|
|
|
#include <cryptopp/integer.h>
|
|
|
|
#include <cryptopp/eccrypto.h>
|
|
|
|
#include "Log.h"
|
|
|
|
#include "Signature.h"
|
|
|
|
|
|
|
|
namespace i2p
|
|
|
|
{
|
|
|
|
namespace crypto
|
|
|
|
{
|
|
|
|
class Ed25519
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
Ed25519 ()
|
|
|
|
{
|
|
|
|
q = CryptoPP::Integer::Power2 (255) - CryptoPP::Integer (19); // 2^255-19
|
|
|
|
l = CryptoPP::Integer::Power2 (252) + CryptoPP::Integer ("27742317777372353535851937790883648493");
|
|
|
|
// 2^252 + 27742317777372353535851937790883648493
|
|
|
|
d = CryptoPP::Integer (-121665) * CryptoPP::Integer (121666).InverseMod (q); // -121665/121666
|
|
|
|
I = a_exp_b_mod_c (CryptoPP::Integer::Two (), (q - CryptoPP::Integer::One ()).DividedBy (4), q);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
CryptoPP::ECP::Point Sum (const CryptoPP::ECP::Point& p1, const CryptoPP::ECP::Point& p2)
|
|
|
|
{
|
|
|
|
CryptoPP::Integer m = d*p1.x*p2.x*p1.y*p2.y,
|
|
|
|
x = a_times_b_mod_c (p1.x*p2.y + p2.x*p1.y, (CryptoPP::Integer::One() + m).InverseMod (q), q),
|
|
|
|
y = a_times_b_mod_c (p1.y*p2.y + p1.x*p2.x, (CryptoPP::Integer::One() - m).InverseMod (q), q);
|
|
|
|
return CryptoPP::ECP::Point {x, y};
|
|
|
|
}
|
|
|
|
|
|
|
|
CryptoPP::ECP::Point Mul (const CryptoPP::ECP::Point& p, const CryptoPP::Integer& e)
|
|
|
|
{
|
|
|
|
CryptoPP::ECP::Point res {0, 1};
|
|
|
|
if (!e.IsZero ())
|
|
|
|
{
|
|
|
|
auto bitCount = e.BitCount ();
|
|
|
|
for (int i = bitCount - 1; i >= 0; i--)
|
|
|
|
{
|
|
|
|
res = Sum (res, res);
|
|
|
|
if (e.GetBit (i)) res = Sum (res, p);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsOnCurve (const CryptoPP::ECP::Point& p)
|
|
|
|
{
|
|
|
|
auto x2 = p.x.Squared(), y2 = p.y.Squared ();
|
|
|
|
return (y2 - x2 - CryptoPP::Integer::One() - d*x2*y2).Modulo (q).IsZero ();
|
|
|
|
}
|
|
|
|
|
|
|
|
CryptoPP::Integer RecoverX (const CryptoPP::Integer& y)
|
|
|
|
{
|
|
|
|
auto y2 = y.Squared ();
|
|
|
|
auto xx = (y2 - CryptoPP::Integer::One())*(d*y2 + CryptoPP::Integer::One()).InverseMod (q);
|
|
|
|
auto x = a_exp_b_mod_c (xx, (q + CryptoPP::Integer (3)).DividedBy (8), q);
|
|
|
|
if (!(x.Squared () - xx).Modulo (q).IsZero ())
|
|
|
|
x = a_times_b_mod_c (x, I, q);
|
|
|
|
if (x.IsOdd ()) x = q - x;
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
|
|
|
CryptoPP::ECP::Point DecodePoint (const CryptoPP::Integer& y)
|
|
|
|
{
|
|
|
|
auto x = RecoverX (y);
|
|
|
|
CryptoPP::ECP::Point p {x, y};
|
|
|
|
if (!IsOnCurve (p))
|
|
|
|
{
|
|
|
|
LogPrint (eLogError, "Decoded point is not on 25519");
|
|
|
|
return CryptoPP::ECP::Point {0, 1};
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
CryptoPP::Integer q, l, d, I;
|
|
|
|
};
|
|
|
|
|
|
|
|
bool EDDSA25519Verifier::Verify (const uint8_t * buf, size_t len, const uint8_t * signature) const
|
|
|
|
{
|
|
|
|
return true; // TODO:
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|