#include <time.h> #include <stdio.h> #include "Crypto.h" #include "I2PEndian.h" #include "Log.h" #include "Identity.h" namespace i2p { namespace data { Identity& Identity::operator=(const Keys& keys) { // copy public and signing keys together memcpy (publicKey, keys.publicKey, sizeof (publicKey) + sizeof (signingKey)); memset (certificate, 0, sizeof (certificate)); return *this; } size_t Identity::FromBuffer (const uint8_t * buf, size_t len) { if ( len < DEFAULT_IDENTITY_SIZE ) { // buffer too small, don't overflow return 0; } memcpy (publicKey, buf, DEFAULT_IDENTITY_SIZE); return DEFAULT_IDENTITY_SIZE; } IdentHash Identity::Hash () const { IdentHash hash; SHA256(publicKey, DEFAULT_IDENTITY_SIZE, hash); return hash; } IdentityEx::IdentityEx (): m_IsVerifierCreated (false), m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { } IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type, CryptoKeyType cryptoType): m_IsVerifierCreated (false) { memcpy (m_StandardIdentity.publicKey, publicKey, 256); // publicKey in awlays assumed 256 regardless actual size, padding must be taken care of if (type != SIGNING_KEY_TYPE_DSA_SHA1) { size_t excessLen = 0; uint8_t * excessBuf = nullptr; switch (type) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: { size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: { size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: { memcpy (m_StandardIdentity.signingKey, signingKey, 128); excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128 excessBuf = new uint8_t[excessLen]; memcpy (excessBuf, signingKey + 128, excessLen); break; } case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogError, "Identity: RSA signing key type ", (int)type, " is not supported"); break; case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: { size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: { // 256 size_t padding = 128 - i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH; // 64 = 128 - 64 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::GOSTR3410_256_PUBLIC_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: { // 512 // no padding, key length is 128 memcpy (m_StandardIdentity.signingKey, signingKey, i2p::crypto::GOSTR3410_512_PUBLIC_KEY_LENGTH); break; } default: LogPrint (eLogError, "Identity: Signing key type ", (int)type, " is not supported"); } m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length // fill certificate m_StandardIdentity.certificate[0] = CERTIFICATE_TYPE_KEY; htobe16buf (m_StandardIdentity.certificate + 1, m_ExtendedLen); // fill extended buffer m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; htobe16buf (m_ExtendedBuffer, type); htobe16buf (m_ExtendedBuffer + 2, cryptoType); if (excessLen && excessBuf) { memcpy (m_ExtendedBuffer + 4, excessBuf, excessLen); delete[] excessBuf; } // calculate ident hash RecalculateIdentHash(); } else // DSA-SHA1 { memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey)); memset (m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate)); m_IdentHash = m_StandardIdentity.Hash (); m_ExtendedLen = 0; m_ExtendedBuffer = nullptr; } CreateVerifier (); } void IdentityEx::RecalculateIdentHash(uint8_t * buf) { bool dofree = buf == nullptr; size_t sz = GetFullLen(); if(!buf) buf = new uint8_t[sz]; ToBuffer (buf, sz); SHA256(buf, sz, m_IdentHash); if(dofree) delete[] buf; } IdentityEx::IdentityEx (const uint8_t * buf, size_t len): m_IsVerifierCreated (false), m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { FromBuffer (buf, len); } IdentityEx::IdentityEx (const IdentityEx& other): m_IsVerifierCreated (false), m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { *this = other; } IdentityEx::IdentityEx (const Identity& standard): m_IsVerifierCreated (false), m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { *this = standard; } IdentityEx::~IdentityEx () { delete[] m_ExtendedBuffer; } IdentityEx& IdentityEx::operator=(const IdentityEx& other) { memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE); m_IdentHash = other.m_IdentHash; delete[] m_ExtendedBuffer; m_ExtendedLen = other.m_ExtendedLen; if (m_ExtendedLen > 0) { m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen); } else m_ExtendedBuffer = nullptr; m_Verifier = nullptr; m_IsVerifierCreated = false; return *this; } IdentityEx& IdentityEx::operator=(const Identity& standard) { m_StandardIdentity = standard; m_IdentHash = m_StandardIdentity.Hash (); delete[] m_ExtendedBuffer; m_ExtendedBuffer = nullptr; m_ExtendedLen = 0; m_Verifier = nullptr; m_IsVerifierCreated = false; return *this; } size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len) { if (len < DEFAULT_IDENTITY_SIZE) { LogPrint (eLogError, "Identity: buffer length ", len, " is too small"); return 0; } memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE); if(m_ExtendedBuffer) delete[] m_ExtendedBuffer; m_ExtendedBuffer = nullptr; m_ExtendedLen = bufbe16toh (m_StandardIdentity.certificate + 1); if (m_ExtendedLen) { if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len) { m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen); } else { LogPrint (eLogError, "Identity: Certificate length ", m_ExtendedLen, " exceeds buffer length ", len - DEFAULT_IDENTITY_SIZE); m_ExtendedLen = 0; return 0; } } else { m_ExtendedLen = 0; m_ExtendedBuffer = nullptr; } SHA256(buf, GetFullLen (), m_IdentHash); m_Verifier = nullptr; return GetFullLen (); } size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const { const size_t fullLen = GetFullLen(); if (fullLen > len) return 0; // buffer is too small and may overflow somewhere else memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE); if (m_ExtendedLen > 0 && m_ExtendedBuffer) memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen); return fullLen; } size_t IdentityEx::FromBase64(const std::string& s) { const size_t slen = s.length(); std::vector<uint8_t> buf(slen); // binary data can't exceed base64 const size_t len = Base64ToByteStream (s.c_str(), slen, buf.data(), slen); return FromBuffer (buf.data(), len); } std::string IdentityEx::ToBase64 () const { const size_t bufLen = GetFullLen(); const size_t strLen = Base64EncodingBufferSize(bufLen); std::vector<uint8_t> buf(bufLen); std::vector<char> str(strLen); size_t l = ToBuffer (buf.data(), bufLen); size_t l1 = i2p::data::ByteStreamToBase64 (buf.data(), l, str.data(), strLen); return std::string (str.data(), l1); } size_t IdentityEx::GetSigningPublicKeyLen () const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->GetPublicKeyLen (); return 128; } size_t IdentityEx::GetSigningPrivateKeyLen () const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->GetPrivateKeyLen (); return GetSignatureLen ()/2; } size_t IdentityEx::GetSignatureLen () const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->GetSignatureLen (); return i2p::crypto::DSA_SIGNATURE_LENGTH; } bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->Verify (buf, len, signature); return false; } SigningKeyType IdentityEx::GetSigningKeyType () const { if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 2) return bufbe16toh (m_ExtendedBuffer); // signing key return SIGNING_KEY_TYPE_DSA_SHA1; } bool IdentityEx::IsRSA () const { auto sigType = GetSigningKeyType (); return sigType <= SIGNING_KEY_TYPE_RSA_SHA512_4096 && sigType >= SIGNING_KEY_TYPE_RSA_SHA256_2048; } CryptoKeyType IdentityEx::GetCryptoKeyType () const { if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedLen >= 4) return bufbe16toh (m_ExtendedBuffer + 2); // crypto key return CRYPTO_KEY_TYPE_ELGAMAL; } i2p::crypto::Verifier * IdentityEx::CreateVerifier (SigningKeyType keyType) { switch (keyType) { case SIGNING_KEY_TYPE_DSA_SHA1: return new i2p::crypto::DSAVerifier (); case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: return new i2p::crypto::ECDSAP256Verifier (); case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: return new i2p::crypto::ECDSAP384Verifier (); case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: return new i2p::crypto::ECDSAP521Verifier (); case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: return new i2p::crypto::EDDSA25519Verifier (); case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: return new i2p::crypto::GOSTR3410_256_Verifier (i2p::crypto::eGOSTR3410CryptoProA); case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: return new i2p::crypto::GOSTR3410_512_Verifier (i2p::crypto::eGOSTR3410TC26A512); case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogError, "Identity: RSA signing key type ", (int)keyType, " is not supported"); break; default: LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported"); } return nullptr; } void IdentityEx::CreateVerifier () const { if (m_Verifier) return; // don't create again auto verifier = CreateVerifier (GetSigningKeyType ()); if (verifier) { auto keyLen = verifier->GetPublicKeyLen (); if (keyLen <= 128) verifier->SetPublicKey (m_StandardIdentity.signingKey + 128 - keyLen); else { // for P521 uint8_t * signingKey = new uint8_t[keyLen]; memcpy (signingKey, m_StandardIdentity.signingKey, 128); size_t excessLen = keyLen - 128; memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types verifier->SetPublicKey (signingKey); delete[] signingKey; } } UpdateVerifier (verifier); } void IdentityEx::UpdateVerifier (i2p::crypto::Verifier * verifier) const { if (!m_Verifier) { auto created = m_IsVerifierCreated.exchange (true); if (!created) m_Verifier.reset (verifier); else { delete verifier; int count = 0; while (!m_Verifier && count < 500) // 5 seconds { std::this_thread::sleep_for (std::chrono::milliseconds(10)); count++; } if (!m_Verifier) LogPrint (eLogError, "Identity: couldn't get verifier in 5 seconds"); } } else delete verifier; } void IdentityEx::DropVerifier () const { // TODO: potential race condition with Verify m_IsVerifierCreated = false; m_Verifier = nullptr; } std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor (CryptoKeyType keyType, const uint8_t * key) { switch (keyType) { case CRYPTO_KEY_TYPE_ELGAMAL: return std::make_shared<i2p::crypto::ElGamalEncryptor>(key); break; case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC: case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST: return std::make_shared<i2p::crypto::ECIESP256Encryptor>(key); break; case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC: return std::make_shared<i2p::crypto::ECIESGOSTR3410Encryptor>(key); break; default: LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)keyType); }; return nullptr; } std::shared_ptr<i2p::crypto::CryptoKeyEncryptor> IdentityEx::CreateEncryptor (const uint8_t * key) const { if (!key) key = GetEncryptionPublicKey (); // use publicKey return CreateEncryptor (GetCryptoKeyType (), key); } PrivateKeys& PrivateKeys::operator=(const Keys& keys) { m_Public = std::make_shared<IdentityEx>(Identity (keys)); memcpy (m_PrivateKey, keys.privateKey, 256); // 256 memcpy (m_SigningPrivateKey, keys.signingPrivateKey, m_Public->GetSigningPrivateKeyLen ()); m_Signer = nullptr; CreateSigner (); return *this; } PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other) { m_Public = std::make_shared<IdentityEx>(*other.m_Public); memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256 memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, m_Public->GetSigningPrivateKeyLen ()); m_Signer = nullptr; CreateSigner (); return *this; } size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len) { m_Public = std::make_shared<IdentityEx>(); size_t ret = m_Public->FromBuffer (buf, len); if (!ret || ret + 256 > len) return 0; // overflow memcpy (m_PrivateKey, buf + ret, 256); // private key always 256 ret += 256; size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen (); if(signingPrivateKeySize + ret > len) return 0; // overflow memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize); ret += signingPrivateKeySize; m_Signer = nullptr; CreateSigner (); return ret; } size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const { size_t ret = m_Public->ToBuffer (buf, len); memcpy (buf + ret, m_PrivateKey, 256); // private key always 256 ret += 256; size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen (); if(ret + signingPrivateKeySize > len) return 0; // overflow memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize); ret += signingPrivateKeySize; return ret; } size_t PrivateKeys::FromBase64(const std::string& s) { uint8_t * buf = new uint8_t[s.length ()]; size_t l = i2p::data::Base64ToByteStream (s.c_str (), s.length (), buf, s.length ()); size_t ret = FromBuffer (buf, l); delete[] buf; return ret; } std::string PrivateKeys::ToBase64 () const { uint8_t * buf = new uint8_t[GetFullLen ()]; char * str = new char[GetFullLen ()*2]; size_t l = ToBuffer (buf, GetFullLen ()); size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, GetFullLen ()*2); str[l1] = 0; delete[] buf; std::string ret(str); delete[] str; return ret; } void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const { if (!m_Signer) CreateSigner(); m_Signer->Sign (buf, len, signature); } void PrivateKeys::CreateSigner () const { if (m_Signer) return; switch (m_Public->GetSigningKeyType ()) { case SIGNING_KEY_TYPE_DSA_SHA1: m_Signer.reset (new i2p::crypto::DSASigner (m_SigningPrivateKey, m_Public->GetStandardIdentity ().signingKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: m_Signer.reset (new i2p::crypto::ECDSAP256Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: m_Signer.reset (new i2p::crypto::ECDSAP384Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: m_Signer.reset (new i2p::crypto::ECDSAP521Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogError, "Identity: RSA signing key type ", (int)m_Public->GetSigningKeyType (), " is not supported"); break; case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: m_Signer.reset (new i2p::crypto::EDDSA25519Signer (m_SigningPrivateKey, m_Public->GetStandardIdentity ().certificate - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH)); break; case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: m_Signer.reset (new i2p::crypto::GOSTR3410_256_Signer (i2p::crypto::eGOSTR3410CryptoProA, m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: m_Signer.reset (new i2p::crypto::GOSTR3410_512_Signer (i2p::crypto::eGOSTR3410TC26A512, m_SigningPrivateKey)); break; default: LogPrint (eLogError, "Identity: Signing key type ", (int)m_Public->GetSigningKeyType (), " is not supported"); } } uint8_t * PrivateKeys::GetPadding() { if(m_Public->GetSigningKeyType () == SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519) return m_Public->GetEncryptionPublicKeyBuffer() + 256; else return nullptr; // TODO: implement me } std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor (const uint8_t * key) const { if (!key) key = m_PrivateKey; // use privateKey return CreateDecryptor (m_Public->GetCryptoKeyType (), key); } std::shared_ptr<i2p::crypto::CryptoKeyDecryptor> PrivateKeys::CreateDecryptor (CryptoKeyType cryptoType, const uint8_t * key) { if (!key) return nullptr; switch (cryptoType) { case CRYPTO_KEY_TYPE_ELGAMAL: return std::make_shared<i2p::crypto::ElGamalDecryptor>(key); break; case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC: case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST: return std::make_shared<i2p::crypto::ECIESP256Decryptor>(key); break; case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC: return std::make_shared<i2p::crypto::ECIESGOSTR3410Decryptor>(key); break; default: LogPrint (eLogError, "Identity: Unknown crypto key type ", (int)cryptoType); }; return nullptr; } PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type, CryptoKeyType cryptoType) { if (type != SIGNING_KEY_TYPE_DSA_SHA1) { PrivateKeys keys; // signature uint8_t signingPublicKey[512]; // signing public key is 512 bytes max switch (type) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: i2p::crypto::CreateECDSAP256RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: i2p::crypto::CreateECDSAP384RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: i2p::crypto::CreateECDSAP521RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_RSA_SHA256_2048: case SIGNING_KEY_TYPE_RSA_SHA384_3072: case SIGNING_KEY_TYPE_RSA_SHA512_4096: LogPrint (eLogWarning, "Identity: RSA signature type is not supported. Creating EdDSA"); // no break here case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: i2p::crypto::CreateEDDSA25519RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256: i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410CryptoProA, keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512: i2p::crypto::CreateGOSTR3410RandomKeys (i2p::crypto::eGOSTR3410TC26A512, keys.m_SigningPrivateKey, signingPublicKey); break; default: LogPrint (eLogWarning, "Identity: Signing key type ", (int)type, " is not supported. Create DSA-SHA1"); return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1 } // encryption uint8_t publicKey[256]; GenerateCryptoKeyPair (cryptoType, keys.m_PrivateKey, publicKey); // identity keys.m_Public = std::make_shared<IdentityEx> (publicKey, signingPublicKey, type, cryptoType); keys.CreateSigner (); return keys; } return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1 } void PrivateKeys::GenerateCryptoKeyPair (CryptoKeyType type, uint8_t * priv, uint8_t * pub) { switch (type) { case CRYPTO_KEY_TYPE_ELGAMAL: i2p::crypto::GenerateElGamalKeyPair(priv, pub); break; case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC: case CRYPTO_KEY_TYPE_ECIES_P256_SHA256_AES256CBC_TEST: i2p::crypto::CreateECIESP256RandomKeys (priv, pub); break; case CRYPTO_KEY_TYPE_ECIES_GOSTR3410_CRYPTO_PRO_A_SHA256_AES256CBC: i2p::crypto::CreateECIESGOSTR3410RandomKeys (priv, pub); break; default: LogPrint (eLogError, "Identity: Crypto key type ", (int)type, " is not supported"); } } Keys CreateRandomKeys () { Keys keys; // encryption i2p::crypto::GenerateElGamalKeyPair(keys.privateKey, keys.publicKey); // signing i2p::crypto::CreateDSARandomKeys (keys.signingPrivateKey, keys.signingKey); return keys; } IdentHash CreateRoutingKey (const IdentHash& ident) { uint8_t buf[41]; // ident + yyyymmdd memcpy (buf, (const uint8_t *)ident, 32); time_t t = time (nullptr); struct tm tm; #ifdef _WIN32 gmtime_s(&tm, &t); sprintf_s((char *)(buf + 32), 9, "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); #else gmtime_r(&t, &tm); sprintf((char *)(buf + 32), "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); #endif IdentHash key; SHA256(buf, 40, key); return key; } XORMetric operator^(const IdentHash& key1, const IdentHash& key2) { XORMetric m; #ifdef __AVX__ if(i2p::cpu::avx) { __asm__ ( "vmovups %1, %%ymm0 \n" "vmovups %2, %%ymm1 \n" "vxorps %%ymm0, %%ymm1, %%ymm1 \n" "vmovups %%ymm1, %0 \n" : "=m"(*m.metric) : "m"(*key1), "m"(*key2) : "memory", "%xmm0", "%xmm1" // should be replaced by %ymm0/1 once supported by compiler ); } else #endif { const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL (); m.metric_ll[0] = hash1[0] ^ hash2[0]; m.metric_ll[1] = hash1[1] ^ hash2[1]; m.metric_ll[2] = hash1[2] ^ hash2[2]; m.metric_ll[3] = hash1[3] ^ hash2[3]; } return m; } } }