/*
* Copyright ( c ) 2013 - 2022 , The PurpleI2P Project
*
* This file is part of Purple i2pd project and licensed under BSD3
*
* See full license text in LICENSE file at top of project tree
*/
# ifndef CRYPTO_H__
# define CRYPTO_H__
# include <inttypes.h>
# include <string>
# include <vector>
# include <openssl/bn.h>
# include <openssl/dh.h>
# include <openssl/aes.h>
# include <openssl/dsa.h>
# include <openssl/ecdsa.h>
# include <openssl/rsa.h>
# include <openssl/sha.h>
# include <openssl/evp.h>
# include <openssl/rand.h>
# include <openssl/engine.h>
# include <openssl/opensslv.h>
# include "Base.h"
# include "Tag.h"
# include "CPU.h"
// recognize openssl version and features
# if (defined(LIBRESSL_VERSION_NUMBER) && (LIBRESSL_VERSION_NUMBER >= 0x3050200fL)) // LibreSSL 3.5.2 and above
# define LEGACY_OPENSSL 0
# elif ((OPENSSL_VERSION_NUMBER < 0x010100000) || defined(LIBRESSL_VERSION_NUMBER)) // 1.0.2 and below or LibreSSL
# define LEGACY_OPENSSL 1
# define X509_getm_notBefore X509_get_notBefore
# define X509_getm_notAfter X509_get_notAfter
# else
# define LEGACY_OPENSSL 0
# if (OPENSSL_VERSION_NUMBER >= 0x010101000) // 1.1.1
# define OPENSSL_HKDF 1
# define OPENSSL_EDDSA 1
# define OPENSSL_X25519 1
# if (OPENSSL_VERSION_NUMBER != 0x030000000) // 3.0.0, regression in SipHash
# define OPENSSL_SIPHASH 1
# endif
# endif
# if !defined OPENSSL_NO_CHACHA && !defined OPENSSL_NO_POLY1305 // some builds might not include them
# define OPENSSL_AEAD_CHACHA20_POLY1305 1
# endif
# endif
namespace i2p
{
namespace crypto
{
bool bn2buf ( const BIGNUM * bn , uint8_t * buf , size_t len ) ;
// DSA
DSA * CreateDSA ( ) ;
// RSA
const BIGNUM * GetRSAE ( ) ;
// x25519
class X25519Keys
{
public :
X25519Keys ( ) ;
X25519Keys ( const uint8_t * priv , const uint8_t * pub ) ; // if pub is null, derive from priv
~ X25519Keys ( ) ;
void GenerateKeys ( ) ;
const uint8_t * GetPublicKey ( ) const { return m_PublicKey ; } ;
void GetPrivateKey ( uint8_t * priv ) const ;
void SetPrivateKey ( const uint8_t * priv , bool calculatePublic = false ) ;
bool Agree ( const uint8_t * pub , uint8_t * shared ) ;
bool IsElligatorIneligible ( ) const { return m_IsElligatorIneligible ; }
void SetElligatorIneligible ( ) { m_IsElligatorIneligible = true ; }
private :
uint8_t m_PublicKey [ 32 ] ;
# if OPENSSL_X25519
EVP_PKEY_CTX * m_Ctx ;
EVP_PKEY * m_Pkey ;
# else
BN_CTX * m_Ctx ;
uint8_t m_PrivateKey [ 32 ] ;
# endif
bool m_IsElligatorIneligible = false ; // true if definitely ineligible
} ;
// ElGamal
void ElGamalEncrypt ( const uint8_t * key , const uint8_t * data , uint8_t * encrypted ) ; // 222 bytes data, 514 bytes encrypted
bool ElGamalDecrypt ( const uint8_t * key , const uint8_t * encrypted , uint8_t * data ) ; // 514 bytes encrypted, 222 data
void GenerateElGamalKeyPair ( uint8_t * priv , uint8_t * pub ) ;
// ECIES
void ECIESEncrypt ( const EC_GROUP * curve , const EC_POINT * key , const uint8_t * data , uint8_t * encrypted ) ; // 222 bytes data, 514 bytes encrypted
bool ECIESDecrypt ( const EC_GROUP * curve , const BIGNUM * key , const uint8_t * encrypted , uint8_t * data ) ; // 514 bytes encrypted, 222 data
void GenerateECIESKeyPair ( const EC_GROUP * curve , BIGNUM * & priv , EC_POINT * & pub ) ;
// AES
struct ChipherBlock
{
uint8_t buf [ 16 ] ;
void operator ^ = ( const ChipherBlock & other ) // XOR
{
if ( ! ( ( ( size_t ) buf | ( size_t ) other . buf ) & 0x03 ) ) // multiple of 4 ?
{
for ( int i = 0 ; i < 4 ; i + + )
reinterpret_cast < uint32_t * > ( buf ) [ i ] ^ = reinterpret_cast < const uint32_t * > ( other . buf ) [ i ] ;
}
else
{
for ( int i = 0 ; i < 16 ; i + + )
buf [ i ] ^ = other . buf [ i ] ;
}
}
} ;
typedef i2p : : data : : Tag < 32 > AESKey ;
template < size_t sz >
class AESAlignedBuffer // 16 bytes alignment
{
public :
AESAlignedBuffer ( )
{
m_Buf = m_UnalignedBuffer ;
uint8_t rem = ( ( size_t ) m_Buf ) & 0x0f ;
if ( rem )
m_Buf + = ( 16 - rem ) ;
}
operator uint8_t * ( ) { return m_Buf ; } ;
operator const uint8_t * ( ) const { return m_Buf ; } ;
ChipherBlock * GetChipherBlock ( ) { return ( ChipherBlock * ) m_Buf ; } ;
const ChipherBlock * GetChipherBlock ( ) const { return ( const ChipherBlock * ) m_Buf ; } ;
private :
uint8_t m_UnalignedBuffer [ sz + 15 ] ; // up to 15 bytes alignment
uint8_t * m_Buf ;
} ;
# ifdef __AES__
class ECBCryptoAESNI
{
public :
uint8_t * GetKeySchedule ( ) { return m_KeySchedule ; } ;
protected :
void ExpandKey ( const AESKey & key ) ;
private :
AESAlignedBuffer < 240 > m_KeySchedule ; // 14 rounds for AES-256, 240 bytes
} ;
# endif
# ifdef __AES__
class ECBEncryption : public ECBCryptoAESNI
# else
class ECBEncryption
# endif
{
public :
void SetKey ( const AESKey & key ) ;
void Encrypt ( const ChipherBlock * in , ChipherBlock * out ) ;
private :
AES_KEY m_Key ;
} ;
# ifdef __AES__
class ECBDecryption : public ECBCryptoAESNI
# else
class ECBDecryption
# endif
{
public :
void SetKey ( const AESKey & key ) ;
void Decrypt ( const ChipherBlock * in , ChipherBlock * out ) ;
private :
AES_KEY m_Key ;
} ;
class CBCEncryption
{
public :
CBCEncryption ( ) { memset ( ( uint8_t * ) m_LastBlock , 0 , 16 ) ; } ;
void SetKey ( const AESKey & key ) { m_ECBEncryption . SetKey ( key ) ; } ; // 32 bytes
void SetIV ( const uint8_t * iv ) { memcpy ( ( uint8_t * ) m_LastBlock , iv , 16 ) ; } ; // 16 bytes
void GetIV ( uint8_t * iv ) const { memcpy ( iv , ( const uint8_t * ) m_LastBlock , 16 ) ; } ;
void Encrypt ( int numBlocks , const ChipherBlock * in , ChipherBlock * out ) ;
void Encrypt ( const uint8_t * in , std : : size_t len , uint8_t * out ) ;
void Encrypt ( const uint8_t * in , uint8_t * out ) ; // one block
ECBEncryption & ECB ( ) { return m_ECBEncryption ; }
private :
AESAlignedBuffer < 16 > m_LastBlock ;
ECBEncryption m_ECBEncryption ;
} ;
class CBCDecryption
{
public :
CBCDecryption ( ) { memset ( ( uint8_t * ) m_IV , 0 , 16 ) ; } ;
void SetKey ( const AESKey & key ) { m_ECBDecryption . SetKey ( key ) ; } ; // 32 bytes
void SetIV ( const uint8_t * iv ) { memcpy ( ( uint8_t * ) m_IV , iv , 16 ) ; } ; // 16 bytes
void GetIV ( uint8_t * iv ) const { memcpy ( iv , ( const uint8_t * ) m_IV , 16 ) ; } ;
void Decrypt ( int numBlocks , const ChipherBlock * in , ChipherBlock * out ) ;
void Decrypt ( const uint8_t * in , std : : size_t len , uint8_t * out ) ;
void Decrypt ( const uint8_t * in , uint8_t * out ) ; // one block
ECBDecryption & ECB ( ) { return m_ECBDecryption ; }
private :
AESAlignedBuffer < 16 > m_IV ;
ECBDecryption m_ECBDecryption ;
} ;
class TunnelEncryption // with double IV encryption
{
public :
void SetKeys ( const AESKey & layerKey , const AESKey & ivKey )
{
m_LayerEncryption . SetKey ( layerKey ) ;
m_IVEncryption . SetKey ( ivKey ) ;
}
void Encrypt ( const uint8_t * in , uint8_t * out ) ; // 1024 bytes (16 IV + 1008 data)
private :
ECBEncryption m_IVEncryption ;
CBCEncryption m_LayerEncryption ;
} ;
class TunnelDecryption // with double IV encryption
{
public :
void SetKeys ( const AESKey & layerKey , const AESKey & ivKey )
{
m_LayerDecryption . SetKey ( layerKey ) ;
m_IVDecryption . SetKey ( ivKey ) ;
}
void Decrypt ( const uint8_t * in , uint8_t * out ) ; // 1024 bytes (16 IV + 1008 data)
private :
ECBDecryption m_IVDecryption ;
CBCDecryption m_LayerDecryption ;
} ;
// AEAD/ChaCha20/Poly1305
bool AEADChaCha20Poly1305 ( const uint8_t * msg , size_t msgLen , const uint8_t * ad , size_t adLen , const uint8_t * key , const uint8_t * nonce , uint8_t * buf , size_t len , bool encrypt ) ; // msgLen is len without tag
void AEADChaCha20Poly1305Encrypt ( const std : : vector < std : : pair < uint8_t * , size_t > > & bufs , const uint8_t * key , const uint8_t * nonce , uint8_t * mac ) ; // encrypt multiple buffers with zero ad
// ChaCha20
void ChaCha20 ( const uint8_t * msg , size_t msgLen , const uint8_t * key , const uint8_t * nonce , uint8_t * out ) ;
// HKDF
void HKDF ( const uint8_t * salt , const uint8_t * key , size_t keyLen , const std : : string & info , uint8_t * out , size_t outLen = 64 ) ; // salt - 32, out - 32 or 64, info <= 32
// Noise
struct NoiseSymmetricState
{
uint8_t m_H [ 32 ] /*h*/ , m_CK [ 64 ] /*[ck, k]*/ ;
void MixHash ( const uint8_t * buf , size_t len ) ;
void MixHash ( const std : : vector < std : : pair < uint8_t * , size_t > > & bufs ) ;
void MixKey ( const uint8_t * sharedSecret ) ;
} ;
void InitNoiseNState ( NoiseSymmetricState & state , const uint8_t * pub ) ; // Noise_N (tunnels, router)
void InitNoiseXKState ( NoiseSymmetricState & state , const uint8_t * pub ) ; // Noise_XK (NTCP2)
void InitNoiseXKState1 ( NoiseSymmetricState & state , const uint8_t * pub ) ; // Noise_XK (SSU2)
void InitNoiseIKState ( NoiseSymmetricState & state , const uint8_t * pub ) ; // Noise_IK (ratchets)
// init and terminate
void InitCrypto ( bool precomputation , bool aesni , bool force ) ;
void TerminateCrypto ( ) ;
}
}
// take care about openssl below 1.1.0
# if LEGACY_OPENSSL
// define getters and setters introduced in 1.1.0
inline int DSA_set0_pqg ( DSA * d , BIGNUM * p , BIGNUM * q , BIGNUM * g )
{
if ( d - > p ) BN_free ( d - > p ) ;
if ( d - > q ) BN_free ( d - > q ) ;
if ( d - > g ) BN_free ( d - > g ) ;
d - > p = p ; d - > q = q ; d - > g = g ; return 1 ;
}
inline int DSA_set0_key ( DSA * d , BIGNUM * pub_key , BIGNUM * priv_key )
{
if ( d - > pub_key ) BN_free ( d - > pub_key ) ;
if ( d - > priv_key ) BN_free ( d - > priv_key ) ;
d - > pub_key = pub_key ; d - > priv_key = priv_key ; return 1 ;
}
inline void DSA_get0_key ( const DSA * d , const BIGNUM * * pub_key , const BIGNUM * * priv_key )
{ * pub_key = d - > pub_key ; * priv_key = d - > priv_key ; }
inline int DSA_SIG_set0 ( DSA_SIG * sig , BIGNUM * r , BIGNUM * s )
{
if ( sig - > r ) BN_free ( sig - > r ) ;
if ( sig - > s ) BN_free ( sig - > s ) ;
sig - > r = r ; sig - > s = s ; return 1 ;
}
inline void DSA_SIG_get0 ( const DSA_SIG * sig , const BIGNUM * * pr , const BIGNUM * * ps )
{ * pr = sig - > r ; * ps = sig - > s ; }
inline int ECDSA_SIG_set0 ( ECDSA_SIG * sig , BIGNUM * r , BIGNUM * s )
{
if ( sig - > r ) BN_free ( sig - > r ) ;
if ( sig - > s ) BN_free ( sig - > s ) ;
sig - > r = r ; sig - > s = s ; return 1 ;
}
inline void ECDSA_SIG_get0 ( const ECDSA_SIG * sig , const BIGNUM * * pr , const BIGNUM * * ps )
{ * pr = sig - > r ; * ps = sig - > s ; }
inline int RSA_set0_key ( RSA * r , BIGNUM * n , BIGNUM * e , BIGNUM * d )
{
if ( r - > n ) BN_free ( r - > n ) ;
if ( r - > e ) BN_free ( r - > e ) ;
if ( r - > d ) BN_free ( r - > d ) ;
r - > n = n ; r - > e = e ; r - > d = d ; return 1 ;
}
inline void RSA_get0_key ( const RSA * r , const BIGNUM * * n , const BIGNUM * * e , const BIGNUM * * d )
{ * n = r - > n ; * e = r - > e ; * d = r - > d ; }
inline int DH_set0_pqg ( DH * dh , BIGNUM * p , BIGNUM * q , BIGNUM * g )
{
if ( dh - > p ) BN_free ( dh - > p ) ;
if ( dh - > q ) BN_free ( dh - > q ) ;
if ( dh - > g ) BN_free ( dh - > g ) ;
dh - > p = p ; dh - > q = q ; dh - > g = g ; return 1 ;
}
inline int DH_set0_key ( DH * dh , BIGNUM * pub_key , BIGNUM * priv_key )
{
if ( dh - > pub_key ) BN_free ( dh - > pub_key ) ;
if ( dh - > priv_key ) BN_free ( dh - > priv_key ) ;
dh - > pub_key = pub_key ; dh - > priv_key = priv_key ; return 1 ;
}
inline void DH_get0_key ( const DH * dh , const BIGNUM * * pub_key , const BIGNUM * * priv_key )
{ * pub_key = dh - > pub_key ; * priv_key = dh - > priv_key ; }
inline RSA * EVP_PKEY_get0_RSA ( EVP_PKEY * pkey )
{ return pkey - > pkey . rsa ; }
inline EVP_MD_CTX * EVP_MD_CTX_new ( )
{ return EVP_MD_CTX_create ( ) ; }
inline void EVP_MD_CTX_free ( EVP_MD_CTX * ctx )
{ EVP_MD_CTX_destroy ( ctx ) ; }
// ssl
# define TLS_method TLSv1_method
# endif
# endif