I2P: End-to-End encrypted and anonymous Internet https://i2pd.website/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

202 lines
5.2 KiB

/*
* Copyright (c) 2013-2020, The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
#include <inttypes.h>
#include <string.h> /* memset */
#include <iostream>
#include "Log.h"
#include "I2PEndian.h"
#include "Gzip.h"
namespace i2p
{
namespace data
{
const size_t GZIP_CHUNK_SIZE = 16384;
GzipInflator::GzipInflator (): m_IsDirty (false)
{
memset (&m_Inflator, 0, sizeof (m_Inflator));
inflateInit2 (&m_Inflator, MAX_WBITS + 16); // gzip
}
GzipInflator::~GzipInflator ()
{
inflateEnd (&m_Inflator);
}
size_t GzipInflator::Inflate (const uint8_t * in, size_t inLen, uint8_t * out, size_t outLen)
{
if (inLen < 23) return 0;
if (in[10] == 0x01) // non compressed
{
size_t len = bufle16toh (in + 11);
if (len + 23 < inLen)
{
LogPrint (eLogError, "Gzip: Incorrect length");
return 0;
}
if (len > outLen) len = outLen;
memcpy (out, in + 15, len);
return len;
}
else
{
if (m_IsDirty) inflateReset (&m_Inflator);
m_IsDirty = true;
m_Inflator.next_in = const_cast<uint8_t *>(in);
m_Inflator.avail_in = inLen;
m_Inflator.next_out = out;
m_Inflator.avail_out = outLen;
int err;
if ((err = inflate (&m_Inflator, Z_NO_FLUSH)) == Z_STREAM_END)
return outLen - m_Inflator.avail_out;
// else
LogPrint (eLogError, "Gzip: Inflate error ", err);
return 0;
}
}
void GzipInflator::Inflate (const uint8_t * in, size_t inLen, std::ostream& os)
{
m_IsDirty = true;
uint8_t * out = new uint8_t[GZIP_CHUNK_SIZE];
m_Inflator.next_in = const_cast<uint8_t *>(in);
m_Inflator.avail_in = inLen;
int ret;
do
{
m_Inflator.next_out = out;
m_Inflator.avail_out = GZIP_CHUNK_SIZE;
ret = inflate (&m_Inflator, Z_NO_FLUSH);
if (ret < 0)
{
inflateEnd (&m_Inflator);
os.setstate(std::ios_base::failbit);
break;
}
os.write ((char *)out, GZIP_CHUNK_SIZE - m_Inflator.avail_out);
}
while (!m_Inflator.avail_out); // more data to read
delete[] out;
}
void GzipInflator::Inflate (std::istream& in, std::ostream& out)
{
uint8_t * buf = new uint8_t[GZIP_CHUNK_SIZE];
while (!in.eof ())
{
in.read ((char *) buf, GZIP_CHUNK_SIZE);
Inflate (buf, in.gcount (), out);
}
delete[] buf;
}
GzipDeflator::GzipDeflator (): m_IsDirty (false)
{
memset (&m_Deflator, 0, sizeof (m_Deflator));
deflateInit2 (&m_Deflator, Z_DEFAULT_COMPRESSION, Z_DEFLATED, 15 + 16, 8, Z_DEFAULT_STRATEGY); // 15 + 16 sets gzip
}
GzipDeflator::~GzipDeflator ()
{
deflateEnd (&m_Deflator);
}
void GzipDeflator::SetCompressionLevel (int level)
{
deflateParams (&m_Deflator, level, Z_DEFAULT_STRATEGY);
}
size_t GzipDeflator::Deflate (const uint8_t * in, size_t inLen, uint8_t * out, size_t outLen)
{
if (m_IsDirty) deflateReset (&m_Deflator);
m_IsDirty = true;
m_Deflator.next_in = const_cast<uint8_t *>(in);
m_Deflator.avail_in = inLen;
m_Deflator.next_out = out;
m_Deflator.avail_out = outLen;
int err;
if ((err = deflate (&m_Deflator, Z_FINISH)) == Z_STREAM_END)
{
out[9] = 0xff; // OS is always unknown
return outLen - m_Deflator.avail_out;
}
// else
LogPrint (eLogError, "Gzip: Deflate error ", err);
return 0;
}
size_t GzipDeflator::Deflate (const std::vector<std::pair<const uint8_t *, size_t> >& bufs, uint8_t * out, size_t outLen)
{
if (m_IsDirty) deflateReset (&m_Deflator);
m_IsDirty = true;
size_t offset = 0;
int err;
for (const auto& it: bufs)
{
m_Deflator.next_in = const_cast<uint8_t *>(it.first);
m_Deflator.avail_in = it.second;
m_Deflator.next_out = out + offset;
m_Deflator.avail_out = outLen - offset;
auto flush = (it == bufs.back ()) ? Z_FINISH : Z_NO_FLUSH;
err = deflate (&m_Deflator, flush);
if (err)
{
if (flush && err == Z_STREAM_END)
{
out[9] = 0xff; // OS is always unknown
return outLen - m_Deflator.avail_out;
}
break;
}
offset = outLen - m_Deflator.avail_out;
}
// else
LogPrint (eLogError, "Gzip: Deflate error ", err);
return 0;
}
size_t GzipNoCompression (const uint8_t * in, uint16_t inLen, uint8_t * out, size_t outLen)
{
static const uint8_t gzipHeader[11] = { 0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x01 };
if (outLen < (size_t)inLen + 23) return 0;
memcpy (out, gzipHeader, 11);
htole16buf (out + 11, inLen);
htole16buf (out + 13, 0xffff - inLen);
memcpy (out + 15, in, inLen);
htole32buf (out + inLen + 15, crc32 (0, in, inLen));
htole32buf (out + inLen + 19, inLen);
return inLen + 23;
}
size_t GzipNoCompression (const std::vector<std::pair<const uint8_t *, size_t> >& bufs, uint8_t * out, size_t outLen)
{
static const uint8_t gzipHeader[11] = { 0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xff, 0x01 };
memcpy (out, gzipHeader, 11);
uint32_t crc = 0;
size_t len = 0, len1;
for (const auto& it: bufs)
{
len1 = len;
len += it.second;
if (outLen < len + 23) return 0;
memcpy (out + 15 + len1, it.first, it.second);
crc = crc32 (crc, it.first, it.second);
}
if (len > 0xffff) return 0;
htole32buf (out + len + 15, crc);
htole32buf (out + len + 19, len);
htole16buf (out + 11, len);
htole16buf (out + 13, 0xffff - len);
return len + 23;
}
} // data
} // i2p