#include #include #include #include #include #include "Crypto.h" #include "I2PEndian.h" #include "Log.h" #include "Identity.h" namespace i2p { namespace data { Identity& Identity::operator=(const Keys& keys) { // copy public and signing keys together memcpy (publicKey, keys.publicKey, sizeof (publicKey) + sizeof (signingKey)); memset (certificate, 0, sizeof (certificate)); return *this; } size_t Identity::FromBuffer (const uint8_t * buf, size_t len) { memcpy (publicKey, buf, DEFAULT_IDENTITY_SIZE); return DEFAULT_IDENTITY_SIZE; } IdentHash Identity::Hash () const { IdentHash hash; SHA256(publicKey, DEFAULT_IDENTITY_SIZE, hash); return hash; } IdentityEx::IdentityEx (): m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { } IdentityEx::IdentityEx(const uint8_t * publicKey, const uint8_t * signingKey, SigningKeyType type) { memcpy (m_StandardIdentity.publicKey, publicKey, sizeof (m_StandardIdentity.publicKey)); if (type != SIGNING_KEY_TYPE_DSA_SHA1) { size_t excessLen = 0; uint8_t * excessBuf = nullptr; switch (type) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: { size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP256_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: { size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::ECDSAP384_KEY_LENGTH); break; } case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: { memcpy (m_StandardIdentity.signingKey, signingKey, 128); excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132 - 128 excessBuf = new uint8_t[excessLen]; memcpy (excessBuf, signingKey + 128, excessLen); break; } case SIGNING_KEY_TYPE_RSA_SHA256_2048: { memcpy (m_StandardIdentity.signingKey, signingKey, 128); excessLen = i2p::crypto::RSASHA2562048_KEY_LENGTH - 128; // 128 = 256 - 128 excessBuf = new uint8_t[excessLen]; memcpy (excessBuf, signingKey + 128, excessLen); break; } case SIGNING_KEY_TYPE_RSA_SHA384_3072: { memcpy (m_StandardIdentity.signingKey, signingKey, 128); excessLen = i2p::crypto::RSASHA3843072_KEY_LENGTH - 128; // 256 = 384 - 128 excessBuf = new uint8_t[excessLen]; memcpy (excessBuf, signingKey + 128, excessLen); break; } case SIGNING_KEY_TYPE_RSA_SHA512_4096: { memcpy (m_StandardIdentity.signingKey, signingKey, 128); excessLen = i2p::crypto::RSASHA5124096_KEY_LENGTH - 128; // 384 = 512 - 128 excessBuf = new uint8_t[excessLen]; memcpy (excessBuf, signingKey + 128, excessLen); break; } case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: { size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32 RAND_bytes (m_StandardIdentity.signingKey, padding); memcpy (m_StandardIdentity.signingKey + padding, signingKey, i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH); break; } default: LogPrint (eLogError, "Identity: Signing key type ", (int)type, " is not supported"); } m_ExtendedLen = 4 + excessLen; // 4 bytes extra + excess length // fill certificate m_StandardIdentity.certificate[0] = CERTIFICATE_TYPE_KEY; htobe16buf (m_StandardIdentity.certificate + 1, m_ExtendedLen); // fill extended buffer m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; htobe16buf (m_ExtendedBuffer, type); htobe16buf (m_ExtendedBuffer + 2, CRYPTO_KEY_TYPE_ELGAMAL); if (excessLen && excessBuf) { memcpy (m_ExtendedBuffer + 4, excessBuf, excessLen); delete[] excessBuf; } // calculate ident hash uint8_t * buf = new uint8_t[GetFullLen ()]; ToBuffer (buf, GetFullLen ()); SHA256(buf, GetFullLen (), m_IdentHash); delete[] buf; } else // DSA-SHA1 { memcpy (m_StandardIdentity.signingKey, signingKey, sizeof (m_StandardIdentity.signingKey)); memset (m_StandardIdentity.certificate, 0, sizeof (m_StandardIdentity.certificate)); m_IdentHash = m_StandardIdentity.Hash (); m_ExtendedLen = 0; m_ExtendedBuffer = nullptr; } CreateVerifier (); } IdentityEx::IdentityEx (const uint8_t * buf, size_t len): m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { FromBuffer (buf, len); } IdentityEx::IdentityEx (const IdentityEx& other): m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { *this = other; } IdentityEx::IdentityEx (const Identity& standard): m_ExtendedLen (0), m_ExtendedBuffer (nullptr) { *this = standard; } IdentityEx::~IdentityEx () { delete[] m_ExtendedBuffer; } IdentityEx& IdentityEx::operator=(const IdentityEx& other) { memcpy (&m_StandardIdentity, &other.m_StandardIdentity, DEFAULT_IDENTITY_SIZE); m_IdentHash = other.m_IdentHash; delete[] m_ExtendedBuffer; m_ExtendedLen = other.m_ExtendedLen; if (m_ExtendedLen > 0) { m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; memcpy (m_ExtendedBuffer, other.m_ExtendedBuffer, m_ExtendedLen); } else m_ExtendedBuffer = nullptr; m_Verifier = nullptr; return *this; } IdentityEx& IdentityEx::operator=(const Identity& standard) { m_StandardIdentity = standard; m_IdentHash = m_StandardIdentity.Hash (); delete[] m_ExtendedBuffer; m_ExtendedBuffer = nullptr; m_ExtendedLen = 0; m_Verifier = nullptr; return *this; } size_t IdentityEx::FromBuffer (const uint8_t * buf, size_t len) { if (len < DEFAULT_IDENTITY_SIZE) { LogPrint (eLogError, "Identity: buffer length ", len, " is too small"); return 0; } memcpy (&m_StandardIdentity, buf, DEFAULT_IDENTITY_SIZE); delete[] m_ExtendedBuffer; m_ExtendedLen = bufbe16toh (m_StandardIdentity.certificate + 1); if (m_ExtendedLen) { if (m_ExtendedLen + DEFAULT_IDENTITY_SIZE <= len) { m_ExtendedBuffer = new uint8_t[m_ExtendedLen]; memcpy (m_ExtendedBuffer, buf + DEFAULT_IDENTITY_SIZE, m_ExtendedLen); } else { LogPrint (eLogError, "Identity: Certificate length ", m_ExtendedLen, " exceeds buffer length ", len - DEFAULT_IDENTITY_SIZE); return 0; } } else { m_ExtendedLen = 0; m_ExtendedBuffer = nullptr; } SHA256(buf, GetFullLen (), m_IdentHash); m_Verifier = nullptr; return GetFullLen (); } size_t IdentityEx::ToBuffer (uint8_t * buf, size_t len) const { memcpy (buf, &m_StandardIdentity, DEFAULT_IDENTITY_SIZE); if (m_ExtendedLen > 0 && m_ExtendedBuffer) memcpy (buf + DEFAULT_IDENTITY_SIZE, m_ExtendedBuffer, m_ExtendedLen); return GetFullLen (); } size_t IdentityEx::FromBase64(const std::string& s) { uint8_t buf[1024]; auto len = Base64ToByteStream (s.c_str(), s.length(), buf, 1024); return FromBuffer (buf, len); } std::string IdentityEx::ToBase64 () const { uint8_t buf[1024]; char str[1536]; size_t l = ToBuffer (buf, 1024); size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, 1536); str[l1] = 0; return std::string (str); } size_t IdentityEx::GetSigningPublicKeyLen () const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->GetPublicKeyLen (); return 128; } size_t IdentityEx::GetSigningPrivateKeyLen () const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->GetPrivateKeyLen (); return GetSignatureLen ()/2; } size_t IdentityEx::GetSignatureLen () const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->GetSignatureLen (); return i2p::crypto::DSA_SIGNATURE_LENGTH; } bool IdentityEx::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const { if (!m_Verifier) CreateVerifier (); if (m_Verifier) return m_Verifier->Verify (buf, len, signature); return false; } SigningKeyType IdentityEx::GetSigningKeyType () const { if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedBuffer) return bufbe16toh (m_ExtendedBuffer); // signing key return SIGNING_KEY_TYPE_DSA_SHA1; } CryptoKeyType IdentityEx::GetCryptoKeyType () const { if (m_StandardIdentity.certificate[0] == CERTIFICATE_TYPE_KEY && m_ExtendedBuffer) return bufbe16toh (m_ExtendedBuffer + 2); // crypto key return CRYPTO_KEY_TYPE_ELGAMAL; } void IdentityEx::CreateVerifier () const { auto keyType = GetSigningKeyType (); switch (keyType) { case SIGNING_KEY_TYPE_DSA_SHA1: m_Verifier.reset (new i2p::crypto::DSAVerifier (m_StandardIdentity.signingKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: { size_t padding = 128 - i2p::crypto::ECDSAP256_KEY_LENGTH; // 64 = 128 - 64 m_Verifier.reset (new i2p::crypto::ECDSAP256Verifier (m_StandardIdentity.signingKey + padding)); break; } case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: { size_t padding = 128 - i2p::crypto::ECDSAP384_KEY_LENGTH; // 32 = 128 - 96 m_Verifier.reset (new i2p::crypto::ECDSAP384Verifier (m_StandardIdentity.signingKey + padding)); break; } case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: { uint8_t signingKey[i2p::crypto::ECDSAP521_KEY_LENGTH]; memcpy (signingKey, m_StandardIdentity.signingKey, 128); size_t excessLen = i2p::crypto::ECDSAP521_KEY_LENGTH - 128; // 4 = 132- 128 memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types m_Verifier.reset (new i2p::crypto::ECDSAP521Verifier (signingKey)); break; } case SIGNING_KEY_TYPE_RSA_SHA256_2048: { uint8_t signingKey[i2p::crypto::RSASHA2562048_KEY_LENGTH]; memcpy (signingKey, m_StandardIdentity.signingKey, 128); size_t excessLen = i2p::crypto::RSASHA2562048_KEY_LENGTH - 128; // 128 = 256- 128 memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types m_Verifier.reset (new i2p::crypto:: RSASHA2562048Verifier (signingKey)); break; } case SIGNING_KEY_TYPE_RSA_SHA384_3072: { uint8_t signingKey[i2p::crypto::RSASHA3843072_KEY_LENGTH]; memcpy (signingKey, m_StandardIdentity.signingKey, 128); size_t excessLen = i2p::crypto::RSASHA3843072_KEY_LENGTH - 128; // 256 = 384- 128 memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types m_Verifier.reset (new i2p::crypto:: RSASHA3843072Verifier (signingKey)); break; } case SIGNING_KEY_TYPE_RSA_SHA512_4096: { uint8_t signingKey[i2p::crypto::RSASHA5124096_KEY_LENGTH]; memcpy (signingKey, m_StandardIdentity.signingKey, 128); size_t excessLen = i2p::crypto::RSASHA5124096_KEY_LENGTH - 128; // 384 = 512- 128 memcpy (signingKey + 128, m_ExtendedBuffer + 4, excessLen); // right after signing and crypto key types m_Verifier.reset (new i2p::crypto:: RSASHA5124096Verifier (signingKey)); break; } case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: { size_t padding = 128 - i2p::crypto::EDDSA25519_PUBLIC_KEY_LENGTH; // 96 = 128 - 32 m_Verifier.reset (new i2p::crypto::EDDSA25519Verifier (m_StandardIdentity.signingKey + padding)); break; } default: LogPrint (eLogError, "Identity: Signing key type ", (int)keyType, " is not supported"); } } void IdentityEx::DropVerifier () const { m_Verifier = nullptr; } PrivateKeys& PrivateKeys::operator=(const Keys& keys) { m_Public = std::make_shared(Identity (keys)); memcpy (m_PrivateKey, keys.privateKey, 256); // 256 memcpy (m_SigningPrivateKey, keys.signingPrivateKey, m_Public->GetSigningPrivateKeyLen ()); m_Signer = nullptr; CreateSigner (); return *this; } PrivateKeys& PrivateKeys::operator=(const PrivateKeys& other) { m_Public = std::make_shared(*other.m_Public); memcpy (m_PrivateKey, other.m_PrivateKey, 256); // 256 memcpy (m_SigningPrivateKey, other.m_SigningPrivateKey, m_Public->GetSigningPrivateKeyLen ()); m_Signer = nullptr; CreateSigner (); return *this; } size_t PrivateKeys::FromBuffer (const uint8_t * buf, size_t len) { m_Public = std::make_shared(buf, len); size_t ret = m_Public->GetFullLen (); memcpy (m_PrivateKey, buf + ret, 256); // private key always 256 ret += 256; size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen (); memcpy (m_SigningPrivateKey, buf + ret, signingPrivateKeySize); ret += signingPrivateKeySize; m_Signer = nullptr; CreateSigner (); return ret; } size_t PrivateKeys::ToBuffer (uint8_t * buf, size_t len) const { size_t ret = m_Public->ToBuffer (buf, len); memcpy (buf + ret, m_PrivateKey, 256); // private key always 256 ret += 256; size_t signingPrivateKeySize = m_Public->GetSigningPrivateKeyLen (); memcpy (buf + ret, m_SigningPrivateKey, signingPrivateKeySize); ret += signingPrivateKeySize; return ret; } size_t PrivateKeys::FromBase64(const std::string& s) { uint8_t * buf = new uint8_t[s.length ()]; size_t l = i2p::data::Base64ToByteStream (s.c_str (), s.length (), buf, s.length ()); size_t ret = FromBuffer (buf, l); delete[] buf; return ret; } std::string PrivateKeys::ToBase64 () const { uint8_t * buf = new uint8_t[GetFullLen ()]; char * str = new char[GetFullLen ()*2]; size_t l = ToBuffer (buf, GetFullLen ()); size_t l1 = i2p::data::ByteStreamToBase64 (buf, l, str, GetFullLen ()*2); str[l1] = 0; delete[] buf; std::string ret(str); delete[] str; return ret; } void PrivateKeys::Sign (const uint8_t * buf, int len, uint8_t * signature) const { if (m_Signer) m_Signer->Sign (buf, len, signature); } void PrivateKeys::CreateSigner () { switch (m_Public->GetSigningKeyType ()) { case SIGNING_KEY_TYPE_DSA_SHA1: m_Signer.reset (new i2p::crypto::DSASigner (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: m_Signer.reset (new i2p::crypto::ECDSAP256Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: m_Signer.reset (new i2p::crypto::ECDSAP384Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: m_Signer.reset (new i2p::crypto::ECDSAP521Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_RSA_SHA256_2048: m_Signer.reset (new i2p::crypto::RSASHA2562048Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_RSA_SHA384_3072: m_Signer.reset (new i2p::crypto::RSASHA3843072Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_RSA_SHA512_4096: m_Signer.reset (new i2p::crypto::RSASHA5124096Signer (m_SigningPrivateKey)); break; case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: m_Signer.reset (new i2p::crypto::EDDSA25519Signer (m_SigningPrivateKey)); break; default: LogPrint (eLogError, "Identity: Signing key type ", (int)m_Public->GetSigningKeyType (), " is not supported"); } } PrivateKeys PrivateKeys::CreateRandomKeys (SigningKeyType type) { if (type != SIGNING_KEY_TYPE_DSA_SHA1) { PrivateKeys keys; // signature uint8_t signingPublicKey[512]; // signing public key is 512 bytes max switch (type) { case SIGNING_KEY_TYPE_ECDSA_SHA256_P256: i2p::crypto::CreateECDSAP256RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_ECDSA_SHA384_P384: i2p::crypto::CreateECDSAP384RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_ECDSA_SHA512_P521: i2p::crypto::CreateECDSAP521RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_RSA_SHA256_2048: i2p::crypto::CreateRSARandomKeys (i2p::crypto::RSASHA2562048_KEY_LENGTH, keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_RSA_SHA384_3072: i2p::crypto::CreateRSARandomKeys (i2p::crypto::RSASHA3843072_KEY_LENGTH, keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_RSA_SHA512_4096: i2p::crypto::CreateRSARandomKeys (i2p::crypto::RSASHA5124096_KEY_LENGTH, keys.m_SigningPrivateKey, signingPublicKey); break; case SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519: i2p::crypto::CreateEDDSA25519RandomKeys (keys.m_SigningPrivateKey, signingPublicKey); break; default: LogPrint (eLogError, "Identity: Signing key type ", (int)type, " is not supported. Create DSA-SHA1"); return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1 } // encryption uint8_t publicKey[256]; i2p::crypto::GenerateElGamalKeyPair (keys.m_PrivateKey, publicKey); // identity keys.m_Public = std::make_shared (publicKey, signingPublicKey, type); keys.CreateSigner (); return keys; } return PrivateKeys (i2p::data::CreateRandomKeys ()); // DSA-SHA1 } Keys CreateRandomKeys () { Keys keys; // encryption i2p::crypto::GenerateElGamalKeyPair(keys.privateKey, keys.publicKey); // signing i2p::crypto::CreateDSARandomKeys (keys.signingPrivateKey, keys.signingKey); return keys; } IdentHash CreateRoutingKey (const IdentHash& ident) { uint8_t buf[41]; // ident + yyyymmdd memcpy (buf, (const uint8_t *)ident, 32); time_t t = time (nullptr); struct tm tm; #ifdef _WIN32 gmtime_s(&tm, &t); sprintf_s((char *)(buf + 32), 9, "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); #else gmtime_r(&t, &tm); sprintf((char *)(buf + 32), "%04i%02i%02i", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); #endif IdentHash key; SHA256(buf, 40, key); return key; } XORMetric operator^(const IdentHash& key1, const IdentHash& key2) { XORMetric m; const uint64_t * hash1 = key1.GetLL (), * hash2 = key2.GetLL (); m.metric_ll[0] = hash1[0] ^ hash2[0]; m.metric_ll[1] = hash1[1] ^ hash2[1]; m.metric_ll[2] = hash1[2] ^ hash2[2]; m.metric_ll[3] = hash1[3] ^ hash2[3]; return m; } } }