#ifndef CRYPTO_H__ #define CRYPTO_H__ #include #include #include #include #include #include #include "Base.h" namespace i2p { namespace crypto { bool bn2buf (const BIGNUM * bn, uint8_t * buf, size_t len); // DSA DSA * CreateDSA (); // RSA const BIGNUM * GetRSAE (); // DH class DHKeys { public: DHKeys (); ~DHKeys (); void GenerateKeys (uint8_t * priv = nullptr, uint8_t * pub = nullptr); const uint8_t * GetPublicKey (); void Agree (const uint8_t * pub, uint8_t * shared); private: DH * m_DH; uint8_t m_PublicKey[256]; bool m_IsUpdated; }; // ElGamal class ElGamalEncryption { public: ElGamalEncryption (const uint8_t * key); ~ElGamalEncryption (); void Encrypt (const uint8_t * data, int len, uint8_t * encrypted, bool zeroPadding = false) const; private: BN_CTX * ctx; BIGNUM * a, * b1; }; bool ElGamalDecrypt (const uint8_t * key, const uint8_t * encrypted, uint8_t * data, bool zeroPadding = false); void GenerateElGamalKeyPair (uint8_t * priv, uint8_t * pub); // HMAC typedef i2p::data::Tag<32> MACKey; void HMACMD5Digest (uint8_t * msg, size_t len, const MACKey& key, uint8_t * digest); // AES struct ChipherBlock { uint8_t buf[16]; void operator^=(const ChipherBlock& other) // XOR { #if defined(__x86_64__) || defined(__SSE__) // for Intel x84 or with SSE __asm__ ( "movups (%[buf]), %%xmm0 \n" "movups (%[other]), %%xmm1 \n" "pxor %%xmm1, %%xmm0 \n" "movups %%xmm0, (%[buf]) \n" : : [buf]"r"(buf), [other]"r"(other.buf) : "%xmm0", "%xmm1", "memory" ); #else // TODO: implement it better for (int i = 0; i < 16; i++) buf[i] ^= other.buf[i]; #endif } }; typedef i2p::data::Tag<32> AESKey; template class AESAlignedBuffer // 16 bytes alignment { public: AESAlignedBuffer () { m_Buf = m_UnalignedBuffer; uint8_t rem = ((size_t)m_Buf) & 0x0f; if (rem) m_Buf += (16 - rem); } operator uint8_t * () { return m_Buf; }; operator const uint8_t * () const { return m_Buf; }; private: uint8_t m_UnalignedBuffer[sz + 15]; // up to 15 bytes alignment uint8_t * m_Buf; }; #ifdef AESNI class ECBCryptoAESNI { public: uint8_t * GetKeySchedule () { return m_KeySchedule; }; protected: void ExpandKey (const AESKey& key); private: AESAlignedBuffer<240> m_KeySchedule; // 14 rounds for AES-256, 240 bytes }; class ECBEncryptionAESNI: public ECBCryptoAESNI { public: void SetKey (const AESKey& key) { ExpandKey (key); }; void Encrypt (const ChipherBlock * in, ChipherBlock * out); }; class ECBDecryptionAESNI: public ECBCryptoAESNI { public: void SetKey (const AESKey& key); void Decrypt (const ChipherBlock * in, ChipherBlock * out); }; typedef ECBEncryptionAESNI ECBEncryption; typedef ECBDecryptionAESNI ECBDecryption; #else // use openssl class ECBEncryption { public: void SetKey (const AESKey& key) { AES_set_encrypt_key (key, 256, &m_Key); } void Encrypt (const ChipherBlock * in, ChipherBlock * out) { AES_encrypt (in->buf, out->buf, &m_Key); } private: AES_KEY m_Key; }; class ECBDecryption { public: void SetKey (const AESKey& key) { AES_set_decrypt_key (key, 256, &m_Key); } void Decrypt (const ChipherBlock * in, ChipherBlock * out) { AES_decrypt (in->buf, out->buf, &m_Key); } private: AES_KEY m_Key; }; #endif class CBCEncryption { public: CBCEncryption () { memset (m_LastBlock.buf, 0, 16); }; void SetKey (const AESKey& key) { m_ECBEncryption.SetKey (key); }; // 32 bytes void SetIV (const uint8_t * iv) { memcpy (m_LastBlock.buf, iv, 16); }; // 16 bytes void Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out); void Encrypt (const uint8_t * in, std::size_t len, uint8_t * out); void Encrypt (const uint8_t * in, uint8_t * out); // one block private: ChipherBlock m_LastBlock; ECBEncryption m_ECBEncryption; }; class CBCDecryption { public: CBCDecryption () { memset (m_IV.buf, 0, 16); }; void SetKey (const AESKey& key) { m_ECBDecryption.SetKey (key); }; // 32 bytes void SetIV (const uint8_t * iv) { memcpy (m_IV.buf, iv, 16); }; // 16 bytes void Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out); void Decrypt (const uint8_t * in, std::size_t len, uint8_t * out); void Decrypt (const uint8_t * in, uint8_t * out); // one block private: ChipherBlock m_IV; ECBDecryption m_ECBDecryption; }; class TunnelEncryption // with double IV encryption { public: void SetKeys (const AESKey& layerKey, const AESKey& ivKey) { m_LayerEncryption.SetKey (layerKey); m_IVEncryption.SetKey (ivKey); } void Encrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data) private: ECBEncryption m_IVEncryption; #ifdef AESNI ECBEncryption m_LayerEncryption; #else CBCEncryption m_LayerEncryption; #endif }; class TunnelDecryption // with double IV encryption { public: void SetKeys (const AESKey& layerKey, const AESKey& ivKey) { m_LayerDecryption.SetKey (layerKey); m_IVDecryption.SetKey (ivKey); } void Decrypt (const uint8_t * in, uint8_t * out); // 1024 bytes (16 IV + 1008 data) private: ECBDecryption m_IVDecryption; #ifdef AESNI ECBDecryption m_LayerDecryption; #else CBCDecryption m_LayerDecryption; #endif }; void InitCrypto (); void TerminateCrypto (); } } #endif