint8_t *)address->key : nullptr; } else { // we are server auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); return address ? (const uint8_t *)address->key : nullptr; } } void SSUSession::SendI2NPMessage (I2NPMessage * msg) { m_Server.GetService ().post (boost::bind (&SSUSession::PostI2NPMessage, this, msg)); } void SSUSession::PostI2NPMessage (I2NPMessage * msg) { if (msg) { if (m_State == eSessionStateEstablished) m_Data.Send (msg); else m_DelayedMessages.push_back (msg); } } void SSUSession::ProcessData (uint8_t * buf, size_t len) { m_Data.ProcessMessage (buf, len); } void SSUSession::ProcessPeerTest (uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& senderEndpoint) { uint8_t * buf1 = buf; uint32_t nonce = be32toh (*(uint32_t *)buf); buf += 4; // nonce uint8_t size = *buf; buf++; // size uint32_t address = (size == 4) ? *(uint32_t *)buf : 0; // use it as is buf += size; // address uint16_t port = *(uint16_t *)buf; // use it as is buf += 2; // port uint8_t * introKey = buf; if (port && !address) { LogPrint ("Address of ", size, " bytes not supported"); return; } if (m_PeerTestNonces.count (nonce) > 0) { // existing test if (m_PeerTest) { LogPrint ("SSU peer test from Bob. We are Alice"); m_PeerTestNonces.erase (nonce); m_PeerTest = false; } else if (port) { LogPrint ("SSU peer test from Charlie. We are Bob"); boost::asio::ip::udp::endpoint ep (boost::asio::ip::address_v4 (be32toh (address)), be16toh (port)); // Alice's address/port auto session = m_Server.FindSession (ep); // find session with Alice if (session) session->Send (PAYLOAD_TYPE_PEER_TEST, buf1, len); // back to Alice } else { LogPrint ("SSU peer test from Alice. We are Charlie"); SendPeerTest (nonce, senderEndpoint.address ().to_v4 ().to_ulong (), senderEndpoint.port (), introKey); // to Alice } } else { if (m_State == eSessionStateEstablished) { // new test m_PeerTestNonces.insert (nonce); if (port) { LogPrint ("SSU peer test from Bob. We are Charlie"); Send (PAYLOAD_TYPE_PEER_TEST, buf1, len); // back to Bob SendPeerTest (nonce, be32toh (address), be16toh (port), introKey); // to Alice } else { LogPrint ("SSU peer test from Alice. We are Bob"); auto session = m_Server.GetRandomEstablishedSession (this); // charlie if (session) session->SendPeerTest (nonce, senderEndpoint.address ().to_v4 ().to_ulong (), senderEndpoint.port (), introKey, false); } } else LogPrint ("SSU peer test from Charlie. We are Alice"); } } void SSUSession::SendPeerTest (uint32_t nonce, uint32_t address, uint16_t port, const uint8_t * introKey, bool toAddress) { uint8_t buf[80 + 18]; uint8_t iv[16]; uint8_t * payload = buf + sizeof (SSUHeader); *(uint32_t *)payload = htobe32 (nonce); payload += 4; // nonce if (address) { *payload = 4; payload++; // size *(uint32_t *)payload = htobe32 (address); payload += 4; // address } else { *payload = 0; payload++; //size } *(uint16_t *)payload = htobe16 (port); payload += 2; // port memcpy (payload, introKey, 32); // intro key CryptoPP::RandomNumberGenerator& rnd = i2p::context.GetRandomNumberGenerator (); rnd.GenerateBlock (iv, 16); // random iv if (toAddress) { // encrypt message with specified intro key FillHeaderAndEncrypt (PAYLOAD_TYPE_PEER_TEST, buf, 80, introKey, iv, introKey); boost::asio::ip::udp::endpoint e (boost::asio::ip::address_v4 (address), port); m_Server.Send (buf, 80, e); } else { // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_PEER_TEST, buf, 80); Send (buf, 80); } } void SSUSession::SendPeerTest () { LogPrint ("SSU sending peer test"); auto address = i2p::context.GetRouterInfo ().GetSSUAddress (); if (!address) { LogPrint ("SSU is not supported. Can't send peer test"); return; } uint32_t nonce = i2p::context.GetRandomNumberGenerator ().GenerateWord32 (); if (!nonce) nonce = 1; m_PeerTestNonces.insert (nonce); SendPeerTest (nonce, 0, 0, address->key, false); // address and port always zero for Alice } void SSUSession::SendKeepAlive () { if (m_State == eSessionStateEstablished) { uint8_t buf[48 + 18]; uint8_t * payload = buf + sizeof (SSUHeader); *payload = 0; // flags payload++; *payload = 0; // num fragments // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_DATA, buf, 48); Send (buf, 48); LogPrint ("SSU keep-alive sent"); ScheduleTermination (); } } void SSUSession::SendSesionDestroyed () { if (m_IsSessionKey) { uint8_t buf[48 + 18]; // encrypt message with session key FillHeaderAndEncrypt (PAYLOAD_TYPE_SESSION_DESTROYED, buf, 48); Send (buf, 48); LogPrint ("SSU session destroyed sent"); } } void SSUSession::Send (uint8_t type, const uint8_t * payload, size_t len) { uint8_t buf[SSU_MTU + 18]; size_t msgSize = len + sizeof (SSUHeader); if (msgSize > SSU_MTU) { LogPrint ("SSU payload size ", msgSize, " exceeds MTU"); return; } memcpy (buf + sizeof (SSUHeader), payload, len); // encrypt message with session key FillHeaderAndEncrypt (type, buf, msgSize); Send (buf, msgSize); } void SSUSession::Send (const uint8_t * buf, size_t size) { m_NumSentBytes += size; m_Server.Send (buf, size, m_RemoteEndpoint); } SSUServer::SSUServer (int port): m_Thread (nullptr), m_Work (m_Service), m_Endpoint (boost::asio::ip::udp::v4 (), port), m_Socket (m_Service, m_Endpoint), m_IntroducersUpdateTimer (m_Service) { m_Socket.set_option (boost::asio::socket_base::receive_buffer_size (65535)); m_Socket.set_option (boost::asio::socket_base::send_buffer_size (65535)); } SSUServer::~SSUServer () { for (auto it: m_Sessions) delete it.second; } void SSUServer::Start () { m_IsRunning = true; m_Thread = new std::thread (std::bind (&SSUServer::Run, this)); m_Service.post (boost::bind (&SSUServer::Receive, this)); if (i2p::context.IsUnreachable ()) ScheduleIntroducersUpdateTimer (); } void SSUServer::Stop () { DeleteAllSessions (); m_IsRunning = false; m_Service.stop (); m_Socket.close (); if (m_Thread) { m_Thread->join (); delete m_Thread; m_Thread = 0; } } void SSUServer::Run () { while (m_IsRunning) { try { m_Service.run (); } catch (std::exception& ex) { LogPrint ("SSU server: ", ex.what ()); } } } void SSUServer::AddRelay (uint32_t tag, const boost::asio::ip::udp::endpoint& relay) { m_Relays[tag] = relay; } SSUSession * SSUServer::FindRelaySession (uint32_t tag) { auto it = m_Relays.find (tag); if (it != m_Relays.end ()) return FindSession (it->second); return nullptr; } void SSUServer::Send (const uint8_t * buf, size_t len, const boost::asio::ip::udp::endpoint& to) { m_Socket.send_to (boost::asio::buffer (buf, len), to); } void SSUServer::Receive () { m_Socket.async_receive_from (boost::asio::buffer (m_ReceiveBuffer, SSU_MTU), m_SenderEndpoint, boost::bind (&SSUServer::HandleReceivedFrom, this, boost::asio::placeholders::error, boost::asio::placeholders::bytes_transferred)); } void SSUServer::HandleReceivedFrom (const boost::system::error_code& ecode, std::size_t bytes_transferred) { if (!ecode) { SSUSession * session = nullptr; auto it = m_Sessions.find (m_SenderEndpoint); if (it != m_Sessions.end ()) session = it->second; if (!session) { session = new SSUSession (*this, m_SenderEndpoint); m_Sessions[m_SenderEndpoint] = session; LogPrint ("New SSU session from ", m_SenderEndpoint.address ().to_string (), ":", m_SenderEndpoint.port (), " created"); } session->ProcessNextMessage (m_ReceiveBuffer, bytes_transferred, m_SenderEndpoint); Receive (); } else LogPrint ("SSU receive error: ", ecode.message ()); } SSUSession * SSUServer::FindSession (const i2p::data::RouterInfo * router) { if (!router) return nullptr; auto address = router->GetSSUAddress (); if (!address) return nullptr; return FindSession (boost::asio::ip::udp::endpoint (address->host, address->port)); } SSUSession * SSUServer::FindSession (const boost::asio::ip::udp::endpoint& e) { auto it = m_Sessions.find (e); if (it != m_Sessions.end ()) return it->second; else return nullptr; } SSUSession * SSUServer::GetSession (const i2p::data::RouterInfo * router, bool peerTest) { SSUSession * session = nullptr; if (router) { auto address = router->GetSSUAddress (); if (address) { boost::asio::ip::udp::endpoint remoteEndpoint (address->host, address->port); auto it = m_Sessions.find (remoteEndpoint); if (it != m_Sessions.end ()) session = it->second; else { // otherwise create new session session = new SSUSession (*this, remoteEndpoint, router, peerTest); m_Sessions[remoteEndpoint] = session; if (!router->UsesIntroducer ()) { // connect directly LogPrint ("Creating new SSU session to [", router->GetIdentHashAbbreviation (), "] ", remoteEndpoint.address ().to_string (), ":", remoteEndpoint.port ()); session->Connect (); } else { // connect through introducer int numIntroducers = address->introducers.size (); if (numIntroducers > 0) { SSUSession * introducerSession = nullptr; const i2p::data::RouterInfo::Introducer * introducer = nullptr; // we might have a session to introducer already for (int i = 0; i < numIntroducers; i++) { introducer = &(address->introducers[i]); it = m_Sessions.find (boost::asio::ip::udp::endpoint (introducer->iHost, introducer->iPort)); if (it != m_Sessions.end ()) { introducerSession = it->second; break; } } if (introducerSession) // session found LogPrint ("Session to introducer already exists"); else // create new { LogPrint ("Creating new session to introducer"); introducer = &(address->introducers[0]); // TODO: boost::asio::ip::udp::endpoint introducerEndpoint (introducer->iHost, introducer->iPort); introducerSession = new SSUSession (*this, introducerEndpoint, router); m_Sessions[introducerEndpoint] = introducerSession; } // introduce LogPrint ("Introduce new SSU session to [", router->GetIdentHashAbbreviation (), "] through introducer ", introducer->iHost, ":", introducer->iPort); session->WaitForIntroduction (); if (i2p::context.GetRouterInfo ().UsesIntroducer ()) // if we are unreachable Send (m_ReceiveBuffer, 0, remoteEndpoint); // send HolePunch introducerSession->Introduce (introducer->iTag, introducer->iKey); } else { LogPrint ("Can't connect to unreachable router. No introducers presented"); m_Sessions.erase (remoteEndpoint); delete session; session = nullptr; } } } } else LogPrint ("Router ", router->GetIdentHashAbbreviation (), " doesn't have SSU address"); } return session; } void SSUServer::DeleteSession (SSUSession * session) { if (session) { session->Close (); m_Sessions.erase (session->GetRemoteEndpoint ()); delete session; } } void SSUServer::DeleteAllSessions () { for (auto it: m_Sessions) { it.second->Close (); delete it.second; } m_Sessions.clear (); } template SSUSession * SSUServer::GetRandomSession (Filter filter) { std::vector filteredSessions; for (auto s :m_Sessions) if (filter (s.second)) filteredSessions.push_back (s.second); if (filteredSessions.size () > 0) { auto ind = i2p::context.GetRandomNumberGenerator ().GenerateWord32 (0, filteredSessions.size ()-1); return filteredSessions[ind]; } return nullptr; } SSUSession * SSUServer::GetRandomEstablishedSession (const SSUSession * excluded) { return GetRandomSession ( [excluded](SSUSession * session)->bool { return session->GetState () == eSessionStateEstablished && session != excluded; } ); } std::set SSUServer::FindIntroducers (int maxNumIntroducers) { uint32_t ts = i2p::util::GetSecondsSinceEpoch (); std::set ret; for (int i = 0; i < maxNumIntroducers; i++) { auto session = GetRandomSession ( [&ret, ts](SSUSession * session)->bool { return session->GetRelayTag () && !ret.count (session) && session->GetState () == eSessionStateEstablished && ts < session->GetCreationTime () + SSU_TO_INTRODUCER_SESSION_DURATION; } ); if (session) { ret.insert (session); break; } } return ret; } void SSUServer::ScheduleIntroducersUpdateTimer () { m_IntroducersUpdateTimer.expires_from_now (boost::posix_time::seconds(SSU_KEEP_ALIVE_INTERVAL)); m_IntroducersUpdateTimer.async_wait (boost::bind (&SSUServer::HandleIntroducersUpdateTimer, this, boost::asio::placeholders::error)); } void SSUServer::HandleIntroducersUpdateTimer (const boost::system::error_code& ecode) { if (!ecode) { // timeout expired std::list newList; size_t numIntroducers = 0; uint32_t ts = i2p::util::GetSecondsSinceEpoch (); for (auto it :m_Introducers) { auto session = FindSession (it); if (session && ts < session->GetCreationTime () + SSU_TO_INTRODUCER_SESSION_DURATION) { session->SendKeepAlive (); newList.push_back (it); numIntroducers++; } else i2p::context.RemoveIntroducer (it); } if (numIntroducers < SSU_MAX_NUM_INTRODUCERS) { // create new auto introducers = FindIntroducers (SSU_MAX_NUM_INTRODUCERS); if (introducers.size () > 0) { for (auto it1: introducers) { auto router = it1->GetRemoteRouter (); if (router && i2p::context.AddIntroducer (*router, it1->GetRelayTag ())) { newList.push_back (it1->GetRemoteEndpoint ()); if (newList.size () >= SSU_MAX_NUM_INTRODUCERS) break; } } } } m_Introducers = newList; ScheduleIntroducersUpdateTimer (); } } } }