/* * Copyright (c) 2013-2024, The PurpleI2P Project * * This file is part of Purple i2pd project and licensed under BSD3 * * See full license text in LICENSE file at top of project tree */ #include #include #include "I2PEndian.h" #include #include #include #include // for boost::to_lower #ifndef __cpp_lib_atomic_shared_ptr #include #endif #include "version.h" #include "util.h" #include "Crypto.h" #include "Base.h" #include "Timestamp.h" #include "Log.h" #include "Transports.h" #include "NetDb.hpp" #include "RouterContext.h" #include "RouterInfo.h" namespace i2p { namespace data { RouterInfo::Buffer::Buffer (const uint8_t * buf, size_t len) { if (len > size ()) len = size (); memcpy (data (), buf, len); m_BufferLen = len; } RouterInfo::RouterInfo (): m_Buffer (nullptr) { m_Addresses = AddressesPtr(new Addresses ()); // create empty list } RouterInfo::RouterInfo (const std::string& fullPath): m_FamilyID (0), m_IsUpdated (false), m_IsUnreachable (false), m_IsFloodfill (false), m_IsBufferScheduledToDelete (false), m_SupportedTransports (0), m_ReachableTransports (0), m_PublishedTransports (0), m_Caps (0), m_Version (0), m_Congestion (eLowCongestion) { m_Addresses = AddressesPtr(new Addresses ()); // create empty list m_Buffer = RouterInfo::NewBuffer (); // always RouterInfo's ReadFromFile (fullPath); } RouterInfo::RouterInfo (std::shared_ptr&& buf, size_t len): m_FamilyID (0), m_IsUpdated (true), m_IsUnreachable (false), m_IsFloodfill (false), m_IsBufferScheduledToDelete (false), m_SupportedTransports (0), m_ReachableTransports (0), m_PublishedTransports (0), m_Caps (0), m_Version (0), m_Congestion (eLowCongestion) { if (len <= MAX_RI_BUFFER_SIZE) { m_Addresses = AddressesPtr(new Addresses ()); // create empty list m_Buffer = buf; if (m_Buffer) m_Buffer->SetBufferLen (len); ReadFromBuffer (true); } else { LogPrint (eLogError, "RouterInfo: Buffer is too long ", len, ". Ignored"); m_Buffer = nullptr; m_IsUnreachable = true; } } RouterInfo::RouterInfo (const uint8_t * buf, size_t len): RouterInfo (netdb.NewRouterInfoBuffer (buf, len), len) { } RouterInfo::~RouterInfo () { } bool RouterInfo::Update (const uint8_t * buf, size_t len) { if (len > MAX_RI_BUFFER_SIZE) { LogPrint (eLogWarning, "RouterInfo: Updated buffer is too long ", len, ". Not changed"); return false; } // verify signature since we have identity already int l = len - m_RouterIdentity->GetSignatureLen (); if (m_RouterIdentity->Verify (buf, l, buf + l)) { // clean up m_IsUpdated = true; m_IsUnreachable = false; m_SupportedTransports = 0; m_ReachableTransports = 0; m_PublishedTransports = 0; m_Caps = 0; m_IsFloodfill = false; // don't clean up m_Addresses, it will be replaced in ReadFromStream ClearProperties (); // skip identity size_t identityLen = m_RouterIdentity->GetFullLen (); // read new RI std::stringstream str (std::string ((char *)buf + identityLen, len - identityLen)); ReadFromStream (str); if (!m_IsUnreachable) UpdateBuffer (buf, len); // save buffer // don't delete buffer until saved to the file } else { LogPrint (eLogWarning, "RouterInfo: Updated signature verification failed. Not changed"); return false; } return true; } void RouterInfo::SetRouterIdentity (std::shared_ptr identity) { m_RouterIdentity = identity; m_Timestamp = i2p::util::GetMillisecondsSinceEpoch (); } bool RouterInfo::LoadFile (const std::string& fullPath) { std::ifstream s(fullPath, std::ifstream::binary); if (s.is_open ()) { s.seekg (0,std::ios::end); size_t bufferLen = s.tellg (); if (bufferLen < 40 || bufferLen > MAX_RI_BUFFER_SIZE) { LogPrint(eLogError, "RouterInfo: File ", fullPath, " is malformed"); return false; } s.seekg(0, std::ios::beg); if (!m_Buffer) m_Buffer = NewBuffer (); s.read((char *)m_Buffer->data (), bufferLen); m_Buffer->SetBufferLen (bufferLen); } else { LogPrint (eLogError, "RouterInfo: Can't open file ", fullPath); return false; } return true; } void RouterInfo::ReadFromFile (const std::string& fullPath) { if (LoadFile (fullPath)) ReadFromBuffer (false); else m_IsUnreachable = true; } void RouterInfo::ReadFromBuffer (bool verifySignature) { if (!m_Buffer) { m_IsUnreachable = true; return; } size_t bufferLen = m_Buffer->GetBufferLen (); m_RouterIdentity = NewIdentity (m_Buffer->data (), bufferLen); size_t identityLen = m_RouterIdentity->GetFullLen (); if (identityLen >= bufferLen) { LogPrint (eLogError, "RouterInfo: Identity length ", identityLen, " exceeds buffer size ", bufferLen); m_IsUnreachable = true; return; } if (verifySignature) { // reject RSA signatures if (m_RouterIdentity->IsRSA ()) { LogPrint (eLogError, "RouterInfo: RSA signature type is not allowed"); m_IsUnreachable = true; return; } // verify signature int l = bufferLen - m_RouterIdentity->GetSignatureLen (); if (l < 0 || !m_RouterIdentity->Verify ((uint8_t *)m_Buffer->data (), l, (uint8_t *)m_Buffer->data () + l)) { LogPrint (eLogError, "RouterInfo: Signature verification failed"); m_IsUnreachable = true; return; } } // parse RI std::stringstream str; str.write ((const char *)m_Buffer->data () + identityLen, bufferLen - identityLen); ReadFromStream (str); if (!str) { LogPrint (eLogError, "RouterInfo: Malformed message"); m_IsUnreachable = true; } } void RouterInfo::ReadFromStream (std::istream& s) { if (!s) return; m_Caps = 0; m_Congestion = eLowCongestion; s.read ((char *)&m_Timestamp, sizeof (m_Timestamp)); m_Timestamp = be64toh (m_Timestamp); // read addresses auto addresses = NewAddresses (); uint8_t numAddresses; s.read ((char *)&numAddresses, sizeof (numAddresses)); for (int i = 0; i < numAddresses; i++) { uint8_t supportedTransports = 0; auto address = NewAddress (); uint8_t cost; // ignore s.read ((char *)&cost, sizeof (cost)); s.read ((char *)&address->date, sizeof (address->date)); bool isHost = false, isStaticKey = false, isV2 = false, isIntroKey = false; char transportStyle[6]; ReadString (transportStyle, 6, s); if (!strncmp (transportStyle, "NTCP", 4)) // NTCP or NTCP2 address->transportStyle = eTransportNTCP2; else if (!strncmp (transportStyle, "SSU", 3)) // SSU or SSU2 { address->transportStyle = eTransportSSU2; address->ssu.reset (new SSUExt ()); address->ssu->mtu = 0; } else address->transportStyle = eTransportUnknown; address->caps = 0; address->port = 0; uint16_t size, r = 0; s.read ((char *)&size, sizeof (size)); if (!s) return; size = be16toh (size); if (address->transportStyle == eTransportUnknown) { // skip unknown address s.seekg (size, std::ios_base::cur); if (s) continue; else return; } while (r < size) { char key[255], value[255]; r += ReadString (key, 255, s); s.seekg (1, std::ios_base::cur); r++; // = r += ReadString (value, 255, s); s.seekg (1, std::ios_base::cur); r++; // ; if (!s) return; if (!strcmp (key, "host")) { boost::system::error_code ecode; address->host = boost::asio::ip::make_address (value, ecode); if (!ecode && !address->host.is_unspecified ()) { if (!i2p::transport::transports.IsInReservedRange (address->host) || i2p::util::net::IsYggdrasilAddress (address->host)) isHost = true; else // we consider such address as invalid address->transportStyle = eTransportUnknown; } } else if (!strcmp (key, "port")) { try { address->port = boost::lexical_cast(value); } catch (std::exception& ex) { LogPrint (eLogWarning, "RouterInfo: 'port' exception ", ex.what ()); } } else if (!strcmp (key, "mtu")) { if (address->ssu) { try { address->ssu->mtu = boost::lexical_cast(value); } catch (std::exception& ex) { LogPrint (eLogWarning, "RouterInfo: 'mtu' exception ", ex.what ()); } } else LogPrint (eLogWarning, "RouterInfo: Unexpected field 'mtu' for NTCP2"); } else if (!strcmp (key, "caps")) address->caps = ExtractAddressCaps (value); else if (!strcmp (key, "s")) // ntcp2 or ssu2 static key { if (Base64ToByteStream (value, strlen (value), address->s, 32) == 32 && !(address->s[31] & 0x80)) // check if x25519 public key isStaticKey = true; else address->transportStyle = eTransportUnknown; // invalid address } else if (!strcmp (key, "i")) // ntcp2 iv or ssu2 intro { if (address->IsNTCP2 ()) { if (Base64ToByteStream (value, strlen (value), address->i, 16) == 16) address->published = true; // presence of "i" means "published" NTCP2 else address->transportStyle = eTransportUnknown; // invalid address } else if (address->IsSSU2 ()) { if (Base64ToByteStream (value, strlen (value), address->i, 32) == 32) isIntroKey = true; else address->transportStyle = eTransportUnknown; // invalid address } } else if (!strcmp (key, "v")) { if (!strcmp (value, "2")) isV2 = true; else { LogPrint (eLogWarning, "RouterInfo: Unexpected value ", value, " for v"); address->transportStyle = eTransportUnknown; // invalid address } } else if (key[0] == 'i') { // introducers if (!address->ssu) { LogPrint (eLogError, "RouterInfo: Introducer is presented for non-SSU address. Skipped"); continue; } size_t l = strlen(key); unsigned char index = key[l-1] - '0'; // TODO: key[l-1] = 0; if (index > 9) { LogPrint (eLogError, "RouterInfo: Unexpected introducer's index ", index, " skipped"); if (s) continue; else return; } if (index >= address->ssu->introducers.size ()) { if (address->ssu->introducers.empty ()) // first time address->ssu->introducers.reserve (3); address->ssu->introducers.resize (index + 1); } Introducer& introducer = address->ssu->introducers.at (index); if (!strcmp (key, "itag")) { try { introducer.iTag = boost::lexical_cast(value); } catch (std::exception& ex) { LogPrint (eLogWarning, "RouterInfo: 'itag' exception ", ex.what ()); } } else if (!strcmp (key, "ih")) Base64ToByteStream (value, strlen (value), introducer.iH, 32); else if (!strcmp (key, "iexp")) { try { introducer.iExp = boost::lexical_cast(value); } catch (std::exception& ex) { LogPrint (eLogWarning, "RouterInfo: 'iexp' exception ", ex.what ()); } } } if (!s) return; } if (address->transportStyle == eTransportNTCP2) { if (isStaticKey) { if (isHost && address->port) { if (address->host.is_v6 ()) supportedTransports |= (i2p::util::net::IsYggdrasilAddress (address->host) ? eNTCP2V6Mesh : eNTCP2V6); else supportedTransports |= eNTCP2V4; m_PublishedTransports |= supportedTransports; } else { address->published = false; if (address->caps) { if (address->caps & AddressCaps::eV4) supportedTransports |= eNTCP2V4; if (address->caps & AddressCaps::eV6) supportedTransports |= eNTCP2V6; } else supportedTransports |= eNTCP2V4; // most likely, since we don't have host } } } else if (address->transportStyle == eTransportSSU2 && isV2 && isStaticKey && isIntroKey) { if (address->IsV4 ()) supportedTransports |= eSSU2V4; if (address->IsV6 ()) supportedTransports |= eSSU2V6; if (isHost && address->port) { if (address->host.is_v4 ()) m_PublishedTransports |= eSSU2V4; if (address->host.is_v6 ()) m_PublishedTransports |= eSSU2V6; address->published = true; } else if (address->ssu && !address->ssu->introducers.empty ()) { // exclude invalid introducers uint32_t ts = i2p::util::GetSecondsSinceEpoch (); UpdateIntroducers (address, ts); if (!address->ssu->introducers.empty ()) // still has something m_ReachableTransports |= supportedTransports; } } if (supportedTransports) { if (!(m_SupportedTransports & supportedTransports)) // avoid duplicates { for (uint8_t i = 0; i < eNumTransports; i++) if ((1 << i) & supportedTransports) (*addresses)[i] = address; } m_SupportedTransports |= supportedTransports; } } m_ReachableTransports |= m_PublishedTransports; // update addresses #ifdef __cpp_lib_atomic_shared_ptr m_Addresses = addresses; #else boost::atomic_store (&m_Addresses, addresses); #endif // read peers uint8_t numPeers; s.read ((char *)&numPeers, sizeof (numPeers)); if (!s) return; s.seekg (numPeers*32, std::ios_base::cur); // TODO: read peers // read properties m_Version = 0; bool isNetId = false; std::string family; uint16_t size, r = 0; s.read ((char *)&size, sizeof (size)); if (!s) return; size = be16toh (size); while (r < size) { char key[255], value[255]; r += ReadString (key, 255, s); s.seekg (1, std::ios_base::cur); r++; // = r += ReadString (value, 255, s); s.seekg (1, std::ios_base::cur); r++; // ; if (!s) return; SetProperty (key, value); // extract caps if (!strcmp (key, "caps")) { ExtractCaps (value); m_IsFloodfill = IsDeclaredFloodfill (); } // extract version else if (!strcmp (key, ROUTER_INFO_PROPERTY_VERSION)) { m_Version = 0; char * ch = value; while (*ch) { if (*ch >= '0' && *ch <= '9') { m_Version *= 10; m_Version += (*ch - '0'); } ch++; } } // check netId else if (!strcmp (key, ROUTER_INFO_PROPERTY_NETID)) { isNetId = true; if (atoi (value) != i2p::context.GetNetID ()) { LogPrint (eLogError, "RouterInfo: Unexpected ", ROUTER_INFO_PROPERTY_NETID, "=", value); m_IsUnreachable = true; } } // family else if (!strcmp (key, ROUTER_INFO_PROPERTY_FAMILY)) { family = value; boost::to_lower (family); } else if (!strcmp (key, ROUTER_INFO_PROPERTY_FAMILY_SIG)) { if (netdb.GetFamilies ().VerifyFamily (family, GetIdentHash (), value)) m_FamilyID = netdb.GetFamilies ().GetFamilyID (family); else { LogPrint (eLogWarning, "RouterInfo: Family ", family, " signature verification failed"); SetUnreachable (true); } } if (!s) return; } if (!m_SupportedTransports || !isNetId || !m_Version) SetUnreachable (true); } bool RouterInfo::IsFamily (FamilyID famid) const { return m_FamilyID == famid; } void RouterInfo::ExtractCaps (const char * value) { const char * cap = value; while (*cap) { switch (*cap) { case CAPS_FLAG_FLOODFILL: m_Caps |= Caps::eFloodfill; break; case CAPS_FLAG_LOW_BANDWIDTH1: case CAPS_FLAG_LOW_BANDWIDTH2: case CAPS_FLAG_LOW_BANDWIDTH3: case CAPS_FLAG_LOW_BANDWIDTH4: m_BandwidthCap = *cap; break; case CAPS_FLAG_HIGH_BANDWIDTH: m_Caps |= Caps::eHighBandwidth; m_BandwidthCap = *cap; break; case CAPS_FLAG_EXTRA_BANDWIDTH1: case CAPS_FLAG_EXTRA_BANDWIDTH2: m_Caps |= Caps::eExtraBandwidth | Caps::eHighBandwidth; m_BandwidthCap = *cap; break; case CAPS_FLAG_HIDDEN: m_Caps |= Caps::eHidden; break; case CAPS_FLAG_REACHABLE: m_Caps |= Caps::eReachable; break; case CAPS_FLAG_UNREACHABLE: m_Caps |= Caps::eUnreachable; break; case CAPS_FLAG_MEDIUM_CONGESTION: m_Congestion = eMediumCongestion; break; case CAPS_FLAG_HIGH_CONGESTION: m_Congestion = eHighCongestion; break; case CAPS_FLAG_REJECT_ALL_CONGESTION: m_Congestion = eRejectAll; break; default: ; } cap++; } } uint8_t RouterInfo::ExtractAddressCaps (const char * value) const { uint8_t caps = 0; const char * cap = value; while (*cap) { switch (*cap) { case CAPS_FLAG_V4: caps |= AddressCaps::eV4; break; case CAPS_FLAG_V6: caps |= AddressCaps::eV6; break; case CAPS_FLAG_SSU2_TESTING: caps |= AddressCaps::eSSUTesting; break; case CAPS_FLAG_SSU2_INTRODUCER: caps |= AddressCaps::eSSUIntroducer; break; default: ; } cap++; } return caps; } void RouterInfo::UpdateIntroducers (std::shared_ptr
address, uint64_t ts) { if (!address || !address->ssu) return; int numValid = 0; for (auto& it: address->ssu->introducers) { if (it.iTag && ts < it.iExp && !it.iH.IsZero ()) numValid++; else it.iTag = 0; } if (!numValid) address->ssu->introducers.resize (0); } bool RouterInfo::IsNewer (const uint8_t * buf, size_t len) const { if (!m_RouterIdentity) return false; size_t size = m_RouterIdentity->GetFullLen (); if (size + 8 > len) return false; return bufbe64toh (buf + size) > m_Timestamp; } const uint8_t * RouterInfo::LoadBuffer (const std::string& fullPath) { if (!m_Buffer) { if (LoadFile (fullPath)) LogPrint (eLogDebug, "RouterInfo: Buffer for ", GetIdentHashAbbreviation (GetIdentHash ()), " loaded from file"); else return nullptr; } return m_Buffer->data (); } bool RouterInfo::SaveToFile (const std::string& fullPath, std::shared_ptr buf) { if (!buf) return false; std::ofstream f (fullPath, std::ofstream::binary | std::ofstream::out); if (!f.is_open ()) { LogPrint (eLogError, "RouterInfo: Can't save to ", fullPath); return false; } f.write ((char *)buf->data (), buf->GetBufferLen ()); return true; } bool RouterInfo::SaveToFile (const std::string& fullPath) { if (m_IsUnreachable) return false; // don't save bad router if (!m_Buffer) { LogPrint (eLogWarning, "RouterInfo: Can't save, m_Buffer == NULL"); return false; } return SaveToFile (fullPath, m_Buffer); } size_t RouterInfo::ReadString (char * str, size_t len, std::istream& s) const { uint8_t l; s.read ((char *)&l, 1); if (l < len) { s.read (str, l); if (!s) l = 0; // failed, return empty string str[l] = 0; } else { LogPrint (eLogWarning, "RouterInfo: String length ", (int)l, " exceeds buffer size ", len); s.seekg (l, std::ios::cur); // skip str[0] = 0; } return l+1; } void RouterInfo::AddNTCP2Address (const uint8_t * staticKey, const uint8_t * iv,int port, uint8_t caps) { auto addr = std::make_shared
(); addr->port = port; addr->transportStyle = eTransportNTCP2; addr->caps = caps; addr->date = 0; addr->published = false; memcpy (addr->s, staticKey, 32); memcpy (addr->i, iv, 16); if (addr->IsV4 ()) { m_SupportedTransports |= eNTCP2V4; (*GetAddresses ())[eNTCP2V4Idx] = addr; } if (addr->IsV6 ()) { m_SupportedTransports |= eNTCP2V6; (*GetAddresses ())[eNTCP2V6Idx] = addr; } } void RouterInfo::AddNTCP2Address (const uint8_t * staticKey, const uint8_t * iv, const boost::asio::ip::address& host, int port) { auto addr = std::make_shared
(); addr->host = host; addr->port = port; addr->transportStyle = eTransportNTCP2; addr->date = 0; addr->published = true; memcpy (addr->s, staticKey, 32); memcpy (addr->i, iv, 16); addr->caps = 0; if (host.is_unspecified ()) { if (host.is_v4 ()) addr->caps |= eV4; if (host.is_v6 ()) addr->caps |= eV6; } auto addresses = GetAddresses (); if (addr->IsV4 ()) { m_SupportedTransports |= eNTCP2V4; m_ReachableTransports |= eNTCP2V4; (*addresses)[eNTCP2V4Idx] = addr; } if (addr->IsV6 ()) { if (i2p::util::net::IsYggdrasilAddress (addr->host)) { m_SupportedTransports |= eNTCP2V6Mesh; m_ReachableTransports |= eNTCP2V6Mesh; (*addresses)[eNTCP2V6MeshIdx] = addr; } else { m_SupportedTransports |= eNTCP2V6; m_ReachableTransports |= eNTCP2V6; (*addresses)[eNTCP2V6Idx] = addr; } } } void RouterInfo::RemoveNTCP2Address (bool v4) { auto addresses = GetAddresses (); if (v4) { if ((*addresses)[eNTCP2V6Idx]) (*addresses)[eNTCP2V6Idx]->caps &= ~AddressCaps::eV4; (*addresses)[eNTCP2V4Idx].reset (); } else { if ((*addresses)[eNTCP2V4Idx]) (*addresses)[eNTCP2V4Idx]->caps &= ~AddressCaps::eV6; (*addresses)[eNTCP2V6Idx].reset (); } UpdateSupportedTransports (); } void RouterInfo::AddSSU2Address (const uint8_t * staticKey, const uint8_t * introKey, int port, uint8_t caps) { auto addr = std::make_shared
(); addr->transportStyle = eTransportSSU2; addr->port = port; addr->caps = caps; addr->date = 0; addr->ssu.reset (new SSUExt ()); addr->ssu->mtu = 0; memcpy (addr->s, staticKey, 32); memcpy (addr->i, introKey, 32); auto addresses = GetAddresses (); if (addr->IsV4 ()) { m_SupportedTransports |= eSSU2V4; (*addresses)[eSSU2V4Idx] = addr; } if (addr->IsV6 ()) { m_SupportedTransports |= eSSU2V6; (*addresses)[eSSU2V6Idx] = addr; } } void RouterInfo::AddSSU2Address (const uint8_t * staticKey, const uint8_t * introKey, const boost::asio::ip::address& host, int port) { auto addr = std::make_shared
(); addr->transportStyle = eTransportSSU2; addr->host = host; addr->port = port; addr->published = true; addr->date = 0; addr->ssu.reset (new SSUExt ()); addr->ssu->mtu = 0; memcpy (addr->s, staticKey, 32); memcpy (addr->i, introKey, 32); if (!host.is_unspecified ()) addr->caps = i2p::data::RouterInfo::eSSUTesting | i2p::data::RouterInfo::eSSUIntroducer; // BC; else { addr->caps = 0; if (host.is_v4 ()) addr->caps |= eV4; if (host.is_v6 ()) addr->caps |= eV6; } auto addresses = GetAddresses (); if (addr->IsV4 ()) { m_SupportedTransports |= eSSU2V4; m_ReachableTransports |= eSSU2V4; (*addresses)[eSSU2V4Idx] = addr; } if (addr->IsV6 ()) { m_SupportedTransports |= eSSU2V6; m_ReachableTransports |= eSSU2V6; (*addresses)[eSSU2V6Idx] = addr; } } void RouterInfo::RemoveSSU2Address (bool v4) { auto addresses = GetAddresses (); if (v4) { if ((*addresses)[eSSU2V6Idx]) (*addresses)[eSSU2V6Idx]->caps &= ~AddressCaps::eV4; (*addresses)[eSSU2V4Idx].reset (); } else { if ((*addresses)[eSSU2V4Idx]) (*addresses)[eSSU2V4Idx]->caps &= ~AddressCaps::eV6; (*addresses)[eSSU2V6Idx].reset (); } UpdateSupportedTransports (); } bool RouterInfo::IsNTCP2 (bool v4only) const { if (v4only) return m_SupportedTransports & eNTCP2V4; else return m_SupportedTransports & (eNTCP2V4 | eNTCP2V6); } void RouterInfo::EnableV6 () { if (!IsV6 ()) { uint8_t addressCaps = AddressCaps::eV6; if (IsV4 ()) addressCaps |= AddressCaps::eV4; SetUnreachableAddressesTransportCaps (addressCaps); UpdateSupportedTransports (); } } void RouterInfo::EnableV4 () { if (!IsV4 ()) { uint8_t addressCaps = AddressCaps::eV4; if (IsV6 ()) addressCaps |= AddressCaps::eV6; SetUnreachableAddressesTransportCaps (addressCaps); UpdateSupportedTransports (); } } void RouterInfo::DisableV6 () { if (IsV6 ()) { auto addresses = GetAddresses (); if ((*addresses)[eNTCP2V6Idx]) { if ((*addresses)[eNTCP2V6Idx]->IsV4 () && (*addresses)[eNTCP2V4Idx]) (*addresses)[eNTCP2V4Idx]->caps &= ~AddressCaps::eV6; (*addresses)[eNTCP2V6Idx].reset (); } if ((*addresses)[eSSU2V6Idx]) { if ((*addresses)[eSSU2V6Idx]->IsV4 () && (*addresses)[eSSU2V4Idx]) (*addresses)[eSSU2V4Idx]->caps &= ~AddressCaps::eV6; (*addresses)[eSSU2V6Idx].reset (); } UpdateSupportedTransports (); } } void RouterInfo::DisableV4 () { if (IsV4 ()) { auto addresses = GetAddresses (); if ((*addresses)[eNTCP2V4Idx]) { if ((*addresses)[eNTCP2V4Idx]->IsV6 () && (*addresses)[eNTCP2V6Idx]) (*addresses)[eNTCP2V6Idx]->caps &= ~AddressCaps::eV4; (*addresses)[eNTCP2V4Idx].reset (); } if ((*addresses)[eSSU2V4Idx]) { if ((*addresses)[eSSU2V4Idx]->IsV6 () && (*addresses)[eSSU2V6Idx]) (*addresses)[eSSU2V6Idx]->caps &= ~AddressCaps::eV4; (*addresses)[eSSU2V4Idx].reset (); } UpdateSupportedTransports (); } } void RouterInfo::EnableMesh () { if (!IsMesh ()) { m_SupportedTransports |= eNTCP2V6Mesh; m_ReachableTransports |= eNTCP2V6Mesh; } } void RouterInfo::DisableMesh () { if (IsMesh ()) { m_SupportedTransports &= ~eNTCP2V6Mesh; m_ReachableTransports &= ~eNTCP2V6Mesh; (*GetAddresses ())[eNTCP2V6MeshIdx].reset (); } } std::shared_ptr RouterInfo::GetSSU2V4Address () const { return (*GetAddresses ())[eSSU2V4Idx]; } std::shared_ptr RouterInfo::GetSSU2V6Address () const { return (*GetAddresses ())[eSSU2V6Idx]; } std::shared_ptr RouterInfo::GetSSU2Address (bool v4) const { if (v4) { if (m_SupportedTransports & eSSU2V4) return GetSSU2V4Address (); } else { if (m_SupportedTransports & eSSU2V6) return GetSSU2V6Address (); } return nullptr; } RouterInfo::AddressesPtr RouterInfo::GetAddresses () const { #ifdef __cpp_lib_atomic_shared_ptr return m_Addresses; #else return boost::atomic_load (&m_Addresses); #endif } template std::shared_ptr RouterInfo::GetAddress (Filter filter) const { // TODO: make it more generic using comparator #ifdef __cpp_lib_atomic_shared_ptr AddressesPtr addresses = m_Addresses; #else auto addresses = boost::atomic_load (&m_Addresses); #endif for (const auto& address : *addresses) if (address && filter (address)) return address; return nullptr; } std::shared_ptr RouterInfo::GetNTCP2V4Address () const { return (*GetAddresses ())[eNTCP2V4Idx]; } std::shared_ptr RouterInfo::GetNTCP2V6Address () const { return (*GetAddresses ())[eNTCP2V6Idx]; } std::shared_ptr RouterInfo::GetPublishedNTCP2V4Address () const { auto addr = (*GetAddresses ())[eNTCP2V4Idx]; if (addr && addr->IsPublishedNTCP2 ()) return addr; return nullptr; } std::shared_ptr RouterInfo::GetPublishedNTCP2V6Address () const { auto addr = (*GetAddresses ())[eNTCP2V6Idx]; if (addr && addr->IsPublishedNTCP2 ()) return addr; return nullptr; } std::shared_ptr RouterInfo::GetYggdrasilAddress () const { return (*GetAddresses ())[eNTCP2V6MeshIdx]; } std::shared_ptr RouterInfo::GetProfile () const { auto profile = m_Profile; if (!profile) { profile = GetRouterProfile (GetIdentHash ()); m_Profile = profile; } return profile; } void RouterInfo::Encrypt (const uint8_t * data, uint8_t * encrypted) const { auto encryptor = m_RouterIdentity->CreateEncryptor (nullptr); if (encryptor) encryptor->Encrypt (data, encrypted); } bool RouterInfo::IsEligibleFloodfill () const { // floodfill must have published ipv4 or reachable ipv4 and published ipv6 // >= 0.9.59 and not DSA return m_Version >= NETDB_MIN_FLOODFILL_VERSION && (IsPublished (true) || (IsReachableBy (eNTCP2V4 | eSSU2V4) && IsPublished (false))) && GetIdentity ()->GetSigningKeyType () != SIGNING_KEY_TYPE_DSA_SHA1; } bool RouterInfo::IsPublished (bool v4) const { if (m_Caps & (eUnreachable | eHidden)) return false; // if router sets U or H we assume that all addresses are not published return IsPublishedOn (v4 ? (eNTCP2V4 | eSSU2V4) : (eNTCP2V6 | eSSU2V6)); } bool RouterInfo::IsPublishedOn (CompatibleTransports transports) const { return m_PublishedTransports & transports; } bool RouterInfo::IsNAT2NATOnly (const RouterInfo& other) const { return !(m_PublishedTransports & other.m_SupportedTransports) && !(other.m_PublishedTransports & m_SupportedTransports); } bool RouterInfo::IsSSU2PeerTesting (bool v4) const { if (!(m_SupportedTransports & (v4 ? eSSU2V4 : eSSU2V6))) return false; auto addr = (*GetAddresses ())[v4 ? eSSU2V4Idx : eSSU2V6Idx]; return addr && addr->IsPeerTesting () && addr->IsReachableSSU (); } bool RouterInfo::IsSSU2Introducer (bool v4) const { if (!(m_SupportedTransports & (v4 ? eSSU2V4 : eSSU2V6))) return false; auto addr = (*GetAddresses ())[v4 ? eSSU2V4Idx : eSSU2V6Idx]; return addr && addr->IsIntroducer () && !addr->host.is_unspecified () && addr->port; } void RouterInfo::SetUnreachableAddressesTransportCaps (uint8_t transports) { for (auto& addr: *GetAddresses ()) { if (addr && !addr->published) { addr->caps &= ~(eV4 | eV6); addr->caps |= transports; } } } void RouterInfo::UpdateSupportedTransports () { m_SupportedTransports = 0; m_ReachableTransports = 0; for (const auto& addr: *GetAddresses ()) { if (!addr) continue; uint8_t transports = 0; switch (addr->transportStyle) { case eTransportNTCP2: if (addr->IsV4 ()) transports |= eNTCP2V4; if (addr->IsV6 ()) transports |= (i2p::util::net::IsYggdrasilAddress (addr->host) ? eNTCP2V6Mesh : eNTCP2V6); if (addr->IsPublishedNTCP2 ()) m_ReachableTransports |= transports; break; case eTransportSSU2: if (addr->IsV4 ()) transports |= eSSU2V4; if (addr->IsV6 ()) transports |= eSSU2V6; if (addr->IsReachableSSU ()) m_ReachableTransports |= transports; break; default: ; } m_SupportedTransports |= transports; } } void RouterInfo::UpdateIntroducers (uint64_t ts) { if (ts*1000 < m_Timestamp + INTRODUCER_UPDATE_INTERVAL) return; if (m_ReachableTransports & eSSU2V4) { auto addr = (*GetAddresses ())[eSSU2V4Idx]; if (addr && addr->UsesIntroducer ()) { UpdateIntroducers (addr, ts); if (!addr->UsesIntroducer ()) // no more valid introducers m_ReachableTransports &= ~eSSU2V4; } } if (m_ReachableTransports & eSSU2V6) { auto addr = (*GetAddresses ())[eSSU2V6Idx]; if (addr && addr->UsesIntroducer ()) { UpdateIntroducers (addr, ts); if (!addr->UsesIntroducer ()) // no more valid introducers m_ReachableTransports &= ~eSSU2V6; } } } void RouterInfo::UpdateBuffer (const uint8_t * buf, size_t len) { if (!m_Buffer) m_Buffer = NewBuffer (); if (len > m_Buffer->size ()) len = m_Buffer->size (); memcpy (m_Buffer->data (), buf, len); m_Buffer->SetBufferLen (len); m_IsBufferScheduledToDelete = false; } std::shared_ptr RouterInfo::CopyBuffer () const { if (!m_Buffer) return nullptr; return netdb.NewRouterInfoBuffer (*m_Buffer); } std::shared_ptr RouterInfo::NewBuffer () const { return netdb.NewRouterInfoBuffer (); } std::shared_ptr RouterInfo::NewAddress () const { return netdb.NewRouterInfoAddress (); } RouterInfo::AddressesPtr RouterInfo::NewAddresses () const { return netdb.NewRouterInfoAddresses (); } std::shared_ptr RouterInfo::NewIdentity (const uint8_t * buf, size_t len) const { return netdb.NewIdentity (buf, len); } void RouterInfo::RefreshTimestamp () { m_Timestamp = i2p::util::GetMillisecondsSinceEpoch (); } bool RouterInfo::IsHighCongestion (bool highBandwidth) const { switch (m_Congestion) { case eLowCongestion: return false; break; case eMediumCongestion: return highBandwidth; break; case eHighCongestion: return i2p::util::GetMillisecondsSinceEpoch () < m_Timestamp + HIGH_CONGESTION_INTERVAL*1000LL; break; case eRejectAll: return true; break; default: return false; } } std::string RouterInfo::GetTransportName (SupportedTransports tr) { switch (tr) { case eNTCP2V4: return "NTCP2V4"; case eNTCP2V6: return "NTCP2V6"; case eSSU2V4: return "SSU2V4"; case eSSU2V6: return "SSU2V6"; case eNTCP2V6Mesh: return "Mesh"; default: return ""; } } void LocalRouterInfo::CreateBuffer (const PrivateKeys& privateKeys) { RefreshTimestamp (); std::stringstream s; uint8_t ident[1024]; auto identLen = privateKeys.GetPublic ()->ToBuffer (ident, 1024); auto signatureLen = privateKeys.GetPublic ()->GetSignatureLen (); s.write ((char *)ident, identLen); WriteToStream (s); size_t len = s.str ().size (); if (len + signatureLen < MAX_RI_BUFFER_SIZE) { UpdateBuffer ((const uint8_t *)s.str ().c_str (), len); // signature privateKeys.Sign (GetBuffer (), len, GetBufferPointer (len)); SetBufferLen (len + signatureLen); } else LogPrint (eLogError, "RouterInfo: Our RouterInfo is too long ", len + signatureLen); } void LocalRouterInfo::UpdateCaps (uint8_t caps) { SetCaps (caps); UpdateCapsProperty (); } void LocalRouterInfo::UpdateCapsProperty () { std::string caps; uint8_t c = GetCaps (); if (c & eFloodfill) { if (c & eExtraBandwidth) caps += (c & eHighBandwidth) ? CAPS_FLAG_EXTRA_BANDWIDTH2 : // 'X' CAPS_FLAG_EXTRA_BANDWIDTH1; // 'P' else caps += CAPS_FLAG_HIGH_BANDWIDTH; // 'O' caps += CAPS_FLAG_FLOODFILL; // floodfill } else { if (c & eExtraBandwidth) caps += (c & eHighBandwidth) ? CAPS_FLAG_EXTRA_BANDWIDTH2 /* 'X' */ : CAPS_FLAG_EXTRA_BANDWIDTH1; /*'P' */ else caps += (c & eHighBandwidth) ? CAPS_FLAG_HIGH_BANDWIDTH /* 'O' */: CAPS_FLAG_LOW_BANDWIDTH2 /* 'L' */; // bandwidth } if (c & eHidden) caps += CAPS_FLAG_HIDDEN; // hidden if (c & eReachable) caps += CAPS_FLAG_REACHABLE; // reachable if (c & eUnreachable) caps += CAPS_FLAG_UNREACHABLE; // unreachable switch (GetCongestion ()) { case eMediumCongestion: caps += CAPS_FLAG_MEDIUM_CONGESTION; break; case eHighCongestion: caps += CAPS_FLAG_HIGH_CONGESTION; break; case eRejectAll: caps += CAPS_FLAG_REJECT_ALL_CONGESTION; break; default: ; }; SetProperty ("caps", caps); } bool LocalRouterInfo::UpdateCongestion (Congestion c) { if (c != GetCongestion ()) { SetCongestion (c); UpdateCapsProperty (); return true; } return false; } void LocalRouterInfo::WriteToStream (std::ostream& s) const { auto addresses = GetAddresses (); if (!addresses) return; uint64_t ts = htobe64 (GetTimestamp ()); s.write ((const char *)&ts, sizeof (ts)); // addresses uint8_t numAddresses = 0; for (size_t idx = 0; idx < addresses->size(); idx++) { auto addr_ptr = (*addresses)[idx]; if (!addr_ptr) continue; if (idx == eNTCP2V6Idx && addr_ptr == (*addresses)[eNTCP2V4Idx]) continue; if (idx == eSSU2V6Idx && addr_ptr == (*addresses)[eSSU2V4Idx]) continue; numAddresses++; } s.write ((char *)&numAddresses, sizeof (numAddresses)); for (size_t idx = 0; idx < addresses->size(); idx++) { auto addr_ptr = (*addresses)[idx]; if (!addr_ptr) continue; if (idx == eNTCP2V6Idx && addr_ptr == (*addresses)[eNTCP2V4Idx]) continue; if (idx == eSSU2V6Idx && addr_ptr == (*addresses)[eSSU2V4Idx]) continue; const Address& address = *addr_ptr; // calculate cost uint8_t cost = 0x7f; if (address.transportStyle == eTransportNTCP2) cost = address.published ? COST_NTCP2_PUBLISHED : COST_NTCP2_NON_PUBLISHED; else if (address.transportStyle == eTransportSSU2) cost = address.published ? COST_SSU2_DIRECT : COST_SSU2_NON_PUBLISHED; else continue; // skip unknown address s.write ((const char *)&cost, sizeof (cost)); s.write ((const char *)&address.date, sizeof (address.date)); std::stringstream properties; bool isPublished = address.published && !address.host.is_unspecified () && address.port; if (address.transportStyle == eTransportNTCP2) { WriteString ("NTCP2", s); // caps if (!isPublished) { WriteString ("caps", properties); properties << '='; std::string caps; if (address.IsV4 ()) caps += CAPS_FLAG_V4; if (address.IsV6 () || address.host.is_v6 ()) caps += CAPS_FLAG_V6; // we set 6 for unspecified ipv6 if (caps.empty ()) caps += CAPS_FLAG_V4; WriteString (caps, properties); properties << ';'; } } else if (address.transportStyle == eTransportSSU2) { WriteString ("SSU2", s); // caps std::string caps; if (isPublished) { if (address.IsPeerTesting ()) caps += CAPS_FLAG_SSU2_TESTING; if (address.IsIntroducer ()) caps += CAPS_FLAG_SSU2_INTRODUCER; } else { if (address.IsV4 ()) caps += CAPS_FLAG_V4; if (address.IsV6 () || address.host.is_v6 ()) caps += CAPS_FLAG_V6; // we set 6 for unspecified ipv6 if (caps.empty ()) caps += CAPS_FLAG_V4; } if (!caps.empty ()) { WriteString ("caps", properties); properties << '='; WriteString (caps, properties); properties << ';'; } } else WriteString ("", s); if (isPublished && !address.host.is_unspecified ()) { WriteString ("host", properties); properties << '='; WriteString (address.host.to_string (), properties); properties << ';'; } if ((address.IsNTCP2 () && isPublished) || address.IsSSU2 ()) { // publish i for NTCP2 or SSU2 WriteString ("i", properties); properties << '='; size_t len = address.IsSSU2 () ? 32 : 16; WriteString (address.i.ToBase64 (len), properties); properties << ';'; } if (address.transportStyle == eTransportSSU2) { // write introducers if any if (address.ssu && !address.ssu->introducers.empty()) { int i = 0; for (const auto& introducer: address.ssu->introducers) { if (!introducer.iTag) continue; if (introducer.iExp) // expiration is specified { WriteString ("iexp" + boost::lexical_cast(i), properties); properties << '='; WriteString (boost::lexical_cast(introducer.iExp), properties); properties << ';'; } i++; } i = 0; for (const auto& introducer: address.ssu->introducers) { if (!introducer.iTag) continue; WriteString ("ih" + boost::lexical_cast(i), properties); properties << '='; char value[64]; size_t l = ByteStreamToBase64 (introducer.iH, 32, value, 64); value[l] = 0; WriteString (value, properties); properties << ';'; i++; } i = 0; for (const auto& introducer: address.ssu->introducers) { if (!introducer.iTag) continue; WriteString ("itag" + boost::lexical_cast(i), properties); properties << '='; WriteString (boost::lexical_cast(introducer.iTag), properties); properties << ';'; i++; } } } if (address.transportStyle == eTransportSSU2) { // write mtu if (address.ssu && address.ssu->mtu) { WriteString ("mtu", properties); properties << '='; WriteString (boost::lexical_cast(address.ssu->mtu), properties); properties << ';'; } } if (isPublished && address.port) { WriteString ("port", properties); properties << '='; WriteString (boost::lexical_cast(address.port), properties); properties << ';'; } if (address.IsNTCP2 () || address.IsSSU2 ()) { // publish s and v for NTCP2 or SSU2 WriteString ("s", properties); properties << '='; WriteString (address.s.ToBase64 (), properties); properties << ';'; WriteString ("v", properties); properties << '='; WriteString ("2", properties); properties << ';'; } uint16_t size = htobe16 (properties.str ().size ()); s.write ((char *)&size, sizeof (size)); s.write (properties.str ().c_str (), properties.str ().size ()); } // peers uint8_t numPeers = 0; s.write ((char *)&numPeers, sizeof (numPeers)); // properties std::stringstream properties; for (const auto& p : m_Properties) { WriteString (p.first, properties); properties << '='; WriteString (p.second, properties); properties << ';'; } uint16_t size = htobe16 (properties.str ().size ()); s.write ((char *)&size, sizeof (size)); s.write (properties.str ().c_str (), properties.str ().size ()); } void LocalRouterInfo::SetProperty (const std::string& key, const std::string& value) { m_Properties[key] = value; } void LocalRouterInfo::DeleteProperty (const std::string& key) { m_Properties.erase (key); } std::string LocalRouterInfo::GetProperty (const std::string& key) const { auto it = m_Properties.find (key); if (it != m_Properties.end ()) return it->second; return ""; } void LocalRouterInfo::UpdateFloodfillProperty (bool floodfill) { if (floodfill) { UpdateCaps (GetCaps () | i2p::data::RouterInfo::eFloodfill); SetFloodfill (); } else { UpdateCaps (GetCaps () & ~i2p::data::RouterInfo::eFloodfill); ResetFloodfill (); } } void LocalRouterInfo::WriteString (const std::string& str, std::ostream& s) const { uint8_t len = str.size (); s.write ((char *)&len, 1); s.write (str.c_str (), len); } std::shared_ptr LocalRouterInfo::NewBuffer () const { return std::make_shared (); } std::shared_ptr LocalRouterInfo::NewAddress () const { return std::make_shared
(); } RouterInfo::AddressesPtr LocalRouterInfo::NewAddresses () const { return RouterInfo::AddressesPtr(new RouterInfo::Addresses ()); } std::shared_ptr LocalRouterInfo::NewIdentity (const uint8_t * buf, size_t len) const { return std::make_shared (buf, len); } bool LocalRouterInfo::AddSSU2Introducer (const Introducer& introducer, bool v4) { auto addresses = GetAddresses (); if (!addresses) return false; auto addr = (*addresses)[v4 ? eSSU2V4Idx : eSSU2V6Idx]; if (addr) { for (auto& intro: addr->ssu->introducers) if (intro.iTag == introducer.iTag) return false; // already presented addr->ssu->introducers.push_back (introducer); SetReachableTransports (GetReachableTransports () | ((addr->IsV4 () ? eSSU2V4 : eSSU2V6))); return true; } return false; } bool LocalRouterInfo::RemoveSSU2Introducer (const IdentHash& h, bool v4) { auto addresses = GetAddresses (); if (!addresses) return false; auto addr = (*addresses)[v4 ? eSSU2V4Idx : eSSU2V6Idx]; if (addr) { for (auto it = addr->ssu->introducers.begin (); it != addr->ssu->introducers.end (); ++it) if (h == it->iH) { addr->ssu->introducers.erase (it); if (addr->ssu->introducers.empty ()) SetReachableTransports (GetReachableTransports () & ~(addr->IsV4 () ? eSSU2V4 : eSSU2V6)); return true; } } return false; } bool LocalRouterInfo::UpdateSSU2Introducer (const IdentHash& h, bool v4, uint32_t iTag, uint32_t iExp) { auto addresses = GetAddresses (); if (!addresses) return false; auto addr = (*addresses)[v4 ? eSSU2V4Idx : eSSU2V6Idx]; if (addr) { for (auto& it: addr->ssu->introducers) if (h == it.iH) { it.iTag = iTag; it.iExp = iExp; return true; } } return false; } } }