1
0
mirror of https://github.com/PurpleI2P/Boost-for-Android-Prebuilt synced 2025-01-24 21:44:48 +00:00
r4sas 93de5720b8
add boost 1.72.0
Signed-off-by: r4sas <r4sas@i2pmail.org>
2020-02-29 22:43:48 +00:00

126 lines
4.7 KiB
C++

/*
* Copyright Nick Thompson, 2017
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
* Use the adaptive trapezoidal rule to estimate the integral of periodic functions over a period,
* or to integrate a function whose derivative vanishes at the endpoints.
*
* If your function does not satisfy these conditions, and instead is simply continuous and bounded
* over the whole interval, then this routine will still converge, albeit slowly. However, there
* are much more efficient methods in this case, including Romberg, Simpson, and double exponential quadrature.
*/
#ifndef BOOST_MATH_QUADRATURE_TRAPEZOIDAL_HPP
#define BOOST_MATH_QUADRATURE_TRAPEZOIDAL_HPP
#include <cmath>
#include <limits>
#include <stdexcept>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/policies/error_handling.hpp>
namespace boost{ namespace math{ namespace quadrature {
template<class F, class Real, class Policy>
auto trapezoidal(F f, Real a, Real b, Real tol, std::size_t max_refinements, Real* error_estimate, Real* L1, const Policy& pol)->decltype(std::declval<F>()(std::declval<Real>()))
{
static const char* function = "boost::math::quadrature::trapezoidal<%1%>(F, %1%, %1%, %1%)";
using std::abs;
using boost::math::constants::half;
// In many math texts, K represents the field of real or complex numbers.
// Too bad we can't put blackboard bold into C++ source!
typedef decltype(f(a)) K;
if(a >= b)
{
return static_cast<K>(boost::math::policies::raise_domain_error(function, "a < b for integration over the region [a, b] is required, but got a = %1%.\n", a, pol));
}
if (!(boost::math::isfinite)(a))
{
return static_cast<K>(boost::math::policies::raise_domain_error(function, "Left endpoint of integration must be finite for adaptive trapezoidal integration but got a = %1%.\n", a, pol));
}
if (!(boost::math::isfinite)(b))
{
return static_cast<K>(boost::math::policies::raise_domain_error(function, "Right endpoint of integration must be finite for adaptive trapedzoidal integration but got b = %1%.\n", b, pol));
}
K ya = f(a);
K yb = f(b);
Real h = (b - a)*half<Real>();
K I0 = (ya + yb)*h;
Real IL0 = (abs(ya) + abs(yb))*h;
K yh = f(a + h);
K I1;
I1 = I0*half<Real>() + yh*h;
Real IL1 = IL0*half<Real>() + abs(yh)*h;
// The recursion is:
// I_k = 1/2 I_{k-1} + 1/2^k \sum_{j=1; j odd, j < 2^k} f(a + j(b-a)/2^k)
std::size_t k = 2;
// We want to go through at least 4 levels so we have sampled the function at least 10 times.
// Otherwise, we could terminate prematurely and miss essential features.
// This is of course possible anyway, but 10 samples seems to be a reasonable compromise.
Real error = abs(I0 - I1);
while (k < 4 || (k < max_refinements && error > tol*IL1) )
{
I0 = I1;
IL0 = IL1;
I1 = I0*half<Real>();
IL1 = IL0*half<Real>();
std::size_t p = static_cast<std::size_t>(1u) << k;
h *= half<Real>();
K sum = 0;
Real absum = 0;
for(std::size_t j = 1; j < p; j += 2)
{
K y = f(a + j*h);
sum += y;
absum += abs(y);
}
I1 += sum*h;
IL1 += absum*h;
++k;
error = abs(I0 - I1);
}
if (error_estimate)
{
*error_estimate = error;
}
if (L1)
{
*L1 = IL1;
}
return static_cast<K>(I1);
}
#if BOOST_WORKAROUND(BOOST_MSVC, < 1800)
// Template argument dedcution failure otherwise:
template<class F, class Real>
auto trapezoidal(F f, Real a, Real b, Real tol = 0, std::size_t max_refinements = 12, Real* error_estimate = 0, Real* L1 = 0)->decltype(std::declval<F>()(std::declval<Real>()))
#elif !defined(BOOST_NO_CXX11_NULLPTR)
template<class F, class Real>
auto trapezoidal(F f, Real a, Real b, Real tol = boost::math::tools::root_epsilon<Real>(), std::size_t max_refinements = 12, Real* error_estimate = nullptr, Real* L1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
#else
template<class F, class Real>
auto trapezoidal(F f, Real a, Real b, Real tol = boost::math::tools::root_epsilon<Real>(), std::size_t max_refinements = 12, Real* error_estimate = 0, Real* L1 = 0)->decltype(std::declval<F>()(std::declval<Real>()))
#endif
{
#if BOOST_WORKAROUND(BOOST_MSVC, <= 1600)
if (tol == 0)
tol = boost::math::tools::root_epsilon<Real>();
#endif
return trapezoidal(f, a, b, tol, max_refinements, error_estimate, L1, boost::math::policies::policy<>());
}
}}}
#endif