1
0
mirror of https://github.com/PurpleI2P/i2pd-tools synced 2025-01-15 09:10:01 +00:00

Merge pull request #87 from wipedlifepotato/master

change depencies.sh
This commit is contained in:
orignal 2023-07-31 13:34:19 -04:00 committed by GitHub
commit 24cf49411f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 1498 additions and 9 deletions

View File

@ -14,14 +14,55 @@ dependWin="mingw-w64-x86_64-boost \
mingw-w64-x86_64-zlib"
kernel=`uname -a`
function isLsbReleaseExists() {
if which lsb_release > /dev/null; # do whereis can be too?
then
return 0
else
return 1
fi
}
case "$kernel" in
*Ubuntu*|*Debian*)
sudo apt install $dependNix;;
*gentoo*)
sudo emerge --deep --newuse dev-libs/boost dev-libs/openssl;;
*MINGW64*)
pacman -S $dependWin;;
*)
echo "Just install libboost and libopenssl dev packages on your pc";;
function anotherDistr(){
echo "Just install libboost and libopenssl dev packages on your pc";
return 0
}
function installDeb(){
sudo apt-get install $dependNix;
return 0
}
function installOnGentoo(){
sudo emerge --deep --newuse dev-libs/boost dev-libs/openssl;
return 0
}
function installOnWin() {
pacman -S $depenWin;
return 0
}
function doInstallDepencies() {
case "$1" in
*Ubuntu*|*Debian*)
installDeb
;;
*gentoo*)
installOnGentoo
;;
*MINGW64*)
installOnWin
;;
*)
anotherDistr
;;
esac
}
if isLsbReleaseExists ;
then
distr=`lsb_release -i`
doInstallDepencies "$distr"
else #
doInstallDepencies "$kernel"
fi

View File

@ -0,0 +1,467 @@
#include "Crypto.h"
#include "Identity.h"
#include "I2PEndian.h"
#include "common/key.hpp"
#include <regex>
#include <mutex>
#include <getopt.h>
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <openssl/rand.h>
#include <thread>
#include <unistd.h>
#include <vector>
#ifdef _WIN32
#include <windows.h>
#endif
// sha256
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
#define DEF_OUTNAME "private.dat"
static bool found = false;
static size_t MutateByte;
static uint8_t * KeyBuf;
unsigned int count_cpu;
const uint8_t lastBlock[64] =
{
0x05, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x80, // 7 bytes EdDSA certificate
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x38 // 3128 bits (391 bytes)
};
static struct
{
bool reg = false;
int threads = -1;
i2p::data::SigningKeyType signature;
std::string outputpath = "";
std::regex regex;
bool sig_type = true;
} options;
void check_sig_type()
{
if (SigTypeToName(options.signature).find("unknown") != std::string::npos)
{
std::cerr << "Incorrect signature type" << std::endl;
options.sig_type = false;
}
}
void inline CalculateW (const uint8_t block[64], uint32_t W[64])
{
/**
* implementation of orignal
*/
for (int i = 0; i < 16; i++)
#ifdef _WIN32
W[i] = htobe32(((uint32_t *)(block))[i]);
#else // from big endian to little endian ( swap )
W[i] = be32toh(((uint32_t *)(block))[i]);
#endif
for (int i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
}
void inline TransformBlock (uint32_t state[8], const uint32_t W[64])
{
/**
* implementation of orignal
*/
uint32_t S[8];
memcpy(S, state, 32);
uint32_t t0, t1;
RNDr(S, W, 0, 0x428a2f98); RNDr(S, W, 1, 0x71374491); RNDr(S, W, 2, 0xb5c0fbcf); RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b); RNDr(S, W, 5, 0x59f111f1); RNDr(S, W, 6, 0x923f82a4); RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98); RNDr(S, W, 9, 0x12835b01); RNDr(S, W, 10, 0x243185be); RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74); RNDr(S, W, 13, 0x80deb1fe); RNDr(S, W, 14, 0x9bdc06a7); RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1); RNDr(S, W, 17, 0xefbe4786); RNDr(S, W, 18, 0x0fc19dc6); RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f); RNDr(S, W, 21, 0x4a7484aa); RNDr(S, W, 22, 0x5cb0a9dc); RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152); RNDr(S, W, 25, 0xa831c66d); RNDr(S, W, 26, 0xb00327c8); RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3); RNDr(S, W, 29, 0xd5a79147); RNDr(S, W, 30, 0x06ca6351); RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85); RNDr(S, W, 33, 0x2e1b2138); RNDr(S, W, 34, 0x4d2c6dfc); RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354); RNDr(S, W, 37, 0x766a0abb); RNDr(S, W, 38, 0x81c2c92e); RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1); RNDr(S, W, 41, 0xa81a664b); RNDr(S, W, 42, 0xc24b8b70); RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819); RNDr(S, W, 45, 0xd6990624); RNDr(S, W, 46, 0xf40e3585); RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116); RNDr(S, W, 49, 0x1e376c08); RNDr(S, W, 50, 0x2748774c); RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3); RNDr(S, W, 53, 0x4ed8aa4a); RNDr(S, W, 54, 0x5b9cca4f); RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee); RNDr(S, W, 57, 0x78a5636f); RNDr(S, W, 58, 0x84c87814); RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa); RNDr(S, W, 61, 0xa4506ceb); RNDr(S, W, 62, 0xbef9a3f7); RNDr(S, W, 63, 0xc67178f2);
for (int i = 0; i < 8; i++) state[i] += S[i];
}
void inline HashNextBlock (uint32_t state[8], const uint8_t * block)
{
/**
* implementation of orignal
*/
uint32_t W[64];
CalculateW (block, W);
TransformBlock (state, W);
}
bool check_prefix(const char * buf)
{
unsigned short size_str = 0;
while(*buf)
{
if(!((*buf > 49 && *buf < 56) || (*buf > 96 && *buf < 123)) || size_str > 52)
return false;
size_str++;
buf++;
}
return true;
}
inline size_t ByteStreamToBase32 (const uint8_t * inBuf, size_t len, char * outBuf, size_t outLen)
{
size_t ret = 0, pos = 1;
int bits = 8, tmp = inBuf[0];
while (ret < outLen && (bits > 0 || pos < len))
{
if (bits < 5)
{
if (pos < len)
{
tmp <<= 8;
tmp |= inBuf[pos] & 0xFF;
pos++;
bits += 8;
}
else // last byte
{
tmp <<= (5 - bits);
bits = 5;
}
}
bits -= 5;
int ind = (tmp >> bits) & 0x1F;
outBuf[ret] = (ind < 26) ? (ind + 'a') : ((ind - 26) + '2');
ret++;
}
outBuf[ret]='\0';
return ret;
}
inline bool NotThat(const char * what, const std::regex & reg){
return std::regex_match(what,reg) == 1 ? false : true;
}
inline bool NotThat(const char * a, const char *b)
{
while(*b)
if(*a++!=*b++)
return true;
return false;
}
void processFlipper(const std::string string)
{
constexpr char SYMBOLS[] {'-', '\\', '|', '/'};
uint8_t symbol_counter = 0;
std::string payload = string;
if (payload.back() != ' ') payload += ' ';
size_t current_state = payload.size();
enum { left, right } direction = left;
std::cout << payload << SYMBOLS[symbol_counter++];
while (!found)
{
std::cout << '\b' << SYMBOLS[symbol_counter++];
std::cout.flush();
if (symbol_counter == sizeof(SYMBOLS))
{
if (direction == left)
{
std::cout << '\b';
std::cout.flush();
symbol_counter = 0;
if (!--current_state)
{
direction = right;
}
}
else if (direction == right)
{
std::cout << '\b' << payload[current_state] << " ";
std::cout.flush();
symbol_counter = 0;
if (++current_state == payload.size())
{
direction = left;
}
}
}
std::this_thread::sleep_for(std::chrono::milliseconds(80));
}
}
bool thread_find(uint8_t * buf, const char * prefix, int id_thread, unsigned long long throughput)
{
const unsigned long long original_throughput = throughput;
uint8_t b[391];
uint32_t hash[8];
memcpy (b, buf, 391);
size_t len = 52;
if (!options.reg)
len = strlen(prefix);
// precalculate first 5 blocks (320 bytes)
uint32_t state[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 };
HashNextBlock (state, b);
HashNextBlock (state, b + 64);
HashNextBlock (state, b + 128);
HashNextBlock (state, b + 192);
HashNextBlock (state, b + 256);
// pre-calculate last W
uint32_t lastW[64];
CalculateW (lastBlock, lastW);
uint32_t * nonce = (uint32_t *)(b+320);
(*nonce) += id_thread*throughput;
char addr[53];
uint32_t state1[8];
while(!found)
{
if (! throughput--)
{
throughput = original_throughput;
}
memcpy (state1, state, 32);
// calculate hash of block with nonce
HashNextBlock (state1, b + 320);
// apply last block
TransformBlock (state1, lastW);
// get final hash
for (int j = 8; j--;)
hash[j] = htobe32(state1[j]);
ByteStreamToBase32 ((uint8_t*)hash, 32, addr, len);
if( options.reg ? !NotThat(addr, options.regex) : !NotThat(addr, prefix) )
{
ByteStreamToBase32 ((uint8_t*)hash, 32, addr, 52);
std::cout << "\nFound address: " << addr << std::endl;
found = true;
return true;
}
(*nonce)++;
if (found)
{
break;
}
}
return true;
}
void usage(void){
const constexpr char * help="Usage:\n"
" vain [text-pattern|regex-pattern] [options]\n\n"
"OPTIONS:\n"
" -h --help show this help (same as --usage)\n"
" -r --reg use regexp instead of simple text pattern, ex.: vain '(one|two).*' -r\n"
" -t --threads number of threads to use (default: one per processor)\n"
// " -s --signature (signature type)\n" // NOT IMPLEMENTED FUCKING PLAZ!
" -o --output privkey output file name (default: ./" DEF_OUTNAME ")\n"
"";
puts(help);
}
void parsing(int argc, char ** args){
int option_index;
static struct option long_options[]={
{"help",no_argument,0,'h'},
{"reg", no_argument,0,'r'},
{"threads", required_argument, 0, 't'},
{"signature", required_argument,0,'s'},
{"output", required_argument,0,'o'},
{"usage", no_argument,0,0},
{0,0,0,0}
};
int c;
while( (c=getopt_long(argc,args, "hrt:s:o:", long_options, &option_index))!=-1){
switch(c){
case 0:
if ( std::string(long_options[option_index].name) == std::string("usage") ){
usage();
exit(1);
}
case 'h':
usage();
exit(0);
break;
case 'r':
options.reg=true;
break;
case 't':
options.threads=atoi(optarg);
break;
case 's':
options.signature = NameToSigType(std::string(optarg));
check_sig_type();
break;
case 'o':
options.outputpath=optarg;
break;
case '?':
std::cerr << "Undefined argument" << std::endl;
default:
std::cerr << args[0] << " --usage / --help" << std::endl;
exit(1);
break;
}
}
}
int main (int argc, char * argv[])
{
if ( argc < 2 )
{
usage();
return 0;
}
parsing( argc > 2 ? argc-1 : argc, argc > 2 ? argv+1 : argv);
//
if(!options.reg && !check_prefix( argv[1] ))
{
std::cout << "Invalid pattern." << std::endl;
usage();
return 1;
}else{
options.regex=std::regex(argv[1]);
}
i2p::crypto::InitCrypto (false, true, true, false);
options.signature = i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519;
if(options.signature != i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519)
{
std::cout << "ED25519-SHA512 are currently the only signing keys supported." << std::endl;
return 0;
}
if (!options.sig_type) return -2;
auto keys = i2p::data::PrivateKeys::CreateRandomKeys (options.signature);
switch(options.signature)
{
case i2p::data::SIGNING_KEY_TYPE_DSA_SHA1:
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA256_2048:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA384_3072:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA512_4096:
case i2p::data::SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
std::cout << "Sorry, selected signature type is not supported for address generation." << std::endl;
return 0;
break;
}
//TODO: for other types.
switch(options.signature)
{
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
break;
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
break;
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA256_2048:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA384_3072:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA512_4096:
break;
case i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
MutateByte=320;
break;
case i2p::data::SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
break;
}
KeyBuf = new uint8_t[keys.GetFullLen()];
keys.ToBuffer (KeyBuf, keys.GetFullLen ());
if(options.threads <= 0)
{
options.threads = std::thread::hardware_concurrency();
}
std::cout << "Vanity generator started in " << options.threads << " threads" << std::endl;
std::vector<std::thread> threads(options.threads);
unsigned long long thoughtput = 0x4F4B5A37;
for (unsigned int j = options.threads; j--; )
{
threads[j] = std::thread(thread_find, KeyBuf, argv[1], j, thoughtput);
thoughtput += 1000;
}
processFlipper(argv[1]);
for (unsigned int j = 0; j < (unsigned int)options.threads;j++)
threads[j].join();
if(options.outputpath.empty()) options.outputpath.assign(DEF_OUTNAME);
std::ofstream f (options.outputpath, std::ofstream::binary);
if (f)
{
f.write ((char *)KeyBuf, keys.GetFullLen ());
delete [] KeyBuf;
}
else
std::cout << "Can't create output file: " << options.outputpath << std::endl;
i2p::crypto::TerminateCrypto ();
return 0;
}

417
todelete/old_vanity/vain.cpp Executable file
View File

@ -0,0 +1,417 @@
#include "vanity.hpp"
#include<regex>
#include<getopt.h>
static struct{
bool reg=false;
int threads=-1;
i2p::data::SigningKeyType signature;
std::string outputpath="";
std::regex regex;
}options;
static void inline CalculateW (const uint8_t block[64], uint32_t W[64])
{
/*
implementation of orignal
*/
for (int i = 0; i < 16; i++)
#ifdef _WIN32
W[i] = htobe32(((uint32_t *)(block))[i]);
#else // from big endian to little endian ( swap )
W[i] = be32toh(((uint32_t *)(block))[i]);
#endif
for (int i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
}
static void inline TransformBlock (uint32_t state[8], const uint32_t W[64])
{
/*
implementation of orignal
*/
uint32_t S[8];
memcpy(S, state, 32);
uint32_t t0, t1;
RNDr(S, W, 0, 0x428a2f98); RNDr(S, W, 1, 0x71374491); RNDr(S, W, 2, 0xb5c0fbcf); RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b); RNDr(S, W, 5, 0x59f111f1); RNDr(S, W, 6, 0x923f82a4); RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98); RNDr(S, W, 9, 0x12835b01); RNDr(S, W, 10, 0x243185be); RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74); RNDr(S, W, 13, 0x80deb1fe); RNDr(S, W, 14, 0x9bdc06a7); RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1); RNDr(S, W, 17, 0xefbe4786); RNDr(S, W, 18, 0x0fc19dc6); RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f); RNDr(S, W, 21, 0x4a7484aa); RNDr(S, W, 22, 0x5cb0a9dc); RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152); RNDr(S, W, 25, 0xa831c66d); RNDr(S, W, 26, 0xb00327c8); RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3); RNDr(S, W, 29, 0xd5a79147); RNDr(S, W, 30, 0x06ca6351); RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85); RNDr(S, W, 33, 0x2e1b2138); RNDr(S, W, 34, 0x4d2c6dfc); RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354); RNDr(S, W, 37, 0x766a0abb); RNDr(S, W, 38, 0x81c2c92e); RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1); RNDr(S, W, 41, 0xa81a664b); RNDr(S, W, 42, 0xc24b8b70); RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819); RNDr(S, W, 45, 0xd6990624); RNDr(S, W, 46, 0xf40e3585); RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116); RNDr(S, W, 49, 0x1e376c08); RNDr(S, W, 50, 0x2748774c); RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3); RNDr(S, W, 53, 0x4ed8aa4a); RNDr(S, W, 54, 0x5b9cca4f); RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee); RNDr(S, W, 57, 0x78a5636f); RNDr(S, W, 58, 0x84c87814); RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa); RNDr(S, W, 61, 0xa4506ceb); RNDr(S, W, 62, 0xbef9a3f7); RNDr(S, W, 63, 0xc67178f2);
for (int i = 0; i < 8; i++) state[i] += S[i];
}
void inline HashNextBlock (uint32_t state[8], const uint8_t * block)
{
/*
implementation of orignal
*/
uint32_t W[64];
CalculateW (block, W);
TransformBlock (state, W);
}
static bool check_prefix(const char * buf)
{
unsigned short size_str=0;
while(*buf)
{
if(*buf < 48 || (*buf > 57 && *buf < 65) || (*buf > 64 && *buf < 94) || *buf > 125 || size_str > 52)
return false;
size_str++;
buf++;
}
return true;
}
static inline size_t ByteStreamToBase32 (const uint8_t * inBuf, size_t len, char * outBuf, size_t outLen)
{
size_t ret = 0, pos = 1;
int bits = 8, tmp = inBuf[0];
while (ret < outLen && (bits > 0 || pos < len))
{
if (bits < 5)
{
if (pos < len)
{
tmp <<= 8;
tmp |= inBuf[pos] & 0xFF;
pos++;
bits += 8;
}
else // last byte
{
tmp <<= (5 - bits);
bits = 5;
}
}
bits -= 5;
int ind = (tmp >> bits) & 0x1F;
outBuf[ret] = (ind < 26) ? (ind + 'a') : ((ind - 26) + '2');
ret++;
}
outBuf[ret]='\0';
return ret;
}
static inline bool NotThat(const char * what, const std::regex & reg){
return std::regex_match(what,reg) == 1 ? false : true;
}
static inline bool NotThat(const char * a, const char *b)
{
while(*b)
if(*a++!=*b++)
return true;
return false;
}
static inline bool thread_find(uint8_t * buf, const char * prefix, int id_thread, unsigned long long throughput)
{
/*
Thanks to orignal ^-^
For idea and example ^-^
Orignal is sensei of crypto ;)
*/
std::cout << "Thread " << id_thread << " binded" << std::endl;
/*
union
{
uint8_t b[391];
uint32_t ll;
} local;
union
{
uint8_t b[32];
uint32_t ll[8];
} hash;
*/
uint8_t b[391];
uint32_t hash[8];
memcpy (b, buf, 391);
auto len = strlen (prefix);
// precalculate first 5 blocks (320 bytes)
uint32_t state[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 };
HashNextBlock (state, b);
HashNextBlock (state, b + 64);
HashNextBlock (state, b + 128);
HashNextBlock (state, b + 192);
HashNextBlock (state, b + 256);
// pre-calculate last W
uint32_t lastW[64];
CalculateW (lastBlock, lastW);
uint32_t * nonce = (uint32_t *)(b+320);
(*nonce) += id_thread*throughput;
char addr[53];
uint32_t state1[8];
while(throughput-- and !found)
{
memcpy (state1, state, 32);
// calculate hash of block with nonce
HashNextBlock (state1, b + 320);
// apply last block
TransformBlock (state1, lastW);
// get final hash
for (int j = 8; j--;)
hash[j] = htobe32(state1[j]);
ByteStreamToBase32 ((uint8_t*)hash, 32, addr, len);
// std::cout << addr << std::endl;
//bool result = options.reg ? !NotThat(addr, &options.regex) : !NotThat(addr,prefix);
if( ( options.reg ? !NotThat(addr, options.regex) : !NotThat(addr,prefix) ) )
// if(result)
{
ByteStreamToBase32 ((uint8_t*)hash, 32, addr, 52);
std::cout << "Address found " << addr << " in " << id_thread << std::endl;
found=true;
FoundNonce=*nonce;
// free(hash);
// free(b);
return true;
}
(*nonce)++;
hashescounter++;
if (found)
{
// free(hash);
// free(b);
break;
}
}//while
return true;
}
void usage(void){
const constexpr char * help="vain pattern [options]\n"
"-h --help help menu\n"
"-r --reg regexp instead just text pattern\n"
"--threads -t (default count of system)\n"
"--signature -s (signature type)\n"
"-o --output output file(default private.dat)\n"
"--usage usage\n"
//"--prefix -p\n"
"";
puts(help);
}
void parsing(int argc, char ** args){
int option_index;
static struct option long_options[]={
{"help",no_argument,0,'h'},
{"reg", no_argument,0,'r'},
{"threads", required_argument, 0, 't'},
{"signature", required_argument,0,'s'},
{"output", required_argument,0,'o'},
{"usage", no_argument,0,0},
{0,0,0,0}
};
int c;
while( (c=getopt_long(argc,args, "hrt:s:o:", long_options, &option_index))!=-1){
switch(c){
case 0:
if ( std::string(long_options[option_index].name) == std::string("usage") ){
usage();
exit(1);
}
case 'h':
usage();
exit(0);
break;
case 'r':
options.reg=true;
break;
case 't':
options.threads=atoi(optarg);
break;
case 's':
options.signature = NameToSigType(std::string(optarg));
break;
case 'o':
options.outputpath=optarg;
break;
case '?':
std::cerr << "Undefined argument" << std::endl;
default:
std::cerr << args[0] << " --usage / --help" << std::endl;
exit(1);
break;
}
}
}
int main (int argc, char * argv[])
{
if ( argc < 2 )
{
usage();
return 0;
}
parsing( argc > 2 ? argc-1 : argc, argc > 2 ? argv+1 : argv);
//
if(!options.reg && !check_prefix( argv[1] ))
{
std::cout << "Not correct prefix(just string)" << std::endl;
return 1;
}else{
options.regex=std::regex(argv[1]);
// int ret = regcomp( &options.regex, argv[1], REG_EXTENDED );
// if( ret != 0 ){
// std::cerr << "Can't create regexp pattern from " << argv[1] << std::endl;
// return 1;
// }
}
i2p::crypto::InitCrypto (false);
options.signature = i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519;
///////////////
//For while
if(options.signature != i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519)
{
std::cout << "For a while only ED25519-SHA512" << std::endl;
return 0;
}
///////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
auto keys = i2p::data::PrivateKeys::CreateRandomKeys (options.signature);
switch(options.signature)
{
case i2p::data::SIGNING_KEY_TYPE_DSA_SHA1:
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA256_2048:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA384_3072:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA512_4096:
case i2p::data::SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
std::cout << "Sorry, i don't can generate adress for this signature type" << std::endl;
return 0;
break;
}
//TODO: for other types.
switch(options.signature)
{
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
break;
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
break;
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA256_2048:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA384_3072:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA512_4096:
break;
case i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
MutateByte=320;
break;
case i2p::data::SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
break;
}
KeyBuf = new uint8_t[keys.GetFullLen()];
keys.ToBuffer (KeyBuf, keys.GetFullLen ());
if(options.threads <= 0)
{
#if defined(WIN32)
SYSTEM_INFO siSysInfo;
GetSystemInfo(&siSysInfo);
options.threads = siSysInfo.dwNumberOfProcessors;
#elif defined(_SC_NPROCESSORS_CONF)
options.threads = sysconf(_SC_NPROCESSORS_CONF);
#elif defined(HW_NCPU)
int req[] = { CTL_HW, HW_NCPU };
size_t len = sizeof(options.threads);
v = sysctl(req, 2, &options.threads, &len, NULL, 0);
#else
options.threads = 1;
#endif
}
std::cout << "Start vanity generator in " << options.threads << " threads" << std::endl;
unsigned short attempts = 0;
while(!found)
{//while
{//stack(for destructors(vector/thread))
std::vector<std::thread> threads(options.threads);
unsigned long long thoughtput = 0x4F4B5A37;
for ( unsigned int j = options.threads;j--;)
{
threads[j] = std::thread(thread_find,KeyBuf,argv[1],j,thoughtput);
thoughtput+=1000;
}//for
for(unsigned int j = 0; j < (unsigned int)options.threads;j++)
threads[j].join();
if(FoundNonce == 0)
{
RAND_bytes( KeyBuf+MutateByte , 90 );
std::cout << "Attempts #" << ++attempts << std::endl;
}
}//stack
}//while
memcpy (KeyBuf + MutateByte, &FoundNonce, 4);
std::cout << "Hashes: " << hashescounter << std::endl;
if(options.outputpath.size() == 0) options.outputpath="private.dat";
std::ofstream f (options.outputpath, std::ofstream::binary | std::ofstream::out);
if (f)
{
f.write ((char *)KeyBuf, keys.GetFullLen ());
delete [] KeyBuf;
}
else
std::cout << "Can't create file " << options.outputpath << std::endl;
i2p::crypto::TerminateCrypto ();
return 0;
}
//

66
todelete/old_vanity/vanity.hpp Executable file
View File

@ -0,0 +1,66 @@
#pragma once
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <openssl/rand.h>
#include "Crypto.h"
#include "Identity.h"
#include "I2PEndian.h"
#include "common/key.hpp"
#include <thread>
#include <unistd.h>
#include <vector>
#ifdef _WIN32
#include <windows.h>
#endif
// sha256
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
//static i2p::data::SigningKeyType type;
//static i2p::data::PrivateKeys keys;
static bool found=false;
static size_t MutateByte;
static uint32_t FoundNonce=0;
static uint8_t * KeyBuf;
//static uint8_t * PaddingBuf;
static unsigned long long hashescounter;
unsigned int count_cpu;
const uint8_t lastBlock[64] =
{
0x05, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x80, // 7 bytes EdDSA certificate
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x38 // 3128 bits (391 bytes)
};

432
vain.cpp Executable file
View File

@ -0,0 +1,432 @@
#include "vanity.hpp"
#include<regex>
#include<getopt.h>
/// Crypto InitCrypto. TODO: to makefile/another place get the macro
#ifndef PRECOMPUTATION_CRYPTO
#define PRECOMPUTATION_CRYPTO false
#endif
#ifndef AESNI_CRYPTO
#define AESNI_CRYPTO false
#endif
#ifndef AVX_CRYPTO
#define AVX_CRYPTO false
#endif
#ifndef FORCE_CRYPTO
#define FORCE_CRYPTO false
#endif
static struct{
bool reg=false;
int threads=-1;
i2p::data::SigningKeyType signature;
std::string outputpath="";
std::regex regex;
}options;
static void inline CalculateW (const uint8_t block[64], uint32_t W[64])
{
/*
implementation of orignal
*/
for (int i = 0; i < 16; i++)
#ifdef _WIN32
W[i] = htobe32(((uint32_t *)(block))[i]);
#else // from big endian to little endian ( swap )
W[i] = be32toh(((uint32_t *)(block))[i]);
#endif
for (int i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
}
static void inline TransformBlock (uint32_t state[8], const uint32_t W[64])
{
/*
implementation of orignal
*/
uint32_t S[8];
memcpy(S, state, 32);
uint32_t t0, t1;
RNDr(S, W, 0, 0x428a2f98); RNDr(S, W, 1, 0x71374491); RNDr(S, W, 2, 0xb5c0fbcf); RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b); RNDr(S, W, 5, 0x59f111f1); RNDr(S, W, 6, 0x923f82a4); RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98); RNDr(S, W, 9, 0x12835b01); RNDr(S, W, 10, 0x243185be); RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74); RNDr(S, W, 13, 0x80deb1fe); RNDr(S, W, 14, 0x9bdc06a7); RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1); RNDr(S, W, 17, 0xefbe4786); RNDr(S, W, 18, 0x0fc19dc6); RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f); RNDr(S, W, 21, 0x4a7484aa); RNDr(S, W, 22, 0x5cb0a9dc); RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152); RNDr(S, W, 25, 0xa831c66d); RNDr(S, W, 26, 0xb00327c8); RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3); RNDr(S, W, 29, 0xd5a79147); RNDr(S, W, 30, 0x06ca6351); RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85); RNDr(S, W, 33, 0x2e1b2138); RNDr(S, W, 34, 0x4d2c6dfc); RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354); RNDr(S, W, 37, 0x766a0abb); RNDr(S, W, 38, 0x81c2c92e); RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1); RNDr(S, W, 41, 0xa81a664b); RNDr(S, W, 42, 0xc24b8b70); RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819); RNDr(S, W, 45, 0xd6990624); RNDr(S, W, 46, 0xf40e3585); RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116); RNDr(S, W, 49, 0x1e376c08); RNDr(S, W, 50, 0x2748774c); RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3); RNDr(S, W, 53, 0x4ed8aa4a); RNDr(S, W, 54, 0x5b9cca4f); RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee); RNDr(S, W, 57, 0x78a5636f); RNDr(S, W, 58, 0x84c87814); RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa); RNDr(S, W, 61, 0xa4506ceb); RNDr(S, W, 62, 0xbef9a3f7); RNDr(S, W, 63, 0xc67178f2);
for (int i = 0; i < 8; i++) state[i] += S[i];
}
void inline HashNextBlock (uint32_t state[8], const uint8_t * block)
{
/*
implementation of orignal
*/
uint32_t W[64];
CalculateW (block, W);
TransformBlock (state, W);
}
static bool check_prefix(const char * buf)
{
unsigned short size_str=0;
while(*buf)
{
if(*buf < 48 || (*buf > 57 && *buf < 65) || (*buf > 64 && *buf < 94) || *buf > 125 || size_str > 52)
return false;
size_str++;
buf++;
}
return true;
}
static inline size_t ByteStreamToBase32 (const uint8_t * inBuf, size_t len, char * outBuf, size_t outLen)
{
size_t ret = 0, pos = 1;
int bits = 8, tmp = inBuf[0];
while (ret < outLen && (bits > 0 || pos < len))
{
if (bits < 5)
{
if (pos < len)
{
tmp <<= 8;
tmp |= inBuf[pos] & 0xFF;
pos++;
bits += 8;
}
else // last byte
{
tmp <<= (5 - bits);
bits = 5;
}
}
bits -= 5;
int ind = (tmp >> bits) & 0x1F;
outBuf[ret] = (ind < 26) ? (ind + 'a') : ((ind - 26) + '2');
ret++;
}
outBuf[ret]='\0';
return ret;
}
static inline bool NotThat(const char * what, const std::regex & reg){
return std::regex_match(what,reg) == 1 ? false : true;
}
static inline bool NotThat(const char * a, const char *b)
{
while(*b)
if(*a++!=*b++)
return true;
return false;
}
static inline bool thread_find(uint8_t * buf, const char * prefix, int id_thread, unsigned long long throughput)
{
/*
Thanks to orignal ^-^
For idea and example ^-^
Orignal is sensei of crypto ;)
*/
std::cout << "Thread " << id_thread << " binded" << std::endl;
/*
union
{
uint8_t b[391];
uint32_t ll;
} local;
union
{
uint8_t b[32];
uint32_t ll[8];
} hash;
*/
uint8_t b[391];
uint32_t hash[8];
memcpy (b, buf, 391);
auto len = strlen (prefix);
// precalculate first 5 blocks (320 bytes)
uint32_t state[8] = { 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19 };
HashNextBlock (state, b);
HashNextBlock (state, b + 64);
HashNextBlock (state, b + 128);
HashNextBlock (state, b + 192);
HashNextBlock (state, b + 256);
// pre-calculate last W
uint32_t lastW[64];
CalculateW (lastBlock, lastW);
uint32_t * nonce = (uint32_t *)(b+320);
(*nonce) += id_thread*throughput;
char addr[53];
uint32_t state1[8];
while(throughput-- and !found)
{
memcpy (state1, state, 32);
// calculate hash of block with nonce
HashNextBlock (state1, b + 320);
// apply last block
TransformBlock (state1, lastW);
// get final hash
for (int j = 8; j--;)
hash[j] = htobe32(state1[j]);
ByteStreamToBase32 ((uint8_t*)hash, 32, addr, len);
// std::cout << addr << std::endl;
//bool result = options.reg ? !NotThat(addr, &options.regex) : !NotThat(addr,prefix);
if( ( options.reg ? !NotThat(addr, options.regex) : !NotThat(addr,prefix) ) )
// if(result)
{
ByteStreamToBase32 ((uint8_t*)hash, 32, addr, 52);
std::cout << "Address found " << addr << " in " << id_thread << std::endl;
found=true;
FoundNonce=*nonce;
// free(hash);
// free(b);
return true;
}
(*nonce)++;
hashescounter++;
if (found)
{
// free(hash);
// free(b);
break;
}
}//while
return true;
}
void usage(void){
const constexpr char * help="vain pattern [options]\n"
"-h --help help menu\n"
"-r --reg regexp instead just text pattern\n"
"--threads -t (default count of system)\n"
"--signature -s (signature type)\n"
"-o --output output file(default private.dat)\n"
"--usage usage\n"
//"--prefix -p\n"
"";
puts(help);
}
void parsing(int argc, char ** args){
int option_index;
static struct option long_options[]={
{"help",no_argument,0,'h'},
{"reg", no_argument,0,'r'},
{"threads", required_argument, 0, 't'},
{"signature", required_argument,0,'s'},
{"output", required_argument,0,'o'},
{"usage", no_argument,0,0},
{0,0,0,0}
};
int c;
while( (c=getopt_long(argc,args, "hrt:s:o:", long_options, &option_index))!=-1){
switch(c){
case 0:
if ( std::string(long_options[option_index].name) == std::string("usage") ){
usage();
exit(1);
}
case 'h':
usage();
exit(0);
break;
case 'r':
options.reg=true;
break;
case 't':
options.threads=atoi(optarg);
break;
case 's':
options.signature = NameToSigType(std::string(optarg));
break;
case 'o':
options.outputpath=optarg;
break;
case '?':
std::cerr << "Undefined argument" << std::endl;
default:
std::cerr << args[0] << " --usage / --help" << std::endl;
exit(1);
break;
}
}
}
int main (int argc, char * argv[])
{
if ( argc < 2 )
{
usage();
return 0;
}
parsing( argc > 2 ? argc-1 : argc, argc > 2 ? argv+1 : argv);
//
if(!options.reg && !check_prefix( argv[1] ))
{
std::cout << "Not correct prefix(just string)" << std::endl;
return 1;
}else{
options.regex=std::regex(argv[1]);
// int ret = regcomp( &options.regex, argv[1], REG_EXTENDED );
// if( ret != 0 ){
// std::cerr << "Can't create regexp pattern from " << argv[1] << std::endl;
// return 1;
// }
}
// https://github.com/PurpleI2P/i2pd/blob/ae5239de435e1dcdff342961af9b506f60a494d4/libi2pd/Crypto.h#L310
//// init and terminate
// void InitCrypto (bool precomputation, bool aesni, bool avx, bool force);
// By default false to all.
i2p::crypto::InitCrypto (PRECOMPUTATION_CRYPTO, AESNI_CRYPTO, AVX_CRYPTO, FORCE_CRYPTO);
options.signature = i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519;
///////////////
//For while
if(options.signature != i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519)
{
std::cout << "For a while only ED25519-SHA512" << std::endl;
return 0;
}
///////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
auto keys = i2p::data::PrivateKeys::CreateRandomKeys (options.signature);
switch(options.signature)
{
case i2p::data::SIGNING_KEY_TYPE_DSA_SHA1:
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA256_2048:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA384_3072:
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA512_4096:
case i2p::data::SIGNING_KEY_TYPE_GOSTR3410_TC26_A_512_GOSTR3411_512:
std::cout << "Sorry, i don't can generate adress for this signature type" << std::endl;
return 0;
break;
}
//TODO: for other types.
switch(options.signature)
{
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA256_P256:
break;
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA384_P384:
break;
case i2p::data::SIGNING_KEY_TYPE_ECDSA_SHA512_P521:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA256_2048:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA384_3072:
break;
case i2p::data::SIGNING_KEY_TYPE_RSA_SHA512_4096:
break;
case i2p::data::SIGNING_KEY_TYPE_EDDSA_SHA512_ED25519:
MutateByte=320;
break;
case i2p::data::SIGNING_KEY_TYPE_GOSTR3410_CRYPTO_PRO_A_GOSTR3411_256:
break;
}
KeyBuf = new uint8_t[keys.GetFullLen()];
keys.ToBuffer (KeyBuf, keys.GetFullLen ());
if(options.threads <= 0)
{
#if defined(WIN32)
SYSTEM_INFO siSysInfo;
GetSystemInfo(&siSysInfo);
options.threads = siSysInfo.dwNumberOfProcessors;
#elif defined(_SC_NPROCESSORS_CONF)
options.threads = sysconf(_SC_NPROCESSORS_CONF);
#elif defined(HW_NCPU)
int req[] = { CTL_HW, HW_NCPU };
size_t len = sizeof(options.threads);
v = sysctl(req, 2, &options.threads, &len, NULL, 0);
#else
options.threads = 1;
#endif
}
std::cout << "Start vanity generator in " << options.threads << " threads" << std::endl;
unsigned short attempts = 0;
while(!found)
{//while
{//stack(for destructors(vector/thread))
std::vector<std::thread> threads(options.threads);
unsigned long long thoughtput = 0x4F4B5A37;
for ( unsigned int j = options.threads;j--;)
{
threads[j] = std::thread(thread_find,KeyBuf,argv[1],j,thoughtput);
thoughtput+=1000;
}//for
for(unsigned int j = 0; j < (unsigned int)options.threads;j++)
threads[j].join();
if(FoundNonce == 0)
{
RAND_bytes( KeyBuf+MutateByte , 90 );
std::cout << "Attempts #" << ++attempts << std::endl;
}
}//stack
}//while
memcpy (KeyBuf + MutateByte, &FoundNonce, 4);
std::cout << "Hashes: " << hashescounter << std::endl;
if(options.outputpath.size() == 0) options.outputpath="private.dat";
std::ofstream f (options.outputpath, std::ofstream::binary | std::ofstream::out);
if (f)
{
f.write ((char *)KeyBuf, keys.GetFullLen ());
delete [] KeyBuf;
}
else
std::cout << "Can't create file " << options.outputpath << std::endl;
i2p::crypto::TerminateCrypto ();
return 0;
}
//

66
vanity.hpp Executable file
View File

@ -0,0 +1,66 @@
#pragma once
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <openssl/rand.h>
#include "Crypto.h"
#include "Identity.h"
#include "I2PEndian.h"
#include "common/key.hpp"
#include <thread>
#include <unistd.h>
#include <vector>
#ifdef _WIN32
#include <windows.h>
#endif
// sha256
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
//static i2p::data::SigningKeyType type;
//static i2p::data::PrivateKeys keys;
static bool found=false;
static size_t MutateByte;
static uint32_t FoundNonce=0;
static uint8_t * KeyBuf;
//static uint8_t * PaddingBuf;
static unsigned long long hashescounter;
unsigned int count_cpu;
const uint8_t lastBlock[64] =
{
0x05, 0x00, 0x04, 0x00, 0x07, 0x00, 0x00, 0x80, // 7 bytes EdDSA certificate
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x38 // 3128 bits (391 bytes)
};