I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

379 lines
8.5 KiB

11 years ago
#include <stdlib.h>
#include "Log.h"
#include "Base.h"
11 years ago
namespace i2p
{
namespace data
{
static void iT64Build(void);
/*
*
* BASE64 Substitution Table
* -------------------------
*
* Direct Substitution Table
*/
static char T64[64] = {
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
'w', 'x', 'y', 'z', '0', '1', '2', '3',
'4', '5', '6', '7', '8', '9', '-', '~'
};
const char * GetBase64SubstitutionTable ()
{
return T64;
}
11 years ago
/*
* Reverse Substitution Table (built in run time)
*/
static char iT64[256];
static int isFirstTime = 1;
/*
* Padding
*/
static char P64 = '=';
/*
*
* ByteStreamToBase64
* ------------------
*
* Converts binary encoded data to BASE64 format.
*
*/
size_t /* Number of bytes in the encoded buffer */
ByteStreamToBase64 (
const uint8_t * InBuffer, /* Input buffer, binary data */
size_t InCount, /* Number of bytes in the input buffer */
char * OutBuffer, /* output buffer */
size_t len /* length of output buffer */
)
{
unsigned char * ps;
unsigned char * pd;
unsigned char acc_1;
unsigned char acc_2;
int i;
int n;
int m;
size_t outCount;
ps = (unsigned char *)InBuffer;
n = InCount/3;
m = InCount%3;
if (!m)
outCount = 4*n;
else
outCount = 4*(n+1);
if (outCount > len) return 0;
11 years ago
pd = (unsigned char *)OutBuffer;
for ( i = 0; i<n; i++ ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x30;
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
acc_1 = *ps++;
acc_2 |= acc_1 >> 4; /* base64 digit #2 */
*pd++ = T64[acc_2];
acc_1 &= 0x0f;
acc_1 <<=2;
acc_2 = *ps++;
acc_1 |= acc_2>>6; /* base64 digit #3 */
*pd++ = T64[acc_1];
acc_2 &= 0x3f; /* base64 digit #4 */
*pd++ = T64[acc_2];
}
if ( m == 1 ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x3f; /* base64 digit #2 */
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
*pd++ = T64[acc_2];
*pd++ = P64;
*pd++ = P64;
}
else if ( m == 2 ){
acc_1 = *ps++;
acc_2 = (acc_1<<4)&0x3f;
acc_1 >>= 2; /* base64 digit #1 */
*pd++ = T64[acc_1];
acc_1 = *ps++;
acc_2 |= acc_1 >> 4; /* base64 digit #2 */
*pd++ = T64[acc_2];
acc_1 &= 0x0f;
acc_1 <<=2; /* base64 digit #3 */
*pd++ = T64[acc_1];
*pd++ = P64;
}
return outCount;
}
/*
*
* Base64ToByteStream
* ------------------
*
* Converts BASE64 encoded data to binary format. If input buffer is
* not properly padded, buffer of negative length is returned
*
*/
size_t /* Number of output bytes */
Base64ToByteStream (
const char * InBuffer, /* BASE64 encoded buffer */
size_t InCount, /* Number of input bytes */
uint8_t * OutBuffer, /* output buffer length */
size_t len /* length of output buffer */
)
{
unsigned char * ps;
unsigned char * pd;
unsigned char acc_1;
unsigned char acc_2;
int i;
int n;
int m;
size_t outCount;
if (isFirstTime) iT64Build();
n = InCount/4;
m = InCount%4;
if (InCount && !m)
11 years ago
outCount = 3*n;
else {
outCount = 0;
return 0;
11 years ago
}
ps = (unsigned char *)(InBuffer + InCount - 1);
while ( *ps-- == P64 ) outCount--;
ps = (unsigned char *)InBuffer;
if (outCount > len) return -1;
pd = OutBuffer;
auto endOfOutBuffer = OutBuffer + outCount;
11 years ago
for ( i = 0; i < n; i++ ){
acc_1 = iT64[*ps++];
acc_2 = iT64[*ps++];
acc_1 <<= 2;
acc_1 |= acc_2>>4;
*pd++ = acc_1;
if (pd >= endOfOutBuffer) break;
11 years ago
acc_2 <<= 4;
acc_1 = iT64[*ps++];
acc_2 |= acc_1 >> 2;
*pd++ = acc_2;
if (pd >= endOfOutBuffer) break;
11 years ago
acc_2 = iT64[*ps++];
acc_2 |= acc_1 << 6;
*pd++ = acc_2;
}
return outCount;
}
size_t Base64EncodingBufferSize (const size_t input_size)
{
auto d = div (input_size, 3);
if (d.rem) d.quot++;
return 4*d.quot;
}
11 years ago
/*
*
* iT64
* ----
* Reverse table builder. P64 character is replaced with 0
*
*
*/
static void iT64Build()
{
int i;
isFirstTime = 0;
for ( i=0; i<256; i++ ) iT64[i] = -1;
for ( i=0; i<64; i++ ) iT64[(int)T64[i]] = i;
iT64[(int)P64] = 0;
}
size_t Base32ToByteStream (const char * inBuf, size_t len, uint8_t * outBuf, size_t outLen)
{
int tmp = 0, bits = 0;
size_t ret = 0;
for (size_t i = 0; i < len; i++)
{
char ch = inBuf[i];
if (ch >= '2' && ch <= '7') // digit
ch = (ch - '2') + 26; // 26 means a-z
else if (ch >= 'a' && ch <= 'z')
ch = ch - 'a'; // a = 0
else
return 0; // unexpected character
tmp |= ch;
bits += 5;
if (bits >= 8)
{
if (ret >= outLen) return ret;
outBuf[ret] = tmp >> (bits - 8);
bits -= 8;
ret++;
}
tmp <<= 5;
}
return ret;
}
11 years ago
size_t ByteStreamToBase32 (const uint8_t * inBuf, size_t len, char * outBuf, size_t outLen)
{
size_t ret = 0, pos = 1;
int bits = 8, tmp = inBuf[0];
while (ret < outLen && (bits > 0 || pos < len))
{
if (bits < 5)
{
if (pos < len)
{
tmp <<= 8;
tmp |= inBuf[pos] & 0xFF;
pos++;
bits += 8;
}
else // last byte
{
tmp <<= (5 - bits);
bits = 5;
}
}
bits -= 5;
int ind = (tmp >> bits) & 0x1F;
outBuf[ret] = (ind < 26) ? (ind + 'a') : ((ind - 26) + '2');
ret++;
}
return ret;
}
GzipInflator::GzipInflator (): m_IsDirty (false)
{
memset (&m_Inflator, 0, sizeof (m_Inflator));
inflateInit2 (&m_Inflator, MAX_WBITS + 16); // gzip
}
GzipInflator::~GzipInflator ()
{
inflateEnd (&m_Inflator);
}
size_t GzipInflator::Inflate (const uint8_t * in, size_t inLen, uint8_t * out, size_t outLen)
{
if (m_IsDirty) inflateReset (&m_Inflator);
m_IsDirty = true;
m_Inflator.next_in = const_cast<uint8_t *>(in);
m_Inflator.avail_in = inLen;
m_Inflator.next_out = out;
m_Inflator.avail_out = outLen;
int err;
if ((err = inflate (&m_Inflator, Z_NO_FLUSH)) == Z_STREAM_END)
return outLen - m_Inflator.avail_out;
else
{
LogPrint (eLogError, "Decompression error ", err);
return 0;
}
}
bool GzipInflator::Inflate (const uint8_t * in, size_t inLen, std::ostream& s)
{
m_IsDirty = true;
uint8_t * out = new uint8_t[GZIP_CHUNK_SIZE];
m_Inflator.next_in = const_cast<uint8_t *>(in);
m_Inflator.avail_in = inLen;
int ret;
do
{
m_Inflator.next_out = out;
m_Inflator.avail_out = GZIP_CHUNK_SIZE;
ret = inflate (&m_Inflator, Z_NO_FLUSH);
if (ret < 0)
{
LogPrint (eLogError, "Decompression error ", ret);
inflateEnd (&m_Inflator);
s.setstate(std::ios_base::failbit);
break;
}
else
s.write ((char *)out, GZIP_CHUNK_SIZE - m_Inflator.avail_out);
}
while (!m_Inflator.avail_out); // more data to read
delete[] out;
return ret == Z_STREAM_END || ret < 0;
}
void GzipInflator::Inflate (std::istream& in, std::ostream& out)
{
uint8_t * buf = new uint8_t[GZIP_CHUNK_SIZE];
while (!in.eof ())
{
in.read ((char *)buf, GZIP_CHUNK_SIZE);
Inflate (buf, in.gcount (), out);
}
delete[] buf;
}
GzipDeflator::GzipDeflator (): m_IsDirty (false)
{
memset (&m_Deflator, 0, sizeof (m_Deflator));
deflateInit2 (&m_Deflator, Z_DEFAULT_COMPRESSION, Z_DEFLATED, 15 + 16, 8, Z_DEFAULT_STRATEGY); // 15 + 16 sets gzip
}
GzipDeflator::~GzipDeflator ()
{
deflateEnd (&m_Deflator);
}
void GzipDeflator::SetCompressionLevel (int level)
{
deflateParams (&m_Deflator, level, Z_DEFAULT_STRATEGY);
}
size_t GzipDeflator::Deflate (const uint8_t * in, size_t inLen, uint8_t * out, size_t outLen)
{
if (m_IsDirty) deflateReset (&m_Deflator);
m_IsDirty = true;
m_Deflator.next_in = const_cast<uint8_t *>(in);
m_Deflator.avail_in = inLen;
m_Deflator.next_out = out;
m_Deflator.avail_out = outLen;
int err;
if ((err = deflate (&m_Deflator, Z_FINISH)) == Z_STREAM_END)
return outLen - m_Deflator.avail_out;
else
{
LogPrint (eLogError, "Compression error ", err);
return 0;
}
}
11 years ago
}
}