#include #include "aes.h" namespace i2p { namespace crypto { #ifdef __x86_64__ ECBCryptoAESNI::ECBCryptoAESNI () { m_KeySchedule = m_UnalignedBuffer; uint8_t rem = ((uint64_t)m_KeySchedule) & 0x0f; if (rem) m_KeySchedule += (16 - rem); } #define KeyExpansion256 \ "pshufd $0xff, %%xmm2, %%xmm2 \n" \ "movaps %%xmm1, %%xmm4 \n" \ "pslldq $4, %%xmm4 \n" \ "pxor %%xmm4, %%xmm1 \n" \ "pslldq $4, %%xmm4 \n" \ "pxor %%xmm4, %%xmm1 \n" \ "pslldq $4, %%xmm4 \n" \ "pxor %%xmm4, %%xmm1 \n" \ "pxor %%xmm2, %%xmm1 \n" \ "movups %%xmm1, (%%rcx) \n" \ "aeskeygenassist $0, %%xmm1, %%xmm4 \n" \ "pshufd $0xaa, %%xmm4, %%xmm2 \n" \ "movaps %%xmm3, %%xmm4 \n" \ "pslldq $4, %%xmm4 \n" \ "pxor %%xmm4, %%xmm3 \n" \ "pslldq $4, %%xmm4 \n" \ "pxor %%xmm4, %%xmm3 \n" \ "pslldq $4, %%xmm4 \n" \ "pxor %%xmm4, %%xmm3 \n" \ "pxor %%xmm2, %%xmm3 \n" \ "movups %%xmm3, 16(%%rcx) \n" \ "add $32, %%rcx \n" void ECBCryptoAESNI::ExpandKey (const uint8_t * key) { __asm__ ( "movups (%%rsi), %%xmm1 \n" "movups 16(%%rsi), %%xmm3 \n" "movups %%xmm1, (%%rdi) \n" "movups %%xmm3, 16(%%rdi) \n" "lea 32(%%rdi), %%rcx \n" "aeskeygenassist $1, %%xmm3, %%xmm2 \n" KeyExpansion256 "aeskeygenassist $2, %%xmm3, %%xmm2 \n" KeyExpansion256 "aeskeygenassist $4, %%xmm3, %%xmm2 \n" KeyExpansion256 "aeskeygenassist $8, %%xmm3, %%xmm2 \n" KeyExpansion256 "aeskeygenassist $16, %%xmm3, %%xmm2 \n" KeyExpansion256 "aeskeygenassist $32, %%xmm3, %%xmm2 \n" KeyExpansion256 "aeskeygenassist $64, %%xmm3, %%xmm2 \n" // key expansion final "pshufd $0xff, %%xmm2, %%xmm2 \n" "movaps %%xmm1, %%xmm4 \n" "pslldq $4, %%xmm4 \n" "pxor %%xmm4, %%xmm1 \n" "pslldq $4, %%xmm4 \n" "pxor %%xmm4, %%xmm1 \n" "pslldq $4, %%xmm4 \n" "pxor %%xmm4, %%xmm1 \n" "pxor %%xmm2, %%xmm1 \n" "movups %%xmm1, (%%rcx) \n" : // output : "S" (key), "D" (m_KeySchedule) // input : "%rcx" // clogged ); } void ECBEncryptionAESNI::Encrypt (const ChipherBlock * in, ChipherBlock * out) { __asm__ ( "movups (%%rsi), %%xmm0 \n" "pxor (%%rdx), %%xmm0 \n" "aesenc 16(%%rdx), %%xmm0 \n" "aesenc 32(%%rdx), %%xmm0 \n" "aesenc 48(%%rdx), %%xmm0 \n" "aesenc 64(%%rdx), %%xmm0 \n" "aesenc 80(%%rdx), %%xmm0 \n" "aesenc 96(%%rdx), %%xmm0 \n" "aesenc 112(%%rdx), %%xmm0 \n" "aesenc 128(%%rdx), %%xmm0 \n" "aesenc 144(%%rdx), %%xmm0 \n" "aesenc 160(%%rdx), %%xmm0 \n" "aesenc 176(%%rdx), %%xmm0 \n" "aesenc 192(%%rdx), %%xmm0 \n" "aesenc 208(%%rdx), %%xmm0 \n" "aesenclast 224(%%rdx), %%xmm0 \n" "movups %%xmm0, (%%rdi) \n" : : "d" (m_KeySchedule), "S" (in), "D" (out) ); } void ECBDecryptionAESNI::Decrypt (const ChipherBlock * in, ChipherBlock * out) { __asm__ ( "movups (%%rsi), %%xmm0 \n" "pxor 224(%%rdx), %%xmm0 \n" "aesdec 208(%%rdx), %%xmm0 \n" "aesdec 192(%%rdx), %%xmm0 \n" "aesdec 176(%%rdx), %%xmm0 \n" "aesdec 160(%%rdx), %%xmm0 \n" "aesdec 144(%%rdx), %%xmm0 \n" "aesdec 128(%%rdx), %%xmm0 \n" "aesdec 112(%%rdx), %%xmm0 \n" "aesdec 96(%%rdx), %%xmm0 \n" "aesdec 80(%%rdx), %%xmm0 \n" "aesdec 64(%%rdx), %%xmm0 \n" "aesdec 48(%%rdx), %%xmm0 \n" "aesdec 32(%%rdx), %%xmm0 \n" "aesdec 16(%%rdx), %%xmm0 \n" "aesdeclast (%%rdx), %%xmm0 \n" "movups %%xmm0, (%%rdi) \n" : : "d" (m_KeySchedule), "S" (in), "D" (out) ); } #define CallAESIMC(offset) \ "movups "#offset"(%%rdx), %%xmm0 \n" \ "aesimc %%xmm0, %%xmm0 \n" \ "movups %%xmm0, "#offset"(%%rdx) \n" void ECBDecryptionAESNI::SetKey (const uint8_t * key) { ExpandKey (key); // expand encryption key first // then invert it using aesimc __asm__ ( CallAESIMC(16) CallAESIMC(32) CallAESIMC(48) CallAESIMC(64) CallAESIMC(80) CallAESIMC(96) CallAESIMC(112) CallAESIMC(128) CallAESIMC(144) CallAESIMC(160) CallAESIMC(176) CallAESIMC(192) CallAESIMC(208) : : "d" (m_KeySchedule) ); } #endif void CBCEncryption::Encrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out) { for (int i = 0; i < numBlocks; i++) { m_LastBlock ^= in[i]; m_ECBEncryption.Encrypt (&m_LastBlock, &m_LastBlock); out[i] = m_LastBlock; } } bool CBCEncryption::Encrypt (const uint8_t * in, std::size_t len, uint8_t * out) { div_t d = div (len, 16); if (d.rem) return false; // len is not multipple of 16 Encrypt (d.quot, (const ChipherBlock *)in, (ChipherBlock *)out); return true; } void CBCDecryption::Decrypt (int numBlocks, const ChipherBlock * in, ChipherBlock * out) { for (int i = 0; i < numBlocks; i++) { ChipherBlock tmp = in[i]; m_ECBDecryption.Decrypt (in + i, out + i); out[i] ^= m_IV; m_IV = tmp; } } bool CBCDecryption::Decrypt (const uint8_t * in, std::size_t len, uint8_t * out) { div_t d = div (len, 16); if (d.rem) return false; // len is not multipple of 16 Decrypt (d.quot, (const ChipherBlock *)in, (ChipherBlock *)out); return true; } } }