#include #include #include #include #include #include #include "base64.h" #include "CryptoConst.h" #include "RouterContext.h" #include "Identity.h" #include "I2PEndian.h" namespace i2p { namespace data { Identity& Identity::operator=(const Keys& keys) { // copy public and signing keys together memcpy (publicKey, keys.publicKey, sizeof (publicKey) + sizeof (signingKey)); memset (&certificate, 0, sizeof (certificate)); return *this; } size_t Identity::FromBuffer (const uint8_t * buf, size_t len) { memcpy (publicKey, buf, DEFAULT_IDENTITY_SIZE); return DEFAULT_IDENTITY_SIZE; } IdentHash Identity::Hash () const { IdentHash hash; CryptoPP::SHA256().CalculateDigest(hash, publicKey, DEFAULT_IDENTITY_SIZE); return hash; } IdentityEx::IdentityEx (): m_Verifier (nullptr), m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { } IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type) { memcpy (m_StandardIdentity.publicKey, publicKey, sizeof (m_StandardIdentity.publicKey)); if (type == SIGNING_KEY_TYPE_ECDSA_SHA256_P256) { memcpy (m_StandardIdentity.signingKey + 64, signingKey, 64); m_StandardIdentity.certificate.type = CERTIFICATE_TYPE_KEY; m_ExtendedLen = 4; // 4 bytes extra m_StandardIdentity.certificate.length = htobe16 (4); m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; *(uint16_t *)m_ExtendedBuffer = htobe16 (SIGNING_KEY_TYPE_ECDSA_SHA256_P256); *(uint16_t *)(m_ExtendedBuffer + 2) = htobe16 (CRYPTO_KEY_TYPE_ELGAMAL); uint8_t buf[DEFAULT_IDENTITY_SIZE + 4]; ToBuffer (buf, DEFAULT_IDENTITY_SIZE + 4); CryptoPP::SHA256().CalculateDigest(m_IdentHash, buf, GetFullLen ()); } else // DSA-SHA1 { memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey)); memset (&m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate)); m_IdentHash = m_StandardIdentity.Hash (); m_ExtendedLen = 0; m_ExtendedBuffer = nullptr; } CreateVerifier (); } IdentityEx::IdentityEx (const uint8_t * buf, size_t len): m_Verifier (nullptr), m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { FromBuffer (buf, len); } IdentityEx::IdentityEx (const IdentityEx& other): m_Verifier (nullptr), m_ExtendedBuffer (nullptr) { *this = other; } IdentityEx::~IdentityEx () { delete m_Verifier; delete[] m_ExtendedBuffer; } IdentityEx& IdentityEx::operator=(const IdentityEx& other) { memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE); m_IdentHash = other.m_IdentHash; delete[] m_ExtendedBuffer; m_ExtendedLen = other.m_ExtendedLen; if (m_ExtendedLen > 0) { m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen); } else m_ExtendedBuffer = nullptr; delete m_Verifier; CreateVerifier (); return *this; } IdentityEx& IdentityEx::operator=(const Identity& standard) { m_StandardIdentity = standard; m_IdentHash = m_StandardIdentity.Hash (); delete[] m_ExtendedBuffer; m_ExtendedBuffer = nullptr; m_ExtendedLen = 0; delete m_Verifier; CreateVerifier (); return *this; } size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len) { memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE); delete[] m_ExtendedBuffer; if (m_StandardIdentity.certificate.length) { m_ExtendedLen = be16toh (m_StandardIdentity.certificate.length); m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen); } else { m_ExtendedLen = 0; m_ExtendedBuffer = nullptr; } CryptoPP::SHA256().CalculateDigest(m_IdentHash, buf, GetFullLen ()); delete m_Verifier; CreateVerifier (); return GetFullLen (); } size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const { memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE); if (m_ExtendedLen > 0 && m_ExtendedBuffer) memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen); return GetFullLen (); } size_t IdentityEx::FromBase64(const std::string& s) { uint8_t buf[512]; auto len = Base64ToByteStream (s.c_str(), s.length(), buf, 512); return FromBuffer (buf, len); } size_t IdentityEx::GetSigningPublicKeyLen () const { if (m_Verifier) return m_Verifier->GetPublicKeyLen (); return 128; } size_t IdentityEx::GetSignatureLen () const { if (m_Verifier) return m_Verifier->GetSignatureLen (); return 40; } bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const { if (m_Verifier) return m_Verifier->Verify (buf, len, signature); return false; } SigningKeyType IdentityEx::GetSigningKeyType () const { if (m_StandardIdentity.certificate.type == CERTIFICATE_TYPE_KEY && m_ExtendedBuffer) return be16toh (*(const uint16_t *)m_ExtendedBuffer); // signing key return SIGNING_KEY_TYPE_DSA_SHA1; } void IdentityEx::CreateVerifier () { auto keyType = GetSigningKeyType (); switch (keyType) { case SIGNING_KEY_TYPE_DSA_SHA1: m_Verifier = new i2p::crypto::DSAVerifier (m_StandardIdentity.signingKey); break; case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: m_Verifier = new i2p::crypto::ECDSAP256Verifier (m_StandardIdentity.signingKey + 64); break; default: LogPrint ("Signing key type ", (int)keyType, " is not supported"); } } PrivateKeys& PrivateKeys::operator=(const Keys& keys) { m_Public = Identity (keys); memcpy (m_PrivateKey, keys.privateKey, 256); // 256 memcpy (m_SigningPrivateKey, keys.signingPrivateKey, 20); // 20 - DSA delete m_Signer; CreateSigner (); return *this; } PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other) { m_Public = other.m_Public; memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256 memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, 128); // 128 delete m_Signer; CreateSigner (); return *this; } size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len) { size_t ret = m_Public.FromBuffer (buf, len); memcpy (m_PrivateKey, buf + ret, 256); // private key always 256 ret += 256; size_t signingPrivateKeySize = m_Public.GetSignatureLen ()/2; // 20 for DSA memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize); ret += signingPrivateKeySize; delete m_Signer; CreateSigner (); return ret; } size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const { size_t ret = m_Public.ToBuffer (buf, len); memcpy (buf + ret, m_PrivateKey, 256); // private key always 256 ret += 256; size_t signingPrivateKeySize = m_Public.GetSignatureLen ()/2; // 20 for DSA memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize); ret += signingPrivateKeySize; return ret; } void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const { if (m_Signer) m_Signer->Sign (i2p::context.GetRandomNumberGenerator (), buf, len, signature); } void PrivateKeys::CreateSigner () { if (m_Public.GetSigningKeyType () == SIGNING_KEY_TYPE_ECDSA_SHA256_P256) m_Signer = new i2p::crypto::ECDSAP256Signer (m_SigningPrivateKey); else m_Signer = new i2p::crypto::DSASigner (m_SigningPrivateKey); } PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type) { if (type == SIGNING_KEY_TYPE_ECDSA_SHA256_P256) { PrivateKeys keys; auto& rnd = i2p::context.GetRandomNumberGenerator (); // encryption uint8_t publicKey[256]; CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg); dh.GenerateKeyPair(rnd, keys.m_PrivateKey, publicKey); // signature uint8_t signingPublicKey[64]; i2p::crypto::CreateECDSAP256RandomKeys (rnd, keys.m_SigningPrivateKey, signingPublicKey); keys.m_Public = IdentityEx (publicKey, signingPublicKey, SIGNING_KEY_TYPE_ECDSA_SHA256_P256); keys.CreateSigner (); return keys; } return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1 } Keys CreateRandomKeys () { Keys keys; auto& rnd = i2p::context.GetRandomNumberGenerator (); // encryption CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg); dh.GenerateKeyPair(rnd, keys.privateKey, keys.publicKey); // signing i2p::crypto::CreateDSARandomKeys (rnd, keys.signingPrivateKey, keys.signingKey); return keys; } void CreateRandomDHKeysPair (DHKeysPair * keys) { if (!keys) return; CryptoPP::AutoSeededRandomPool rnd; CryptoPP::DH dh (i2p::crypto::elgp, i2p::crypto::elgg); dh.GenerateKeyPair(rnd, keys->privateKey, keys->publicKey); } IdentHash CreateRoutingKey (const IdentHash& ident) { uint8_t buf[41]; // ident + yyyymmdd memcpy (buf, (const uint8_t *)ident, 32); time_t t = time (nullptr); struct tm tm; #ifdef _WIN32 gmtime_s(&tm, &t); sprintf_s((char *)(buf + 32), 9, "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); #else gmtime_r(&t, &tm); sprintf((char *)(buf + 32), "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); #endif IdentHash key; CryptoPP::SHA256().CalculateDigest((uint8_t *)key, buf, 40); return key; } XORMetric operator^(const IdentHash& key1, const IdentHash& key2) { XORMetric m; const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL (); m.metric_ll[0] = hash1[0] ^ hash2[0]; m.metric_ll[1] = hash1[1] ^ hash2[1]; m.metric_ll[2] = hash1[2] ^ hash2[2]; m.metric_ll[3] = hash1[3] ^ hash2[3]; return m; } } }