1
0
mirror of https://github.com/PurpleI2P/i2pd.git synced 2025-01-22 08:14:15 +00:00

calculations in projective coordinates

This commit is contained in:
orignal 2015-11-05 15:02:10 -05:00
parent 962261fee7
commit d50ba1259c
2 changed files with 104 additions and 91 deletions

View File

@ -21,9 +21,6 @@ namespace crypto
BN_set_word (tmp, 255); BN_set_word (tmp, 255);
BN_exp (q, two, tmp, ctx); BN_exp (q, two, tmp, ctx);
BN_sub_word (q, 19); BN_sub_word (q, 19);
// q_2 = q-2
q_2 = BN_dup (q);
BN_sub_word (q_2, 2);
l = BN_new (); l = BN_new ();
// 2^252 + 27742317777372353535851937790883648493 // 2^252 + 27742317777372353535851937790883648493
@ -37,7 +34,7 @@ namespace crypto
// -121665*inv(121666) // -121665*inv(121666)
d = BN_new (); d = BN_new ();
BN_set_word (tmp, 121666); BN_set_word (tmp, 121666);
Inv (tmp, ctx); BN_mod_inverse (tmp, tmp, q, ctx);
BN_set_word (d, 121665); BN_set_word (d, 121665);
BN_set_negative (d, 1); BN_set_negative (d, 1);
BN_mul (d, d, tmp, ctx); BN_mul (d, d, tmp, ctx);
@ -53,7 +50,7 @@ namespace crypto
// 4*inv(5) // 4*inv(5)
BIGNUM * By = BN_new (); BIGNUM * By = BN_new ();
BN_set_word (By, 5); BN_set_word (By, 5);
Inv (By, ctx); BN_mod_inverse (By, By, q, ctx);
BN_mul_word (By, 4); BN_mul_word (By, 4);
BIGNUM * Bx = RecoverX (By, ctx); BIGNUM * Bx = RecoverX (By, ctx);
BN_mod (Bx, Bx, q, ctx); // % q BN_mod (Bx, Bx, q, ctx); // % q
@ -81,7 +78,6 @@ namespace crypto
BN_free (l); BN_free (l);
BN_free (d); BN_free (d);
BN_free (I); BN_free (I);
BN_free (q_2);
BN_free (two_252_2); BN_free (two_252_2);
} }
@ -96,9 +92,9 @@ namespace crypto
return DecodePoint (buf, ctx); return DecodePoint (buf, ctx);
} }
void EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf) const void EncodePublicKey (const EDDSAPoint& publicKey, uint8_t * buf, BN_CTX * ctx) const
{ {
EncodePoint (publicKey, buf); EncodePoint (Normalize (publicKey, ctx), buf);
} }
bool Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature, BN_CTX * ctx) const bool Verify (const EDDSAPoint& publicKey, const uint8_t * digest, const uint8_t * signature, BN_CTX * ctx) const
@ -110,7 +106,7 @@ namespace crypto
auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S; auto Bs = MulB (signature + EDDSA25519_SIGNATURE_LENGTH/2, ctx); // B*S;
auto PKh = Mul (publicKey, h, ctx); // PK*h auto PKh = Mul (publicKey, h, ctx); // PK*h
uint8_t diff[32]; uint8_t diff[32];
EncodePoint (Sum (Bs, -PKh, ctx), diff); // Bs - PKh encoded EncodePoint (Normalize (Sum (Bs, -PKh, ctx), ctx), diff); // Bs - PKh encoded
bool passed = !memcmp (signature, diff, 32); // R bool passed = !memcmp (signature, diff, 32); // R
BN_free (h); BN_free (h);
if (!passed) if (!passed)
@ -131,7 +127,7 @@ namespace crypto
BIGNUM * r = DecodeBN (digest, 32); // DecodeBN (digest, 64); // for test vectors BIGNUM * r = DecodeBN (digest, 32); // DecodeBN (digest, 64); // for test vectors
// calculate R // calculate R
uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf uint8_t R[EDDSA25519_SIGNATURE_LENGTH/2]; // we must use separate buffer because signature might be inside buf
EncodePoint (MulB (digest, bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors EncodePoint (Normalize (MulB (digest, bnCtx), bnCtx), R); // EncodePoint (Mul (B, r, bnCtx), R); // for test vectors
// calculate S // calculate S
SHA512_Init (&ctx); SHA512_Init (&ctx);
SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R SHA512_Update (&ctx, R, EDDSA25519_SIGNATURE_LENGTH/2); // R
@ -153,79 +149,86 @@ namespace crypto
EDDSAPoint Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const EDDSAPoint Sum (const EDDSAPoint& p1, const EDDSAPoint& p2, BN_CTX * ctx) const
{ {
BIGNUM * xx = BN_new (), * yy = BN_new (); // x3 = (x1*y2+y1*x2)*(z1*z2-d*t1*t2)
// m = d*p1.x*p2.x*p1.y*p2.y // y3 = (y1*y2+x1*x2)*(z1*z2+d*t1*t2)
BN_mul (xx, p1.x, p2.x, ctx); // z3 = (z1*z2-d*t1*t2)*(z1*z2+d*t1*t2)
BN_mul (yy, p1.y, p2.y, ctx); // t3 = (y1*y2+x1*x2)*(x1*y2+y1*x2)
BIGNUM * m = BN_dup (d); BIGNUM * x3 = BN_new (), * y3 = BN_new (), * z3 = BN_new (), * t3 = BN_new ();
BN_mul (m, m, xx, ctx); BIGNUM * z1 = p1.z, * t1 = p1.t;
BN_mul (m, m, yy, ctx); if (!z1) { z1 = BN_new (); BN_one (z1); }
// x = (p1.x*p2.y + p2.x*p1.y)*inv(1 + m) if (!t1) { t1 = BN_new (); BN_mul (t1, p1.x, p1.y, ctx); }
// y = (p1.y*p2.y + p1.x*p2.x)*inv(1 - m)
// use one inversion instead two BIGNUM * z2 = p2.z, * t2 = p2.t;
// m1 = 1-m if (!z2) { z2 = BN_new (); BN_one (z2); }
BIGNUM * m1 = BN_new (); if (!t2) { t2 = BN_new (); BN_mul (t2, p2.x, p2.y, ctx); }
BN_one (m1);
BN_sub (m1, m1, m); BIGNUM * A = BN_new (), * B = BN_new (), * C = BN_new (), * D = BN_new ();
// m = m+1 BN_mul (A, p1.x, p2.x, ctx); // A = x1*x2
BN_add_word (m, 1); BN_mul (B, p1.y, p2.y, ctx); // B = y1*y2
// y = (p1.y*p2.y + p1.x*p2.x)*m BN_mul (C, t1, t2, ctx);
BIGNUM * y = BN_new (); BN_mul (C, C, d, ctx); // C = d*t1*t2
BN_add (y, xx, yy); BN_mul (D, z1, z2, ctx); // D = z1*z2
BN_mod_mul (y, y, m, q, ctx);
// x = (p1.x*p2.y + p2.x*p1.y)*m1
BIGNUM * x = BN_new ();
BN_mul (yy, p1.x, p2.y, ctx);
BN_mul (xx, p2.x, p1.y, ctx);
BN_add (x, xx, yy);
BN_mod_mul (x, x, m1, q, ctx);
// denominator m = m*m1
BN_mod_mul (m, m, m1, q, ctx);
Inv (m, ctx);
BN_mod_mul (x, x, m, q, ctx); // x = x/m
BN_mod_mul (y, y, m, q, ctx); // y = y/m
BN_free (xx);BN_free (yy); BN_free (m); BN_free (m1); BIGNUM * E = BN_new (), * F = BN_new (), * G = BN_new (), * H = BN_new ();
return EDDSAPoint {x, y}; BN_add (x3, p1.x, p1.y);
BN_add (y3, p2.x, p2.y);
BN_mul (E, x3, y3, ctx); // (x1 + y1)*(x2 + y2)
BN_sub (E, E, A);
BN_sub (E, E, B); // E = (x1 + y1)*(x2 + y2) - A - B
BN_sub (F, D, C); // F = D - C
BN_add (G, D, C); // G = D + C
BN_add (H, B, A); // H = B + A
BN_free (A); BN_free (B); BN_free (C); BN_free (D);
if (!p1.z) BN_free (z1);
if (!p1.t) BN_free (t1);
if (!p2.z) BN_free (z2);
if (!p2.t) BN_free (t2);
BN_mod_mul (x3, E, F, q, ctx); // x3 = E*F
BN_mod_mul (y3, G, H, q, ctx); // y3 = G*H
BN_mod_mul (z3, F, G, q, ctx); // z3 = F*G
BN_mod_mul (t3, E, H, q, ctx); // t3 = E*H
BN_free (E); BN_free (F); BN_free (G); BN_free (H);
return EDDSAPoint {x3, y3, z3, t3};
} }
EDDSAPoint Double (const EDDSAPoint& p, BN_CTX * ctx) const EDDSAPoint Double (const EDDSAPoint& p, BN_CTX * ctx) const
{ {
BIGNUM * pxy = BN_new (); BIGNUM * x2 = BN_new (), * y2 = BN_new (), * z2 = BN_new (), * t2 = BN_new ();
BN_mul (pxy, p.x, p.y, ctx); BIGNUM * z = p.z, * t = p.t;
// m = d*(p.x*p.y)^2 if (!z) { z = BN_new (); BN_one (z); }
BIGNUM * m = BN_new (); BN_sqr (z, z, ctx); // z^2 (D)
BN_sqr (m, pxy, ctx); if (!t) { t = BN_new (); BN_mul (t, p.x, p.y, ctx); }
BN_mul (m, m, d, ctx); BN_sqr (t, t, ctx);
// x = (2*p.x*p.y)*inv(1 + m) BN_mul (t, t, d, ctx); // d*t^2 (C)
// y = (p.x^2 + p.y^2)*inv(1 - m)
// use one inversion instead two BIGNUM * A = BN_new (), * B = BN_new ();
// m1 = 1-m BN_sqr (A, p.x, ctx); // A = x^2
BIGNUM * m1 = BN_new (); BN_sqr (B, p.y, ctx); // B = y^2
BN_one (m1);
BN_sub (m1, m1, m);
// m = m+1
BN_add_word (m, 1);
// x = 2*p.x*p.y*m1
BN_mul_word (pxy, 2);
BIGNUM * x = BN_new ();
BN_mod_mul (x, pxy, m1, q, ctx);
// y = (p.x^2 + p.y^2)*m
BIGNUM * y = BN_new ();
BN_sqr (pxy, p.x, ctx);
BN_sqr (y, p.y, ctx);
BN_add (pxy, pxy, y);
BN_mod_mul (y, pxy, m, q, ctx);
// denominator m = m*m1
BN_mod_mul (m, m, m1, q, ctx);
Inv (m, ctx);
BN_mod_mul (x, x, m, q, ctx); // x = x/m
BN_mod_mul (y, y, m, q, ctx); // y = y/m
BN_free (pxy); BN_free (m); BN_free (m1); BIGNUM * E = BN_new (), * F = BN_new (), * G = BN_new (), * H = BN_new ();
return EDDSAPoint {x, y}; // E = (x+y)*(x+y)-A-B = x^2+y^2+2xy-A-B = 2xy
BN_mul (E, p.x, p.y, ctx);
BN_mul_word (E, 2); // E =2*x*y
BN_sub (F, z, t); // F = D - C = z - t
BN_add (G, z, t); // G = D + C = z + t
BN_add (H, B, A); // H = B + A
BN_free (A); BN_free (B);
if (!p.z) BN_free (z);
if (!p.t) BN_free (t);
BN_mod_mul (x2, E, F, q, ctx); // x2 = E*F
BN_mod_mul (y2, G, H, q, ctx); // y2 = G*H
BN_mod_mul (z2, F, G, q, ctx); // z2 = F*G
BN_mod_mul (t2, E, H, q, ctx); // t2 = E*H
BN_free (E); BN_free (F); BN_free (G); BN_free (H);
return EDDSAPoint {x2, y2, z2, t2};
} }
EDDSAPoint Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const EDDSAPoint Mul (const EDDSAPoint& p, const BIGNUM * e, BN_CTX * ctx) const
@ -262,9 +265,18 @@ namespace crypto
return res; return res;
} }
void Inv (BIGNUM * x, BN_CTX * ctx) const EDDSAPoint Normalize (const EDDSAPoint& p, BN_CTX * ctx) const
{ {
BN_mod_exp (x, x, q_2, q, ctx); if (p.z)
{
BIGNUM * x = BN_new (), * y = BN_new ();
BN_mod_inverse (y, p.z, q, ctx);
BN_mod_mul (x, p.x, y, q, ctx); // x = x/z
BN_mod_mul (y, p.y, y, q, ctx); // y = y/z
return EDDSAPoint{x, y};
}
else
return EDDSAPoint{BN_dup (p.x), BN_dup (p.y)};
} }
bool IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const bool IsOnCurve (const EDDSAPoint& p, BN_CTX * ctx) const
@ -296,7 +308,7 @@ namespace crypto
BIGNUM * xx = BN_new (); BIGNUM * xx = BN_new ();
BN_mul (xx, d, y2, ctx); BN_mul (xx, d, y2, ctx);
BN_add_word (xx, 1); BN_add_word (xx, 1);
Inv (xx, ctx); BN_mod_inverse (xx, xx, q, ctx);
BN_sub_word (y2, 1); BN_sub_word (y2, 1);
BN_mul (xx, y2, xx, ctx); BN_mul (xx, y2, xx, ctx);
// x = srqt(xx) = xx^(2^252-2) // x = srqt(xx) = xx^(2^252-2)
@ -375,7 +387,6 @@ namespace crypto
BIGNUM * q, * l, * d, * I; BIGNUM * q, * l, * d, * I;
EDDSAPoint B; // base point EDDSAPoint B; // base point
// transient values // transient values
BIGNUM * q_2; // q-2
BIGNUM * two_252_2; // 2^252-2 BIGNUM * two_252_2; // 2^252-2
EDDSAPoint Bi16[64][15]; // per 4-bits, Bi16[i][j] = (16+j+1)^i*B, we don't store zeroes EDDSAPoint Bi16[64][15]; // per 4-bits, Bi16[i][j] = (16+j+1)^i*B, we don't store zeroes
}; };
@ -418,7 +429,7 @@ namespace crypto
m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit m_ExpandedPrivateKey[EDDSA25519_PRIVATE_KEY_LENGTH - 1] |= 0x40; // set second bit
// generate and encode public key // generate and encode public key
auto publicKey = GetEd25519 ()->GeneratePublicKey (m_ExpandedPrivateKey, m_Ctx); auto publicKey = GetEd25519 ()->GeneratePublicKey (m_ExpandedPrivateKey, m_Ctx);
GetEd25519 ()->EncodePublicKey (publicKey, m_PublicKeyEncoded); GetEd25519 ()->EncodePublicKey (publicKey, m_PublicKeyEncoded, m_Ctx);
} }
void EDDSA25519Signer::Sign (const uint8_t * buf, int len, uint8_t * signature) const void EDDSA25519Signer::Sign (const uint8_t * buf, int len, uint8_t * signature) const

View File

@ -371,32 +371,34 @@ namespace crypto
struct EDDSAPoint struct EDDSAPoint
{ {
BIGNUM * x, * y; BIGNUM * x, * y;
EDDSAPoint (): x(nullptr), y(nullptr) {}; BIGNUM * z, * t; // projective coordinates
EDDSAPoint (EDDSAPoint&& other): x(nullptr), y(nullptr) EDDSAPoint (): x(nullptr), y(nullptr), z(nullptr), t(nullptr) {};
EDDSAPoint (EDDSAPoint&& other): x(nullptr), y(nullptr), z(nullptr), t(nullptr)
{ *this = std::move (other); }; { *this = std::move (other); };
EDDSAPoint (BIGNUM * x1, BIGNUM * y1): x(x1), y(y1) {}; EDDSAPoint (BIGNUM * x1, BIGNUM * y1, BIGNUM * z1 = nullptr, BIGNUM * t1 = nullptr): x(x1), y(y1), z(z1), t(t1) {};
~EDDSAPoint () { BN_free (x); BN_free (y); }; ~EDDSAPoint () { BN_free (x); BN_free (y); BN_free(z); BN_free(t); };
EDDSAPoint& operator=(EDDSAPoint&& other) EDDSAPoint& operator=(EDDSAPoint&& other)
{ {
if (x) BN_free (x); if (x) BN_free (x);
if (y) BN_free (y); if (y) BN_free (y);
if (z) BN_free (z);
if (t) BN_free (t);
x = other.x; other.x = nullptr; x = other.x; other.x = nullptr;
y = other.y; other.y = nullptr; y = other.y; other.y = nullptr;
z = other.z; other.z = nullptr;
t = other.t; other.t = nullptr;
return *this; return *this;
} }
bool operator==(const EDDSAPoint& other) const
{
return !BN_cmp (x, other.x) && !BN_cmp (y, other.y);
}
EDDSAPoint operator-() const EDDSAPoint operator-() const
{ {
BIGNUM * x1 = NULL, * y1 = NULL; BIGNUM * x1 = NULL, * y1 = NULL, * z1 = NULL, * t1 = NULL;
if (x) { x1 = BN_dup (x); BN_set_negative (x1, !BN_is_negative (x)); }; if (x) { x1 = BN_dup (x); BN_set_negative (x1, !BN_is_negative (x)); };
if (y) y1 = BN_dup (y); if (y) y1 = BN_dup (y);
return EDDSAPoint {x1, y1}; if (z) z1 = BN_dup (z);
if (t) { t1 = BN_dup (t); BN_set_negative (t1, !BN_is_negative (t)); };
return EDDSAPoint {x1, y1, z1, t1};
} }
}; };